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Abstract— In this paper, the Direction of Arrival 
(DOA) estimation is implemented using a stepped-
frequency ground penetrating radar data for anti-
personal landmines detection. Different 
experiments for different anti-personal landmines 
for different depths have been achieved. The 
techniques used in this paper are high-resolution 
techniques such as Multiple Signal Classification 
(MUSIC), and EigenVector (EV) methods. These 
techniques are compared with the classical 
method, Fast Fourier Transform (FFT). The 
practical results show the better performance of 
high resolution techniques when compared with 
the classical method. 
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I.  INTRODUCTION  

The problem of estimating the wave number or 
angle of arrival of a plane wave is referred to as 
direction finding or DOA estimation problem.  

In signal processing literature, DOA denotes the 
direction from which usually a propagating wave 
arrives at a point, where usually a set of sensors are 
located. This set of sensors forms what is called a 
sensor array. In many signal processing applications a 
set of unknown parameters should be estimated from 
measurements collected by array of sensors. 

It has a large application in radar, sonar, seismic 
systems, electronic surveillance, medical diagnosis 
and treatment, radio astrology and other areas.  

Because of its widespread applications and 
difficulty of obtaining an optimum estimator, the topic 
has a received a significant amount of attention over 
the last several decades.  

Several methods exist to address the problem of 
estimating the direction of - arrivals (DOAs) of multiple 
sources using the signals received at the sensors. The 
application of the array processing requires either the 
knowledge of a reference signal or the direction of the 
desired signal source to achieve its desired objectives.  

The algorithms of DOA estimation can be classified 
into two algorithms classical such as Fast Fourier 
Transform (FFT) and subspace method such as 
Multiple Signal Classification (MUSIC)[1,2], and 
EigenVector (EV) [3]. The main advantage of 

subspace methods over the conventional method is 
that the aperture of the entire array does not limit the 
resolution, therefore these also known as super 
resolution techniques [4]. The aims of this research are 
to make an investigation about modern DOA 
estimation methods such as Fast Fourier Transform 
(FFT) [5], Multiple Signal Classification (MUSIC), and 
Eigenvector (EV) methods. These methods based on 
eignanalysis of an autocorrelation matrix of the 
received signal. Then, these methods are compared 
with the conventional method Fast Fourier Transform 
(FFT).  

There are more than 119 million mines were buried 
in 71 countries in the world. The number of mine 
victims is greater than the number of the victims of 
nuclear and chemical weapons together.  

The detection and identification techniques for 
buried objects have been a great interest to 
researchers for many years. There are many 
techniques have been studied. One of them is the 
metal detector approach (MD) which is still used, but it 
can't be used for the detection of plastic and low metal 
landmines. The most important technique to be used is 
the ground penetrating radar (GPR) which is being 
used widely in many science fields [6].  

The Ground Penetrating Radar (GPR) is used the 
difference in permittivity of both mine and the 
surrounding medium to detect the target [7]. However 
it is difficult for the GPR to detect the target if it has 
very small dimensions or has a permittivity near to that 
of the ground. In these cases, the reflected signal of 
the target is very weak compared to that of the ground 
and noise, making it difficult to distinguish between 
both without proper signal processing. Thus, in order 
to extract useful information about the target, it is 
necessary to apply proper signal processing by using a 
stepped frequency continues wave radar (SFCW) to 
overcome the problem of high instantaneous 
bandwidth and high sampling rate of the pulsed 
systems[8].  

Generally, ground penetration radar (GPR) is a 
narrow bandwidth device and its radar range is 
normally high, a wide bandwidth is greatly desired to 
enclose all target images, which is difficult to make 
because it is limited by antenna size in the low-
frequency range and underground propagation 
characteristics in the high-frequency range [9, 10]. In 
order to overcome these problems, improvement of 
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frequency resolution is greatly desired. Moreover, 
improvement of resolution is very important for GPR to 
trace out closely buried targets, like gas pipes, water 
pipes, cables, and so forth, in an urban area and also 
to detect the buried land mines that cause thousands 
of human life every year throughout the world [11, 12]. 

Several signal processing approaches have been 
suggested to improve the performance of GPR 
systems. These include: simple mean scan subtraction 
[13], two-dimensional digital filtering [14], wavelet 
packet decomposition [13], likelihood ratio test [13], 
[16], parametric system identification [17], and Kalman 
filter [15], [16]. Most of these methods depend on the 
background signal estimation by taking the mean value 
of the unprocessed ensemble collected GPR data, 
followed by employing the simple mean scan 
subtraction. Although these methods have been used 
widely in GPR applications. Various researchers have 
shown interest in subspace techniques including 
Singular Value Decomposition (SVD) [13], [18], Linear 
Discriminant Analysis (LDA) [19], Principal Component 
Analysis (PCA) [20], [21], and Independent 
Component Analysis (ICA) [10], [22]–[24]. 

This work set out to explore various spectral 
estimation techniques that can be applied to GPR 
imaging systems. The goal of this work is to advance 
the use of the most popular DOA algorithm to 
estimation GPR Signals. In this paper, the application 
possibility of super resolution method MUSIC 
algorithm, Eigenvector (EV) methods and conventional 
FFT (Fast Fourier Transform) are examined for signal 
processing of GPR. 

II. DATA MODEL 

Let us consider the received GPR data being 
represented by the A-scans xi(k) (i=1,2,.,m; k=1,2,.,K), 
where i denotes the antenna position index and k 
denotes the time index. X is the matrix holding the M 
A-Scans in each row with K time samples, 

 TxXX M, ...... ,1   where   K1   Ctix  And 

  KMC  tX  

III. FOURIER TRANSFORM  

Fourier analysis is an important tool in the area of 
signal analysis and processing. With its help, it can be 
determined which harmonic signals with different 
amplitudes, frequencies, and phases. Traditional FFT-
based methods to process signal and phase history 
data into images are widely used, even though they 
suffer from poor resolution and high side lobe artifacts. 
However, modern spectral estimation methods provide 
an attractive alternative that can improve resolution, 
help eliminate image speckle effects, and increase the 
accuracy of interferometric height estimates. These 
methods promise to improve the clarity and 
applicability of GPR imaging for many applications. 

Discrete Fourier Transform 

It is a kind of Discrete Transform which is used in 
Fourier analysis. It transforms one function into 
another, which is called the frequency domain 
representation, or simply the DFT, of the original 
function.  

In most SF GPR systems, the windowed Inverse 
Discrete Fourier Transform (IDFT) processing is used 
to transform the raw radar data into the spatial domain, 
providing the impulse response of the radar [25, 26, 
27]. (Typically the Inverse Fast Fourier Transform is 
used, which is simply a computationally efficient 
implementation of the IDFT). Often the amplitudes of 
the resulting impulse response are related to the 
reflectivity of targets without consideration for the 
properties of the medium [25, 26, 27].  

Fourier transforms of the temporal records x(t) 
defined as: 

    dt
ftj

etxfX  
2

 

0

 



      (1) 

 It is noted that the lower integration limit is 0 since 

  0    when  0  ttx
 

Since the collected measurements are discrete 
data point within finite time duration, assume that N 
points of data are evenly sampled at time interval t . 

The signal  tx  at  ..., N-10, 1, 2, .ntnt    , are 

replaced by discrete form. 

  ......,N-10, 1, 2, .ntnxxn                  (2) 

In addition, the Fourier transform at N discrete 

frequency values  ..., N-10, 1, 2, .k
k

f   is 

computed, where  
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
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Note that, for computational purposes, the number 
of discrete frequency values is the same as the 
number of sampled data. Then the discrete Fourier 
transform is obtained via 

 
...,N-10, 1, 2, . k

t

fX
X k
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                      ,   (4) 

Thus, the discrete version of (Equ.1) are readily 
shown as 
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IV. MUSIC 

Multiple Signal Classification (MUSIC) is the most 
popular technique used in DOA estimation. We can 
summarize DOA estimation as the work of estimating 
the direction of an unknown incoming signal to a 
receiver antenna by some processing techniques. 
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The MUSIC method is a relatively simple and 
efficient eigen structure method of DOA estimation. It 
has many variations and is perhaps the most studied 
method in its class. In its standard form, also known as 
spectral MUSIC, the method estimates the noise 
subspace from available samples. This can be done by 
either eigenvalue decomposition of the estimated array 
correlation matrix or singular value decomposition of 
the data matrix, with its columns being the snapshots 
of the array signal vectors. The latter is preferred for 
numerical reasons. Once the noise subspace has 
been estimated, a search for angle pairs in the range 
is made by looking for steering vectors that are as 
orthogonal to the noise subspace as possible. This is 
normally accomplished by searching for peaks in the 
MUSIC spectrum. 

The measured value of M-A-Scans reflected signal 
from the target with a vector network analyzer can be 
expressed using vector notation as follows: 

 TxXX M, ...... ,1  where X is the matrix holding 

the M A-Scans in each row with K time samples, 

  K1   Ctix  And   KMC  tX . 

In general, MUSIC assumes that every 𝑋𝑖𝑘  is a 
linear combination of each Sj as follows:  

XM(t) = ∑ am(θj)sj(t) + w(t)N
j    (6) 

𝑗 = 1, 2, ⋯ , 𝑁 

or in the matrix notation  

X = As + W      (7) 

where  TxXX M, ...... ,1   is the matrix holding the 

M A-Scans in each row with K time samples, , T 
represents transpose. X is the (𝑀 × 𝐾) matrix, A is an 

(𝑀 × 𝑁) matrix and S is the (𝑁 × 𝐾) matrix  

Again a(θi)  is the array steering vector 
corresponding to the DOA of the i-th signal., so it is 
called a mode vector. The symbol A is a delay 
parameter matrix which has M numbers of arrays and 
the ith element of row. So, M can be regarded as the 
number of signals while the symbol s is the (𝑁 × 𝐾) 

matrix . 𝑠𝑗(𝑘) (𝑗 = 1, 2, ⋯ , 𝑁) is the reflection coefficient 

of the 𝑁th reflection point .and W is the (𝑀 × 𝐾) noise 
matrix. We assume that 𝑁(1 ≤ 𝑁 ≤ 𝑀 − 1). 

 The 𝑀 × 𝑀 signal covariance matrix 𝑅𝑥𝑥 of x vector 
is represented by 

Rxx =∈  CM×M 

Rxx = AE[SSH]AH + E[WWH] 

Rxx = ARssAH + Rnn 

Where 

Rss ∈ CN×N is the signal correlation matrix E[SSH], H 
is the hermitian (transpose of complex conjugate) , 

Rnn ∈ CM×M is the signal correlation matrix E[WWH] 
and E[●] denotes the statistical expectation. 

Assuming uncorrelated AWGN 

Rxx = ARssAH + σk
2I     (9) 

σk
2I is the noise correlation matrix, σk

2 is the power 

of noise, Ι is The unit matrix of 𝑀 × 𝑀. 

The eigen decomposition of matrix R yields 

Rxx = ∑ λiqiqi
H

M

i=1

 

where λi ¸ and 𝑞𝑖  are the i-th eigenvalue and i-th 
corresponding eigenvector, respectively. In the ideal 
environment, we have 

λ1 ≥ λ2. ≥ λN > λN+1 =. = λM = σ2 

The eigenvalues of 𝑅𝑥𝑥  are the values λ1, λ2, . , λM 
such that: 

|Rxx − λiI| = 0     (10) 

Using Equation (9): 

|ARssAH + σk
2I − λi I | = |ARssAH − (λi − σk

2)I| 

Therefore, the eignvalues of, υi of ARssAH are: 

υi = λi − σk
2      (11) 

Since A is comprised of steering vectors which are 
linearly independent, it has full column rank, and the 

signal correlation matrix 𝑅𝑠𝑠  is non-singular as the 
incident signals are not highly correlated. A full column 

rank A matrix and non-singular 𝑅𝑠𝑠  guarantees that, 
when the number of incident signals N is less than the 

number of array elements M, the 𝑀 × 𝑀 matrix ARssAH 
is positive semi-definite with rank N. From elementary 

linear algebra, this implies that 𝑀 − 𝑁  of the 

eignvalues υi, of ARssAH are zero. From Equation (11), 
this means that 𝑀 − 𝑁  of the eignvalues of 𝑅𝑥𝑥  are 

equal to the noise Variance σk
2  . We then sort the 

eignvalues of 𝑅𝑥𝑥 such that λ1 is the largest eignvalue, 
and λM is the smallest eignvalue. Therefore,  

λN, . , λM = σk
2     (12) 

In practice, however, when the autocorrelation 

matrix 𝑅𝑥𝑥  is estimated from a finite data sample, all 
the eigenvalues corresponding to the noise power will 
not be identical. Instead they will appear as a closely 
spaced cluster, with the variance of their spread 
decreasing as the number of samples used to obtain 

an estimate of 𝑅𝑥𝑥 is increased. Once the multiplicity, 
z, of the smallest eigenvalue is determined, an 

estimate of the number of signals, N̂ can be obtained 
by Equation (13). 

N̂ = M − z      (13) 

In this research, the number of incident signals 𝑁 is 
known. The eigenvector 𝑞𝑖 associated with a particular 
eigenvalue 𝜆𝑖 the vector such that 

Rxx − λiI = 0     (14) 

For eigenvectors associated with the ( 𝑀 − 𝑁 ) 
smallest eigenvalues, we have 

http://www.jmest.org/
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(Rxx − σk
2 )qi = ARssAHqi + σk

2I − σk
2I = 0 

ARssAHqi = 0 

Since A has full rank and Rss is non-singular, this 
implies that 

AHqi = 0      (15) 

This means that the eigenvectors associated with 

the (𝑀 − 𝑁) smallest eigenvalues are orthogonal to the 
N steering vectors that make up A. 

{a(θ1), . , a(θN)} ⊥ {qN+1, . , qM} 

This is the essential observation of the MUSIC 
approach. It means that one can estimate the steering 
vectors associated with the received signals by finding 
the steering vectors which are most nearly orthogonal 
to the eigenvectors associated with the eigenvalues of 

𝑅𝑥𝑥 that are approximately equal to σk
2. 

This analysis shows that the eigenvectors of the 

covariance matrix 𝑅𝑥𝑥  belong to either of the two 
orthogonal subspaces, called the principle 
eigensubspace (signal subspace) and the non-
principle eigensubspace (noise subspace). The 
steering vectors corresponding to the DOA lie in the 
signal subspace and are hence orthogonal to the noise 
subspace. By searching through all possible array 
steering vectors to find those which are perpendicular 
to the space spanned by the non-principle 
eigenvectors, the DOA can be estimated. 

To search the noise subspace, we form a matrix 

Uk ∈  ∁M×M−N containing the noise eigenvectors: 

Uk = |qN+1 qN+2 . . qM |    (16) 

Since the steering vectors corresponding to signal 
components are orthogonal to the noise subspace 

eigenvectors, aH(θ̂)UkUk
Ha(θ̂) for (θ̂) corresponding to 

the DOA of a multipath component. Then the DOAs of 
the multiple incident signals can be estimated by 
locating the peaks of a MUSIC spatial spectrum given 
by: 

PMUSIC(θ̂) =
1

aH(θ̂)UkUk
Ha(θ̂)

    (17) 

(𝜃): Array steering victor , and  𝑄𝑛 noise subspace 

=[𝑞N+1,𝑞N+2,…,𝑞M]. 

Uk denotes an 𝑀 by 𝑀 − 𝑁 dimensional matrix with 

its 𝑀 − 𝑁  columns being the eigenvectors 
corresponding to the 𝑀 − 𝑁  smallest eigenvalues of 
the array correlation matrix. 

 aH  is the hermitian (transpose of complex 
conjugate) of the steering vector that is used for 
scanning the range of meaningful angles for the user. 

The orthogonality between the noise subspace and 
the steering vectors will minimize the denominator and 
hence will give rise to peaks in the MUSIC spectrum 
defined in Equation (17). The largest peaks in the 
MUSIC spectrum correspond to the signals impinging 
on the array. From Equ. (17), we can estimating the 
DOA by searching the peak value [28].  

V. EIGEN VECTOR METHOD (EV) 

In addition to the MUSIC algorithm, a number of 
other eigenvector methods have been proposed for 
estimation the DOA. One of these, the EigenVector 
(EV) method. The EigenVector is closely relate to the 
MUSIC algorithm. Specifically, the EV method 
estimates the exponential frequencies from the peaks 
of the eigenspectrum:  

PEV(θ) =
1

∑
1

 λi 
|Uk

Ha(θ)|
2

M
i=N+1

    (18) 

Where 𝜆𝑖 is the eigenvalue associated with 
eigenvector 𝑄𝑛.  (𝜃): Array steering victor  

The only difference between the EV method and 
MUSIC is the use of inverse igen value (the λi are the 
noise subspace eigen values of R) weighting in EV 
and unity weighting in MUSIC, which causes EV to 
yield fewer spurious peaks than MUSIC [28] The EV 
Method is also claimed to shape the noise spectrum 
better than MUSIC. 

VI. GPR MEASUREMENTS 

The data have been acquired with a bistatic-
stepped frequency GPR system at IESK, Magdeburg 
University, Germany. The system consists of a 
network analyzer (Rohde & Schwarz) and two ultra-
wideband (UWB) transmitting and receiving antennas 
[29]. A wooden box with dimensions 1.1 × 1.1 × 1.1 m 
whose internal sides are covered by absorption 
material and is filled by sand of 0.5 m height has been 
used. The transmitting and receiving antennas are 
mounted on a 2D scanning system and were placed 
above the ground surface at height 30 cm. 

The measurement grid covers the area bounded by 
x = 27 → 76 cm and y = 39 → 89 cm with a distance 
between the measurements of 1 cm in both x and y 
directions. The measurements then form a two 
dimensional matrix, referred to as a B-scan. Column 
vector of the B-scan matrix (image) is called an A-scan 
and it represents the data, at each individual point on 
the surface of the soil. Using this experimental setup, 
two different measurements were made. In the first 
measurement the radar system was operated in the 
frequency range from 1 GHz to 4 GHz and the number 
of samples was 1024 for each A-scan. 

In the second measurement the radar system was 
operated in the frequency range from 1.5 GHz to 20 
GHz and the number of samples was 1601 for each A-
scan. Examples of A-scans in the presence and 
absence of a landmine for both measurements in the 
frequency domain and time domain are displayed in 
Fig. 1 and Fig. 2 respectively. PMN anti-personal 
landmine was used at different depths. 

Sample B-Scans showing PMN targets at different 
depths are displayed in Fig.3. 

http://www.jmest.org/
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Fig.1 a) A-scans in the presence (dashed) and 
absence (solid) of a mine for data with 3 GHz 
bandwidth in the frequency domain. 

 

Fig.1 b) A-scans in the presence (dashed) and 
absence (solid) of a mine for data with 18.5 GHz 
bandwidth in the frequency domain. 

 

Fig.2 a) A-scans in the presence (dashed) and 
absence (solid) of a mine for data with 3 GHz 
bandwidth in the time domain. 

 

Fig.2 b) A-scans in the presence (dashed) and 
absence (solid) of a mine for data with 18.5 GHz 
bandwidth in the time domain. 

. It is observed in Figure 4 that the IDFT response 
gives correct estimation of target signal. . However, 
resolution is very poor and increasing by using window 
with IDFT. In MUSIC response, the output signal is 
very sharp and the resolution is very high as it is 
estimated from the peak of the MUSIC function. From 
the results from different experiments, the IFFT could 
not resolve two closely located targets well, that is, the 
delay-time difference between the successive signal is 
very small. On the other hand, MUSIC could resolve 
the same two closely located targets. Also eigenvector 
method (EV) gives the same result as Music method. 

 

 
  

Fig.3 B-Scans of PMN anti-personal landmine at 
depth 3, 5, and 10cm, respectively. 

 

 

 

Fig.4 a) the result of using IDFT and music 
algorithm. B) the result of using IDFT with window and 
music algorithm. C) the result of using IDFT with 
window and eigenvector method (EV).  

VII. CONCLUSION 

Three different signal processing techniques for 
detection anti-personal Landmine in GPR data have 
been presented, namely, inverse discrete fourier 
transform with and without window, music and 
eigenvector (EV) method. The time-domain response 
of IFFT, music and eigenvector (EV) method have 
been compared.  

The efficiency of techniques has been 
experimentally verified using two different sets of raw 
SFGPR. From experimental, IDFT response gives 
correct estimation of target signal but resolution is very 
poor. on the other hand, the output signal of music is 
very sharp and the resolution is very high. Also 
eigenvector method (EV) gives the same result as 
Music method. 
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