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Abstract— This paper proposes an improved 
algorithm of Particle Swarm Optimization (PSO) 
based on stage-structured algorithm and added 
features to enhance the ability of finding the 
global optimum in multimodal multi-dimensional 
optimization problems, which may have local 
optima, using low computational effort. Search 
space clustering based on Euclidian distance, 
particles crossover and mutation are added 
features to enhance the ability of exploration and 
exploitation of the algorithm. The algorithm 
divides the optimization process into three stages, 
namely; global search, local search and final 
stage. The parameters of the PSO and the added 
features are modified by the algorithm in each 
stage to achieve the stage goal. Furthermore, if 
the performance is not satisfactory, the same 
algorithm is used to optimize the parameters of 
the proposed algorithm. Fifteen benchmark 
multimodal test functions, that can be expanded 
to multi-dimensions, are used to test the proposed 
algorithm and they demonstrated its superiority to 
find the global optimum over other algorithms 
with minimal computational effort which is vital 
for many modern/smart limited resources devices 
(such as smart phones, Internet of Things devices 
(IoT), self-driving cars, ... etc). 

Keywords— particle swarm optimization (PSO); 
crossover; mutation; optimization; limited 
resources. 

I. INTRODUCTION 

The optimization process is a milestone in a 
tremendous number of applications that impact our 
modern life. Economics (e.g. finance, banking, 
insurance,...etc), operations research (improving 
decision making), mechanics (e.g. design problems), 
industry and many fields of engineering (e.g. electrical 
engineering, petroleum engineering, control, 
modeling,...etc) are common fields that regularly use 
optimization techniques. Since the complexity of the 
optimization problems increases, the researchers 
increasingly rely on the heuristic optimization methods. 

Heuristic optimization provides efficient solutions for 
the complex real-world problems that are too complex 
or too slow to be solved by exact methods. Although 
heuristic optimization is approximate, (i.e. it does not 
grantee that the solution is optimal), it provides quick 
good solution for large complex problems without the 
computational drawbacks of the exact methods. 
Among these heuristic techniques, Particle Swarm 
Optimization (PSO), Genetic Algorithms (GA) and their 
developments are still active topics since they were 
introduced [1-4]. 

Since PSO was introduced, it attracted many 
researches because of its simplicity, powerful and 
rapid convergence. On the other hand, as many other 
heuristic techniques, it may rapidly converge to a local 
optimum (trapped). A further drawback of the PSO is 
that stochastic approaches have problem dependent 
performance. Therefore, no single parameter settings 
are good for all problems. Changing the parameters of 
the PSO can affect both exploration and exploitation in 
a contradictory way. Therefore, it is a trade-off problem 
that requires adjustment according to the optimization 
problem in hand. The impact of the trade-off problem 
increases rapidly as the search space increases. 

Many developments are introduced to PSO to 
overcome its drawbacks and enhance its performance 
[5]. Some researches develop the PSO algorithm itself 
[6, 7] and others introduce hybrid techniques with other 
optimization techniques [8-11]. The developed PSO, 
especially the hybrid ones, sometimes enhance the 
performance of the PSO at the expense of the PSO 
simplicity. In global optimization problems, the 
researchers usually test their algorithms' performances 
by applying high dimensional multimodal functions that 
have many local optima. The algorithm is evaluated 
according to its ability to find the global optimum 
without trapping in any local optimum. In this 
approach, sufficient number of iterations and 
population size is chosen according to the number of 
dimensions of the problem to allow the algorithms to 
achieve their best performances. Different approaches 
are applied in this research. At first, we study the 
degradation of algorithms' performance due to 
gradually increase of the problem dimensions without 
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sufficient afforded computations. In the second 
approach, we study how much ICO-PSO can use 
limited resources to achieve the same results of some 
well-known algorithms in the literature that used 
sufficient computations.  

In addition to existing limited resources devices 
such as (smart phones, GPS-based devices, 
autonomous mobile robots, self-driving cars, ...etc), 
recently we have witnessed the rise of the term 
"Internet of Things (IoT)" where physical 
objects/devices are connected through internetworking 
in order to collect, exchange, analyze data or control 
objects. Vehicles, buildings, farms, medical monitoring 
devices, field operation assist for search and rescue 
operations are some of the applications that are 
subjected to IoT. This trend among others utilize huge 
amount of collected data that lead us to the other rising 
term "Big Data". In conclusion, we have many limited 
resources devices that have to deal with more complex 
problems with big data in hand. Powerful Algorithms, 
which needs minimal computational effort, is needed to 
do operations as optimization problems. Path planning 
optimization is an example of operations that 
sometimes need real time execution. This paper 
proposes an improved algorithm of PSO that maximize 
the ability of finding global optimum in multi-
dimensional multimodal problems with minimal 
computational efforts. It uses low population size and 
requires low number of iterations that will result in 
significant reduction of required computation capability 
and memory. Moreover, it does not lack simplicity or 
low computational effort of the standard PSO. The 
proposed Improved Clustered Optimized PSO (ICO-
PSO) algorithm adds external features to the PSO and 
divides the optimization process into three stages. 
ICO-PSO changes the parameters of the algorithm to 
achieve each stage goal. Moreover, this algorithm can 
be used to optimize its parameters to fit problems that 
are more complex. The rest of this paper is organized 
as follows; section II discusses the classic PSO 
algorithm while section III proposes the ICO-PSO 
algorithm in details. Finally, the experiments and 
results are discussed in section IV and the conclusion 
is depicted in section V. More details about the 
algorithm are listed in Appendix A. 

II. STANDARD PSO AND ITS DEVELOPMENTS 

Since PSO was introduced [12, 13], it has been 
used in many applications [14-16]. The PSO algorithm 
mimics the social behavior of bird flocking or fish 
schooling. Therefore, each particle in the swarm 
represents a particular solution of the problem in a 
population-based algorithm. The particles move in the 
search space to find the best solution of the problem. 
The particles initial positions and velocities are 
randomly generated then it is updated according to 
each particle previously best position and the overall 
swarm best position. 

If the search space is D-dimensional space, then 
we can represent the position and velocity of the i

th
 

particle of the swarm by D-dimensional vectors Xi and 
Vi respectively. Each particle maintains a memory of its 

previous best position Pi while the whole swarm best 
found position is denoted by Pgbest.  

These terms can be represented mathematically as 
follows: 

Xi=(xi1, xi2, ... , xid, ... , xiD) 

Vi=(vi1, vi2, ... , vid, ..., viD)  

Pi=(pi1, pi2, ... , pid, ..., piD)                          

Pgbest=(pg1, pg2, ... , pgd, ..., pgD) 

where  i=1, 2, ... , S  and  d=1, 2, ... , d, ... , D 

(1) 

S is the population size of the swarm and D is the 
number of dimensions of the search space. The 
positions and velocities of the swarm particles at the 
iteration number z+1 are updated as follows: 

𝑣𝑖𝑑
𝑧+1 = 𝑤𝑧+1𝑣𝑖𝑑

𝑧 + 𝑐𝑝𝑟1
𝑧(𝑝𝑖𝑑

𝑧 − 𝑥𝑖𝑑
𝑧 ) + 𝑐𝑔𝑟2

𝑧(𝑝𝑔𝑑
𝑧 − 𝑥𝑖𝑑

𝑧 ) 

𝑥𝑖𝑑
𝑧+1 = 𝑥𝑖𝑑

𝑧 + 𝑣𝑖𝑑
𝑧+1 

(2) 

(3) 

where r1 and r2 are random numbers. w is the inertia 
weight which controls the influence of the previous 
velocity on the new velocity. It usually starts with big 
value to boost the global exploration of the search 
space, then decreases gradually to enhance the local 
exploitation of the nearby region. While exploration 
refers to exploring the search space widely to find 
good solutions, the exploitation refers to refinement of 
the search around good solution to find the best 
solution in this region. In many researches [7, 8, 16], w 
is chosen to decrease linearly from 0.9 to 0.4. w is 
calculated as follows: 

𝑤 = 0.9 −
0.5

𝑁
𝑧 (4) 

where N is the total or maximum number of iterations.  

cp and cg are positive constants called coefficient of 
the self-recognition component and coefficient of the 
social component respectively. As declared by their 
names, cp will determine how much the particle's 
movement will be influenced by its previously known 
best position while cg determines how much the 
particle's movement will be influenced by the global 
best position of the whole swarm. 

Many developments are performed in the PSO 
algorithm to enhance its performance. Some 
techniques are designed to avoid trapping in local 
optima in multimodal problems sacrificing the rapid 
convergence rate in unimodal problems while some 
techniques do the opposite. Local (ring) topological 
structure PSO (LPSO), introduced in [17], is designed 
for solving multimodal problems. It is based on a local 
topology to avoid premature convergence that may 
lead to trapping in local optima. In another research 
[18], quadratic interpolation PSO (QIPSO) is 
introduced for global optimization problems. It is based 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 1, January - 2017 

www.jmest.org 

JMESTN42351993 6459 

on using quadratic crossover operator. The Fully 
Informed Particle Swarm algorithm (FIPS) [19] 
develops the canonical particle swarm by making the 
individuals fully informed of the entire neighborhood. 
This technique guides the particles to find the best 
solution. Other researchers suggested Dynamic 
Multiswarm PSO (DMS-PSO) [20] where the whole 
swarm is frequently divided and regrouped into small 
swarms. The information is exchanged among the 
swarms. In Comprehensive Learning PSO (CLPSO) 
[21], a learning strategy is suggested to discourage 
premature convergence. This strategy enables 
learning among the swarm historical best information. 
The fuzzy set theory is utilized to adjust PSO 
acceleration coefficients adaptively in Adaptive Fuzzy 
PSO algorithm (AFPSO) [22]. Further enhancement is 
achieved by incorporating AFPSO with quadratic 
interpolation and crossover operator to form a new 
variant AFPSO-QI [22]. In the global optimization of 
multimodal problems, the researchers face a trade-off 
problem between convergence rate and escaping the 
local optima. Therefore, some good algorithms in 
solving multimodal problems suffer bad performance 
or slow convergence rate in solving unimodal 
problems. Fusion Global-Local-Topology Particle 
Swarm Optimization (FGLT-PSO) algorithm [6] 
performs a global search over the entire search space 
with a fast convergence speed using hybridizing two 
local and global topologies in PSO to jump out from 
local optima. Finding the best fitting technique for each 
application is crucial to get the best outcome of the 
optimization process.  

The aforementioned algorithms and many others are 
tested in terms of solution accuracy, which is finding 
the global optimum, and convergence rate. However, 
theses algorithms are tested in normal conditions, 
where adequate number of particles and iterations are 
used. In this work, we represent improved PSO 
technique, ICO-PSO, which find global maximum in 
multi-dimensional multimodal problems with limited 
population size and number of iterations. 

III. ICO-PSO TECHNIQUE 

The proposed ICO-PSO adds the following features 
to the standard PSO algorithm:  

 Crossover and mutation: In order to avoid 
trapping in local optima, the particles do a 
crossover operation with a randomly 
chosen particle of the population. The new 
particle explores a different area of the 
search space and allows escaping the local 
optimum. Furthermore, mutation is done to 
the particles to allow more diversity of the 
searched space. Crossover and mutation 
are done according to certain probabilities 
that are changed by the algorithm during 
the optimization. 

 Search space clustering: A predefined 
number of clusters is chosen. According to 
this number and the size of the search 

space, each particle classifies its own 
cluster every iteration. The cluster size is 
the size of the search space divided by the 
predefined number of clusters. The particle 
movement is influenced by its own known 
best position and best known positions of 
the swarm in the same cluster. The number 
of clusters, consequently the cluster size,  
is changed during the optimization. 

 Dividing the optimization process into three 
stages: Each stage changes the algorithm 
parameters to achieve its goal. These 
stages are: 

o Global search stage: The goal of 
this stage is to explore the search 
space globally. The particles move 
rapidly (w is high). The particle 
movement is more dependent on 
its self-recognition component 
rather than its social component. 
The size of the clusters is small. 
The particles' movements are 
influenced by its near 
neighborhoods. The possibility of 
crossover and mutation is relatively 
high.  

o Local search stage: The goal of 
this stage is to boost the 
exploitation. The particles are 
searching locally around the good 
solutions to find the best local 
solution in each area. The particles 
move slowly and more dependent 
on the social component rather 
than the self-recognition 
component. The possibility of 
crossover and mutation is relatively 
small.  

o Final stage: The goal of this stage 
is to find the global optimum by 
converging to the best-found 
solution by the entire swarm and 
refining the search around it. The 
particles move quickly then 
gradually slowdown. The cluster 
size increases gradually to involve 
the entire search space. The 
particles' movements depend 
equally on both self-recognition 
component and social component. 
The possibility of crossover and 
mutation is very small. 

 Optimization of the algorithm: The same 
algorithm can be used to optimize the main 
algorithm parameters in high complex 
multimodal functions. The results show 
good performance improvement. 

The flow chart depicts the ICO-PSO algorithm is 
shown in Fig. 1. It starts with the initialization process. 
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Initial values are assigned to positions and velocities of 
the particles. It is usually chosen as a uniformly 
distributed random numbers, which cover the whole 
range of the search space. In addition, the following 
parameters are defined in the initialization process: 

 glob and loc that specifies the limits of the 
global, local and final stages. They are 
integers chosen such that 1< glob < loc <N. 
(N maximum number of iterations). 

 clas maximum number of clusters. 

Then the iterations begin. For the first iteration, the 
fitness is computed for all particles, and particles 
positions Xi is considered also as particles best 
positions Pi. When, the iteration number, z, is 1 < z ≤ 

glob, it denotes the global stage while glob < z ≤ loc 
denotes the local stage. The final stage is defined as z 

> loc. The following parameters are defined according 
to the current stage: 

 cross and mut that specifies the crossover 
and mutation probabilities respectively. 

 clasNum that defines the number of 
clusters. 

 Inertia weight, coefficient of the self-
recognition component and coefficient of 
the social component. 

The iteration of the swarm, the right hand side of 
Fig. 1, is done as follows. For each particle i, the 
Euclidean Distances between the particle position Xi 

and the best known positions of all particles P=[P1 P2 ... 

Pj ... PS] are calculated as follows. 

Edi=[edi1 edi2 ... edij ... ediS] (5) 

𝑒𝑑𝑖𝑗 = √∑(𝑥𝑖𝑙 − 𝑝𝑗𝑙)
2

𝐷

𝑙=1

 (6) 

edij given by (6) represents the Euclidean Distance 
between the position of particle i, Xi, and the best 
known position of particle j, Pj. As shown in Fig. 2, the 
maximum Euclidean Distance is calculated from the 
search space boundaries. If the boundaries are 
unknown, it is considered as the maximum computed 
Euclidean Distance so far. For the particle i, if 
edij<(edmax/clasNum), the particle best position Pj is 
considered within the particle i local cluster. Pj that has 
the best fitness within the local cluster of particle i is 
called Plocal. It is used to update the position and 
velocity of the particle i as follows: 

𝑣𝑖𝑑
𝑧+1 = 𝑤𝑧+1𝑣𝑖𝑑

𝑧 + 𝑐𝑝𝑟1
𝑧(𝑝𝑖𝑑

𝑧 − 𝑥𝑖𝑑
𝑧 ) + 𝑐𝑔𝑟2

𝑧(𝑝𝑙𝑜𝑐𝑎𝑙_𝑑
𝑧

− 𝑥𝑖𝑑
𝑧 ) 

𝑥𝑖𝑑
𝑧+1 = 𝑥𝑖𝑑

𝑧 + 𝑣𝑖𝑑
𝑧+1 

(7) 

(8) 

It is clear that the term Plocal adds more flexibility to the 
optimization algorithm. As the cluster size changes, we 
can manipulate the exploration-exploitation trade-off 
problem to achieve the goal of each stage. When the 
number of clusters, clasNum, decreases to one, Plocal 
becomes Pgbest, the global best of the swarm. 
Furthermore, the values of w, cp and cg are changed to 
enhance the flexibility of the algorithm. 

After updating the velocity and position of the 
particle, the fitness of the particle is computed. If the 
particle's fitness is better than the stored best fitness of 
the particle, the particle stored best fitness is updated 
by the new fitness and the new position. Then, 
crossover and mutation are done according to their 
predefined probabilities cross and mut respectively. 

The crossover is done if a randomly chosen 
number in the range [0 1] is less than cross. A 
randomly chosen particle is used to crossover with the 
current particle at a randomly chosen position. The 
new position is used as the new particle location. The 
new particle's fitness is computed and stored if it is 
better than the stored best fitness. This operation 
helps escaping the local optimum area. The mutation 
is done in a particle if a randomly chosen number in 
the range [0 1] is less than mut. Then the mutation is 
done by changing a randomly chosen component xid of 
the particle position Xi. Unlike the mutation probability 
in genetic algorithm literature in which it is the 
probability of every component of the gene to have 
mutation, mut is the probability of the entire particle to 
have mutation in one of its component. The mutation is 
done according to the following relation: 

xid= – xid (r3+0.5) (9) 

r3 is a random number. Then the new fitness is 
computed. This operation helps escaping local 
optimum area too. The probabilities of crossover and 
mutation are changed in every stage of the 
optimization to add more flexibility to the algorithm to 
achieve its goal. As shown in Fig. 1, these operations 
are repeated until the maximum number of iterations is 
reached. The clever choosing of the algorithm 
parameters specifies its effectiveness. At the start of 
the local stage, we set the positions of the swarm, X, to 
its known good positions, P, (X=P) to start the local 
search. In the following section, full detailed data are 
presented and the results prove the effectiveness of 
the algorithm to deal with many multimodal multi-
dimensional problems. More details are declared in 
Appendix A. 

If it is needed, in case of too complex optimization 
problems, the algorithm can be used to optimize its 
main parameters, such as glob, loc and clas. glob and 
loc determine the range of the 3 stages, and clas 
determines the number of maximum clusters. The 
optimization of these parameters will effectively 
enhance the performance of the algorithm for higher 
complex functions as will be declared in the next 
section. 
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The flowchart of the optimization algorithm is the 
same as the flowchart shown in Fig. 1. We call the two 
optimizations processes outer optimization and inner 
optimization. Inner optimization stands for the original 
optimization process of the multimodal functions and it 
will be optimized by the outer optimization. Outer 

optimization has the same flowchart but "compute 
fitness" term is done by running the inner optimization 
with the parameters given by the outer one for specific 
number of times and considering the fitness as how 
many times the inner optimization finds the global 
optimum. While the optimization of the ICO-PSO does 

 
Fig. 1 The enhanced clustered PSO algorithm 
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not involve heavy computational work and it does not 
consume too much time, it is not a necessity as will be 
declared by the data given in the next section. General 
parameters sittings are appropriate for wide range of 
problems. 

IV. SIMULATION AND RESULTS 

ICO-PSO is designed to manipulate real world 
complex (multi-dimensional multimodal) problems via 
limited hardware resources. In other words, it 
increases the ability of finding global optimum in high 
dimensional optimization problems, especially in 
multimodal problems, without requiring huge 
population size or large number of iterations that 
necessitate high computation effort and large memory 
size. The results are discussed through three 
subsections. In subsection IV.A, we analyze, in details, 
the behavior of ICO-PSO through the three stages of 
the optimization process. Therefore, a 2-dimensional 
problem is utilized to simplify the detailed behavior 
analysis. In subsection IV.B, the effect of limited 
resources is studied. ICO-PSO and some other well-
known algorithms are subjected to optimizations in 
which the dimensions are increased without enough 
afforded computations. The behavior of ICO-PSO 
dealing with these limitations is compared to other 
algorithms. In subsection IV.C, ICO-PSO is compared 
to other algorithms in the literature. The ability of ICO-
PSO to achieve same results of other algorithms (or 
close enough) with limited computations is presented 
in this subsection. 

A. Analysis of ICO-PSO Behavior Through the 
Optimization 

In this subsection, we analyze the behavior of ICO-
PSO compared to PSO through the optimization to 
check if it achieves the stages' goals. First, consider 
the data of the multimodal functions that are listed in 
Table 1. We choose multimodal functions that can be 
expanded to multi-dimensional forms. In this 
subsection, all functions' global minimums are at point 
(0, … 0) and the minimum values are zeros except F4. 
Its minimum value is –1.  

The optimization of the function F1 (in 2-dimentional 
form) is done several times. In each time, we generate 
a random initial population and assign it to both PSO  

Table 1 four multidimensional multimodal test functions data 

Name Equation Range 

Rastrigin's 
function 

𝐹1 =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

 [–5,5]
D 

Griewank's 
function 

𝐹2 = 1 +∑(
𝑥𝑖
2

4000
)

𝐷

𝑖=1

−∏(cos(
𝑥𝑖

√𝑖
))

𝐷

𝑖=1

 

[–25,25]
D 

Ackley's 
function 

𝐹3

= −20 exp

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 

− exp(
1

𝐷
∑cos(2𝜋𝑥𝑖)

𝐷

𝑖=1

) + 20 + 𝑒 

[–5,5]
D 

Drop-
Wave 
function 

𝐹4 = −
1 + cos(12√∑ 𝑥𝑖

2𝐷
𝑖=1 )

0.5(∑ 𝑥𝑖
2𝐷

𝑖=1 ) + 2
 

[–5,5]
D 

and ICO-PSO. Fig. 3 declares one of the optimizations 
in which PSO failed to find the global optimum while 
ICO-PSO succeeded. The figure declares the best-
found positions of the particles, P, plotted on top of the 
contour of F1 at the end of the global stage (after 25 
iterations). The contour circles in blue (dark colors at 
the center) represent local minima while the contour 
circles in green, yellow (light colors at the center) or 
red at the corners represent local maxima. The 
function has one global minimum at point (0, 0). PSO 
and ICO-PSO start with the same initial population, 
which is randomly distributed by a uniform distribution 
function. At the end of global stage, the best-found 
positions, P, of PSO is distributed on 5 local minima 
areas. Unfortunately, none of them is the area of the 
global minimum and finally the PSO is trapped at one 
of the local minima. While ICO-PSO best-found 
positions are distributed on 14 local minima areas 
including the global one. This is the primary goal of 
global stage, to explore more of the search space and 
locate more areas of interest. Therefore ICO-PSO is 
effectively exploring the search space 2.8 (14/5) times 
more than PSO in this example. This ability of 
exploring the entire search space, namely exploration, 
is attributed to the parameters' settings of the global 
stage. When the dimensions increase, the number of 
local minima increases and the ability of exploration 
becomes more vital. 

At this moment, let's take another optimization of F1 

where PSO was more lucky to find the area of global 
minimum. Fig. 4 shows this optimization. At the end of 
the 25

th
 iteration, both ICO-PSO and PSO found the 

area of global minimum, around point (0, 0). In the next 
iterations, PSO continues its routine according to (2), 
(3) and (4), but ICO-PSO starts the local stage. As 
declared after 50 iterations, PSO converged to a local 
minimum rather than the global minimum. The 
explanation is declared by the zoomed in figure at the   

Fig. 2 The local cluster of the particle Xi containing some best 

positions Pj 

𝑒𝑑𝑚𝑎𝑥

𝑐𝑙𝑎𝑠𝑁𝑢𝑚
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Pj 

search space boundaries 

edmax 
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Fig. 3 graphical representation of best known positions, P, of PSO and ICO-PSO for the optimization of F1 after global stage. 

 

 

 
Fig. 4 Graphical representation of best-known positions, P, of PSO and ICO-PSO for the optimization of F1 through the optimization stages (25 iterations: 

end of global stage, 50 iterations: end of local stage, 100 iterations end of final stage) 
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up right corner. The found best position at the global 
minimum area is not at the center that has the lowest 
minimum. So that, the value of the found best position 
at the centre of the local minimum is better than the 
value found in the global minimum area but not at the 
center. As a result, the global minimum of the swarm, 
that attracts all particles, is at a local minimum of the 
search space not at the global one. After 100 
iterations, the PSO swarm converged to the local 
minimum, trapped, and was not able to find the global 
minimum. On the other hand, while ICO-PSO starts 
the local search stage, each particle slows down, 
searches the near area of its best position and its 
motion is affected mainly by its known best position 
then by its near neighborhood. As a result, after 50 
iterations, at the end of local search stage, the swarm 
has found the best positions of many local minima 
including the global one. After the final stage, ICO-
PSO found the global minimum, improved the search 
around it, and more particles (19 out of 25) are 
concentrated in the global minimum area. 

In conclusion, because of PSO rapid convergence, 
it fails to find the global optimum in multimodal 
functions for 2 reasons; it has weak exploration of the 
search space and weak exploitation around the found 
good solutions except the best found one. As the 
dimensions increase, the complexity and number of 
local minima increase and these disadvantages 
become more apparent. ICO-PSO overcomes these 
disadvantages by its stage-structured algorithm and by 
its added features, namely; clustering, mutation, 
crossover and optimization. 

B. The Effect of Limited Resources on ICO-PSO 
and Some Will-Known Algorithms 

In This subsection, we discuss the effect of 
increasing the optimization dimensions with limited 
computing capabilities (small population size and low 
number of iterations) on the algorithm effectiveness. 
ICO-PSO is compared to classic PSO and genetic 
algorithm in addition to FGLT-PSO. In [6], FGLT-PSO 
was evaluated using several (20) unimodal and 
multimodal nonlinear benchmark functions and 
compared to several classic and improved PSO 
including QIPSO, LPSO, AFPSO and many others. 
FGLT-PSO outperforms other algorithms in terms of 
solution accuracy and convergence speed. Solution 
accuracy means FGLT-PSO successfully reaches the 
global optimum in multimodal functions. However, the 
optimizations are done with sufficient population size 
and number of iterations. In real world problems, as 
the dimensions of the search space increase, the 
optimization process become too expensive, or even 
intolerable, to be implemented for limited resources 
systems.  

In order to evaluate ICO-PSO compared to other 
algorithms, at the start, the optimization is done in 2 
dimensions. For a fair comparison, each optimization 
is done several times, 1000 times in this research. In 
each time, a new random initial population (positions 
and velocities) is generated and assigned to the 
algorithms. Each algorithm is evaluated by considering 

the number of times the algorithm reaches the global 
optimum, or considerably close to it, and not trapped in 
any local optimum. Note that the particle fitness is 
considered close enough to the global minimum when 
the fitness is much lower than the lowest local 
minimum. The values of acceptable fitness values of 
the functions listed in Table 1 are shown in Table 2. 

The number of successes to find the global 
minimum is considered as the evaluation of the 
algorithms in 2 dimensions. Then the dimensions are 
increased and the whole process is repeated again for 
every dimension. However, we increase the 
dimensions without increasing the number of particles 
and the maximum number of iteration is chosen 
considerably low for each dimension. The chosen 
parameters of the algorithms are listed in Table 3. The 
parameters of ICO-PSO are chosen to improve the 
ability of each stage to achieve its goal. Fig. 5 
represents these changes for N=100. The data listed in 
Table 3 are applied for all dimensions (2, 3, 4, 5 and 
10). 

Tables (4, 5 and 6) show the results of the 
optimization of functions F1, F2 and F3. The 
optimization is done for 1000 time for each dimension 
and the tables list the number of times each algorithm 
reaches the global minimum or considerably close to it. 
It is clear that all algorithms are affected, but in 
different degree, by increasing the dimensions without 
increasing the population size and without sufficient 
iterations. In Table (4), at 10 dimensions, ICO-PSO 
finds the global minimum 522 times, while the nearest 
algorithm finds it only 13 times. The number between 
parentheses is the ratio of number of successes of 
ICO-PSO to the number of successes of other 
algorithms at the same dimensions. It is obvious that 
this ratio increases as the dimensions increase, which 
implies the ICO-PSO power in dealing with higher 
dimensional problems with minimal computing effort. 
Table (5) and Table (6) also show the superiority of 
ICO-PSO as the dimensions increase without sufficient 
number of iterations or population size. Note that the 
Ackley's function, F3, is so easy to be optimized by 
population size of 25 particles. Therefore, we did the 
optimization with population size of 5 particles. It is the 
same reason for choosing range [-25, 25] for F2 
instead of [-5, 5]. Fig. 6 shows the functions in 
comparison to each other near the global minimum in 
one dimension. In F3, there is a big difference in 
magnitude between the global minimum and the local 
minima, and in F2, the area of global minimum is big. 
This is why we increase the challenge by decreasing 
the population size or increasing the range. 

F4 is more difficult with respect to other functions. 
As shown in Fig. 6, it is clear that in F4 the local 
minima are very close, in distance and in magnitude, 

Table 2 Acceptable accuracy of optimizations in subsection IV.A 

Functions F1 F2 F3 F4 

Acceptable 
fitness 

< 0.1 < 0.001 < 0.1 < –0.94 
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Table 3 Optimization algorithms' parameters 

Algorithm Parameter sittings
a 

General 
settings 

S=25 (for F1,F2,F4) and S=5 for F3 

PSO w=0.9→0.4, cp=cg=0.5 

Genetic 
algorithm 

crossover (function: Scattered, fraction = 0.8)  
mutation (function: Gaussian, mean = 0, 
variance = (0.5 × initial range)→0 

FGLT-
PSO 

w=0.9→0.4, C1=0.5→2, C2=1→2, C3= 0.5→1.5 

ICO-PSO 

General glob=25, loc=50, clas=3,  

Global 
stage 

w=0.9, cp=0.7, cg=0.3, cross=0.15, 

mut=0.15, clasNum=clas 

Local 
stage 

w=0.3, cp=0.6, cg=0.4, cross=0.05, 

mut=0.05, clasNum=clas 

Final 
stage 

w=0.9→0.4, cp=0.5, cg=0.5, 

cross=0.01, mut=0.01, 

clasNum=clas→1 (at half of the 
final stage then continues as 1). 

a
The arrow, →, means the parameter changes linearly from 

left value to right value during the optimization (or during the 
stage in ICO-PSO). 

 

Table 4 Algorithms' results (number of successes to reach global minimum 

out of 1000 try) for Rastrigin's function 

 F1 (Rastrigin's function) S=25 particles 

D=2, 
N=100 

D=3, 
N=200 

D=4, 
N=400 

D=5, 
N=500 

D=10, 
N=1000 

PSO 895 
(1.12)

a 
356 
(2.67) 

96 
(9.59) 

17 
(49.24) 

0 (inf.)
b 

Genetic 
Algorithm 

390 
(2.56) 

373 
(2.54) 

522 
(1.76) 

309 
(2.71) 

13 
(40.15) 

FGLT-PSO 913 
(1.10) 

529 
(1.79) 

193 
(4.77) 

43 
(19.47) 

0 (inf.) 

ICO-PSO 1000 948 921 837 522 

a
() is the ratio of ICO-PSO to other algorithms at the same 

dimensions. 
b
inf. refers to infinity (dividing by zero). 

Table 5 Algorithms' results (number of successes to reach global 

minimum out of 1000 try) for Griewank's function 

 F2 (Griewank's function) S=25 particles 

D=2, 
N=100 

D=3, 
N=200 

D=4, 
N=400 

D=5, 
N=500 

D=10, 
N=1000 

PSO 223 
(2.88)

a 
27 
(8.22) 

7 
(16.71) 

1 (49) 0 (inf.)
b
 

Genetic 
Algorithm 

57 
(11.26) 

12 
(18.50) 

15 
(7.80) 

6 
(8.17) 

0 (inf.)
 

FGLT-
PSO 

334 
(1.92) 

69 
(3.22) 

22 
(5.32) 

3 
(16.33) 

14 
(2.93) 

ICO-PSO 642 222 117 49 41 

a
() is the ratio of ICO-PSO to other algorithms at the same 

dimensions. 
b
inf. refers to infinity (dividing by zero). 

Table 6 Algorithms' results (number of successes to reach global 

minimum out of 1000 try) for Ackley's function 

 F2 (Ackley's function) S=5 particles 

D=2, 
N=100 

D=3,  
N=200 

D=4,  
N=400 

D=5,  
N=500 

D=10, 
N=1000 

PSO 
995 
(0.997)

a 
916 
(1.06) 

748 
(1.30) 

521 
(1.81) 

8 (106) 

Genetic 
Algorithm 

50 
(19.84) 

16 
(60.69) 

25 
(38.84) 

7 
(134.71) 

0 (inf.)
b 

FGLT-
PSO 

975 
(1.02) 

823 
(1.18) 

602 
(1.61) 

361 
(2.61) 

17 
(49.89) 

ICO-PSO 992 971 971 943 848 

a
() is the ratio of ICO-PSO to other algorithms at the same 

dimensions. 
b
inf. refers to infinity (dividing by zero). 

 

to the global minimum with respect to other functions. 
Although ICO-PSO performance is better than other 
algorithms, it can do better. ICO-PSO is used to 

 
Fig. 5 ICO-PSO parameters' settings 

 
Fig. 6 Test functions behavior near the global minimum in 1-

dimension 
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optimize its parameters as discussed in the last 
section. The optimization is done to optimize glob and 
loc, which determine the ranges of the stages, in 
addition to the maximum number of clusters, clas. The 
outer optimization's parameters are set as listed in 
Table (3) with population size of 25 and maximum 
number of iterations of 100. The optimized ICO-PSO 
results are showed in Table (7). At 5 dimensions, the 
number of successes of ICO-PSO was 2 and it is 
raised to 60 after optimization. This is an improvement 
ratio of 30 times. This ratio can be increased by adding 
more ICO-PSO parameters, such as the stages 
parameters, to the optimization. 

In the end, the summary of these results is 
declared by Fig. 7. The average of the successes of 
the algorithms (for the four functions) at 2, 3, 4, 5 and 
10 dimensions are showed in log scale. The number of 
successes of the algorithms at 10 dimensions for F4 is 
considered zero for all algorithms. The figure shows 
how the algorithms are clearly affected by increasing 
the dimensions without enough computation effort. The 
superiority of ICO-PSO to overcome this difficulty with 
respect to other algorithms is obvious. At 10 
dimensions, ICO-PSO, in average, finds the global 
optimum 352.75 times while the nearest one, FGLT-
PSO, average is 7.75 times. This gap increases by 
increasing the dimensions.  

C. ICO-PSO Compared to Other Algorithms in 
The Literature 

In order to evaluate the contribution to 
computational effort saving of ICO-PSO algorithm 
compared to other algorithms, let's consider other 
researches that represent results of well-known 
algorithms. In this subsection, we consider the results 
given in other researches and investigate the ability of 
ICO-PSO to achieve the same results, or considerably 
close to it, with reduced computation effort. We 
implemented FGLT-PSO [6] in the last subsection and 
compared it to ICO-PSO at dimensions 2, 3, 4, 5, and 
10. Let's compare its results and other algorithms 
results obtained in [6] at higher dimensions (30 and 
50) with the ICO-PSO. We choose a variety of test 
functions; unimodal, multimodal, shifted and rotated, 
to verify the performance of ICO-PSO at different 
situations (F3 Table 1 and F5-F11 in Table 8). The test 
functions properties are listed in Table 8. F5 and F6 are 
unimodal while other functions are multimodal. The 
average results (of 30 run) are listed in Table 9, 10 
and 11. Note that the Ackley's function (F3) used in 
this experiment is the same given in Table 1 but the 
range is [-32, 32]

D
. in Table 11, more algorithms are 

tested at 30 dimensions.  

Tables 9, 10 and 11 list the average best solutions, 
standard deviations and median best solutions of the 
30 run of the algorithms according to [6], in addition to 
population size and maximum number of iterations. 
Table 9 is 30 dimensions test while Table 10 is 50 
dimensions test. Table 11 introduces extra algorithms 
and extra functions at 30 dimensions. The ICO-PSO is 
tested for these functions but with reduced population  

Table 7 Algorithms' results (number of successes to reach global minimum 

out of 1000 try) for Drop-Wave function 

 F4 (Drop-Wave function) S=25 particles 

D=2, 
N=100 

D=3, 
N=200 

D=4, 
N=400 

D=5, 
N=500 

PSO 874 
(1.14)

a 
247 
(2.77) 

42 (6.67) 2 (30) 

Genetic 
Algorithm 

180 
(5.53) 

22 
(31.14) 

3 (93.33) 1 (60) 

FGLT-PSO 799 
(1.25) 

171 
(4.01) 

20 (14) 0 (inf.)
b
 

ICO-PSO 995 685 280 60 

a
() is the ratio of ICO-PSO to other algorithms at the same 

dimensions. 
b
inf. refers to infinity (dividing by zero). 

 

size and maximum number of iterations. Although ICO-
PSO results has the first rank in 4 functions (F7, F8, F9, 
and F11) and the second rank in 4 functions (F5, F6, F3, 
and F10), it is not the purpose of this subsection to 
achieve best results. The purpose is to find out how 
much ICO-PSO can achieve reasonable results with 
respect to other algorithms with reduced computation 
effort. The reduction percentage of population size 
varies between 20% and 83.3% while the reduction 
percentage of maximum number of iterations varies 
between 30% and 90%. For example, as shown in 
results of F11 (Table 11), ICO-PSO has rank number 
one of the 9 algorithms although it utilizes population 
size of 5 particles (instead of 30) and maximum 
number of iterations of 1000 iterations (instead of 
10000). The reduced computation effort and memory 
size are significant. While ICO-PSO performs well in 
unimodal functions, its big contribution is in the 
multimodal functions. All these functions utilize the 
same ICO-PSO parameters introduced in Table 3 
without the need of parameter optimization.  

 
Fig. 7 The effect of increasing the dimensions of the search space 

without sufficient computation effort 
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Table 8 Extra test functions used in the experiments of subsection IV.C 

according to [6]. 

Name Equation Range x* f(x*) 

Sphere 
Function 
(unimodal) 

𝐹5 =∑𝑥𝑖
2

𝐷

𝑖=1

 [–100,100]
D 

(0,0)
D 

0 

Schwefel's 
Problem 1.2 
(unimodal) 

𝐹6 =∑(∑𝑥𝑗

𝑖

𝑗=1

)2
𝐷

𝑖=1

 [–100,100]
D 

(0,0)
D 

0 

Non-
continuous 
Rastrigin's 
Function 

𝐹7

=∑(𝑦𝑖
2 − 10 cos(2𝜋𝑦𝑖)

𝐷

𝑖=1
+ 10) 

where 
𝑦𝑖 =

{
𝑥𝑖|𝑥𝑖| ≤ 0.5
𝑟𝑜𝑢𝑛𝑑(2𝑥𝑖)

2
 |𝑥𝑖| ≥ 0.5

 

[–5.12,5.12]
D 
(0,0)

D 
0 

Shifted 
Generalized 
Griewank's 
Function 

𝐹8

= 1 +∑(
𝑧𝑖
2

4000
)

𝐷

𝑖=1

−∏(cos(
𝑧𝑖

√𝑖
))

𝐷

𝑖=1

+ 𝑓𝑏𝑖𝑎𝑠8 

where fbias8=-180, z=x-o 

[–600,600]
D 

(0,0)
D 

–180 

Shifted 
Rosenbrock'
s Function 

𝐹9

= ∑[100(𝑧𝑖
2 − 𝑧𝑖+1

2 )2
𝐷−1

𝑖=1
+ (𝑧𝑖 − 1)

2] + 𝑓𝑏𝑖𝑎𝑠9 

where fbias9=390, z=x-
o+1 

[–100,100]
D 

(1,1)
D
 390 

Rotated 
Salomon's 
Function 

𝐹10

= 1 − cos

(

 2𝜋√∑𝑦𝑖
2

𝐷

𝑖=1
)

 

+ 0.1√∑𝑦𝑖
2

𝐷

𝑖=1

 

where  y = M × x, M 
rotation matrix [29]. 

[–100,100]
D 

(0,0)
D 

0 

Rotated 
Rastrigin's 
Function 

𝐹11

=∑(𝑦𝑖
2 − 10 cos(2𝜋𝑦𝑖)

𝐷

𝑖=1
+ 10) 

where y=M × x, M 
rotation matrix [29]. 

[–5.12,5.12]
D 
(0,0)

D 
0 

f(x
*
) denotes the optimum value of the function at the 

optimum position x
*
. 

Another point of interest is the convergence rate. 
FGLT-ICO showed very fast convergence rate at many 

functions such as Shifted Rastrigin's Function at 30 
dimensions. It is the same as F1 but shifted and a bias 
of -330 is added so that the best fitness is -330. We 
assign the same reduced population size (15) and 
maximum number of iterations (5000) to FGLT-PSO, 
PSO and ICO-PSO. The average best solution is 
shown in Fig. 8. While FGLT-PSO and PSO are faster, 
they are trapped far away from the global minimum. 
ICO-PSO is slightly slower because of the global 
search stage but it provides the algorithm more 
capability to find global minimum with the limited 
computations. The fast convergence loses its value 
when the algorithm is trapped far away from the global 
optimum. Therefore, ICO-PSO is more capable of 
optimizing multimodal function with limited resources. 

Another research example is the paper introduces 
CLPSO [21]. CLPSO is compared to 8 algorithms 
through 16 function. These algorithms are PSO with 
inertia weight (PSO-w) [23], PSO with constriction 
factor (PSO-cf) [24], Local version of PSO with inertia 
weight (PSO-w-local), Local version of PSO with 
constriction factor (PSO-cf-local) [25], Unified Particle 
Swarm Optimizer (UPSO) [26], FIPS [19], Fitness-
Distance-Ratio-based PSO (FDR-PSO) [27] and 
Cooperative Particle Swarm Optimizer (CPSO-H) [28]. 
A sample of these functions, listed in Table (12), is 
used to test ICO-PSO. In these functions (F12-F15), the 
initial population is not distributed over all the search 
space. There are parts of the search space, out of the 
initial swarm distribution, that need to be explored. 
Therefore, there are two parameter changes of the 
ICO-PSO algorithm are made. The initial velocity 
should be larger than usual, and the global and local 
search need more time to accomplish its missions. 
Appendix A declares these changes. The results are 
listed in Table 13. ICO-PSO results have ranks 1 and 2 
while it utilizes reduction in population size and 
maximum fitness evaluations (FEs) reaches 85%. For 
example, ICO-PSO achieves rank number 1 for the 
function F15 while it utilizes 75% and 85% reduction in 
population size and maximum fitness evaluations 
respectively. The superiority of manipulating the limited 
computation resources is obvious. Detailed notes 
about ICO-PSO algorithm are listed in Appendix A. 

 

 
Fig. 8 convergence rate for F9 with the reduced population size 

and number of iterations (optimum -330). 
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Table 9 ICO-PSO results compared to 4 algorithms results including FGLT-PSO introduced in [6] (at 30 dimensions). 

F Algorithm 
Average best 

solution 
Standard 
deviation 

Median best 
solution 

Population 
size 

Max. 
iteration 
number 

Reduction 
percentage of 

population size 
and iterations 

F5 

PSO 5.397e –69 1.161e –68 2.321e –70 50 10000 

30%, 40% 
(Results rank 2) 

LPSO 2.747e –28 4.078e –28 1.047e –28 50 10000 
QIPSO 3.502e –69 1.664e –68 2.727e –72 50 10000 
FGLT–PSO 0.00e +00 0.00e +00 0.00e +00 50 10000 
ICO–PSO 6.592e –79 3.603e –78 7.993e –86 35 6000 

F6 

PSO 1.189e +04 6.605e +03 1.083e +04 50 10000 

20%, 30% 
(Results rank 2) 

LPSO 1.399e +02 9.380e +01 1.254e +02 50 10000 
QIPSO 5.733e +03 5.484e +03 5.000e +03 50 10000 
FGLT–PSO 5.959e –20 1.762e –19 5.483e –21 50 10000 
ICO–PSO 2.842e –10 8.532e –10 4.282e –11 40 7000 

F3 

PSO 1.013e –14 3.312e –15 7.994e –15 50 10000 

60%, 50% 
(Results rank 2) 

LPSO 2.931e –14 1.433e –14 2.576e –14 50 10000 
QIPSO 8.941e –15 2.457e –15 7.994e –15 50 10000 
FGLT–PSO 7.771e –02 2.015e –01 7.994e –15 50 10000 
ICO–PSO 6.057e –14 9.624e –15 5.770e –14 20 5000 

F7 

PSO 5.827e +01 3.080e +01 5.450e +01 50 10000 

80%, 75% 
(Results rank 1) 

LPSO 4.281e +01 2.064e +01 3.753e +01 50 10000 
QIPSO 4.310e +01 2.901e +01 3.500e +01 50 10000 
FGLT–PSO 2.136e +01 8.612e +00 2.212e +01 50 10000 
ICO–PSO 1.313e +01 6.350e +00 1.200e +01 10 2500 

F8 

PSO –8.340e +01 4.560e +01 –9.269e +01 50 10000 

70%, 75% 
(Results rank 1) 

LPSO –1.705e +02 4.344e +00 –1.704e +02 50 10000 
QIPSO –9.806e +01 3.839e +01 –1.053e +02 50 10000 
FGLT–PSO –1.974e +02 1.112e +00 –1.798e +02 50 10000 
ICO–PSO –1.799e +02 1.921e –01 –1.799e +02 15 2500 

 

Table 10 ICO–PSO results compared to 4 algorithms results including FGLT–PSO introduced in [6] (at 50 dimensions). 

F Algorithm 
Average best 

solution 
Standard 
deviation 

Median best 
solution 

Population 
size 

Max. 
iteration 
number 

Reduction 
percentage of 

population size 
and iterations 

F5 

PSO 7.586e –49 2.124e –48 4.542e –50 50 15000 

30%, 53.3% 
(Results rank 2) 

LPSO 7.297e –20 7.695e –20 4.843e –20 50 15000 
QIPSO 2.446e –49 8.478e –49 1.395e –50 50 15000 
FGLT–PSO 5.239e –232 0.00e +00 2.541e –251 50 15000 
ICO–PSO 1.055e –52 4.85e –52 5.623e –57 35 7000 

F6 

PSO 4.167e +04 1.404e +04 4.002e +04 50 15000 

20%, 30% 
(Results rank 2) 

LPSO 2.775e +04 8.532e +03 2.859e +04 50 15000 
QIPSO 3.585e +04 1.967e +04 3.434e +04 50 15000 
FGLT–PSO 1.098e –08 2.405e –08 5.928e –09 50 15000 
ICO–PSO 2.134e –04 2.922e –04 9.954e –05 40 10000 

F3 

PSO 2.049e +00 4.661e +00 2.220e–14 50 15000 

50%, 60% 
(Results rank 2) 

LPSO 1.145e –05 6.223e –05 1.782e –09 50 15000 
QIPSO 1.782e –14 3.695e –15 1.510e –14 50 15000 
FGLT–PSO 1.299e +00 5.560e –01 1.282e +00 50 15000 
ICO–PSO 3.681e –11 1.284e –10 1.127e –12 25 5000 

F7 

PSO 1.980e +02 4.888e +01 1.890e +02 50 15000 

70%, 83.3% 
(Results rank 1) 

LPSO 1.872e +02 3.958e +01 1.850e +02 50 15000 
QIPSO 1.546e +02 5.192e +01 1.475e +02 50 15000 
FGLT–PSO 4.759e +01 2.294e +01 4.636e +01 50 15000 
ICO–PSO 3.496e +01 1.036e +01 3.350e +01 15 2500 

F8 

PSO 8.313e +01 9.121e +01 7.911e +01 50 15000 

70%, 73.3% 
(Results rank 1) 

LPSO –1.551e +02 1.216e +01 –1.565e +02 50 15000 
QIPSO 6.894e +01 7.896e +01 7.481e +01 50 15000 
FGLT–PSO –1.791e +02 1.212e +00 –1.797e +02 50 15000 
ICO–PSO –1.797e +02 5.821e –01 –1.799e +02 15 4000 

V. CONCLUSION 

The optimization process is becoming more vital in 
many aspects of modern industries, sciences and life. 

Many portable devices (such as smart phones, multi–
copters, GPS devices, ... etc) in addition to IoT devices 
faces the challenge of being smaller while increasing 
its ability to deal with much more complex real world 
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data. This challenge necessitates algorithms that 
provide acceptable performance with minimal 
computation efforts that consumes the limited 
resources. Optimization is one of the processes that 
may be needed in many devices (e.g. path planning 
optimization in self-driving cars, multi-copters 
controllers, mobile robots ... etc). ICO-PSO is 

improved algorithms that overcome the difficulty of 
global optimization of multimodal problems with very 
low computational effort. ICO-PSO is tested by fifteen 
benchmark multi-dimensional test functions and the 
results proved its superiority with respect to many 
other algorithms in case of low available computation 
capabilities. 

Table 11 ICO-PSO results compared to results of other algorithms including FGLT-PSO introduced in [6] (at 30 dimensions). 

F Algorithm 
Average best 

solution 
Standard 
deviation 

Population 
size 

Max. 
iteration 
number 

Reduction 
percentage of 

population size 
and iterations 

F9 

PSO 3.217e +09 3.880e +09 30 10000 

33.3%, 50% 
(Results rank 1) 

QIPSO 2.347e +09 1.872e +09 30 10000 
FIPS 1.340e +03 2.044e +03 30 10000 
DMS–PSO 3.362e +08 3.089e +08 30 10000 
CLPSO 5.943e +02 5.069e +01 30 10000 
AFPSO 9.700e +07 1.197e +08 30 10000 
AFPSO–QI 8.832e +07 9.793e +07 30 10000 
FGLT–PSO 5.204e +02 1.328e +02 30 10000 
ICO–PSO 4.439e +02 4.050e +01 20 5000 

F10 

PSO 1.703e +01 2.554e +00 30 10000 

50%, 60% 
(Results rank 2) 

QIPSO 1.520e +01 1.319e +00 30 10000 
FIPS 2.660e +01 1.417e +00 30 10000 
DMS–PSO 1.292e +01 1.328e +00 30 10000 
CLPSO 1.194e +01 1.356e +00 30 10000 
AFPSO 1.038e +01 1.379e +00 30 10000 
AFPSO–QI 8.462e +00 9.477e –01 30 10000 
FGLT–PSO 5.899e –01 2.280e –01 30 10000 
ICO–PSO 1.397e +00 2.356e –01 15 4000 

F11 

PSO 3.202e +02 1.470e +01 30 10000 

83.3%, 90% 
(Results rank 1) 

QIPSO 3.175e +02 2.324e +01 30 10000 
FIPS 4.341e +02 3.499e +01 30 10000 
DMS–PSO 2.837e +02 1.606e +01 30 10000 
CLPSO 2.633e +02 1.196e +01 30 10000 
AFPSO 2.663e +02 1.200e +01 30 10000 
AFPSO–QI 2.533e +02 1.263e +01 30 10000 
FGLT–PSO 1.580e +02 1.065e +01 30 10000 
ICO–PSO 1.415e +02 4.566e +02 5 1000 

 

Table 12 Extra test functions according to [21]. 

Name Equation 
Search 

rang 
Initial range x* F(x*) 

Weierstrass 
Function 

𝑓12 =∑(∑ 𝑎𝑘cos(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ 𝑎𝑘cos(2𝜋𝑏𝑘 × 0.5)

𝑘𝑚𝑎𝑥

𝑘=0

 

Where a=0.5, b=3, kmax=20. 

[–0.5, 0.5]
D
 [–0.5, 0.2]

D
 (0,0)

D 
0 

Rotated 
noncontinuous 

Rastrigin's 
Function 

𝐹13 =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

 

where 𝑧𝑖 = {
𝑦𝑖 |𝑦𝑖| ≤ 0.5
𝑟𝑜𝑢𝑛𝑑(2𝑦𝑖)

2
 |𝑦𝑖| ≥ 0.5

 ,   

 y = M × x, M is rotation matrix [29] 

[–5.12, 
5.12]

D
 

[–5.12, 2]
D
 (0,0)

D 
0 

Rotated 
Weierstrass 

Function 

𝑓14 =∑(∑ 𝑎𝑘cos(2𝜋𝑏𝑘(𝑦𝑖 + 0.5))

𝑘𝑚𝑎𝑥

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ 𝑎𝑘cos(2𝜋𝑏𝑘 × 0.5)

𝑘𝑚𝑎𝑥

𝑘=0

 

Where a=0.5, b=3, kmax=20, y = M × x , M is rotation matrix 

[29] 

[–0.5, 0.5]
D
 [–0.5, 0.2]

D
 (0,0)

D 
0 

Rotated Ackley's 
function 

𝐹15 = −20exp

(

 −0.2√
1

𝐷
∑𝑦𝑖

2

𝐷

𝑖=1
)

 − exp(
1

𝐷
∑cos(2𝜋𝑦𝑖)

𝐷

𝑖=1

)

+ 20 + 𝑒 
where y = M × x , M is rotation matrix [29] 

[–32.738, 
32.768]

D
 

[–32.768, 
16]

D
 

(0,0)
D 

0 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 1, January - 2017 

www.jmest.org 

JMESTN42351993 6470 

Table 13 ICO-PSO results compared to 8 algorithms results including CLPSO introduced in [21] (at 30 dimensions). 

Algorithm Mean ± std 
Pop. 
size 

Max 
FEs 

reduced 
pop. 

size and 
FEs (%) 

Mean ± std 
Pop. 
size 

Max 
FEs 

reduced 
pop. 

size and 
FEs (%) 

 F12 F13 

PSO–w 1.30e–04±3.30e–04 40 200000 

75%, 
64.6% 

(Results 
rank 1) 

6.32e+01±1.79e+01 40 200000 

50%, 
17.5% 

(Results 
rank 2) 

PSO–cf 4.10e+00±2.20e+00 40 200000 7.88e+01±1.88e+01 40 200000 
PSO–w–local 4.94e–03±1.40e–02 40 200000 5.67e+01±1.36e+01 40 200000 
PSO–cf–local 1.16e–01±2.79e–01 40 200000 4.93e+01±1.11e+01 40 200000 
UPSO 9.60e+00±3.78e+00 40 200000 7.74e+01±1.40e+01 40 200000 
FDR 7.49e–03±1.14e–02 40 200000 4.36e+01±8.96e+01 40 200000 
FIPS 1.54e–01±1.48e–01 40 200000 7.58e+01±1.92e+01 40 200000 
CPSO–H 7.82e–15±8.50e–15 40 200000 8.80e+01±2.59e+01 40 200000 
CLPSO 3.45e–07±1.94e–07 40 200000 3.77e+01±5.56e+00 40 200000 
ICO–PSO 3.79e–15±6.39e–15 10 70900 4.30e+01±8.67e00 20 165000 

 F14 F15 

PSO–w 7.00e+00±1.98e+00 40 200000 

62.5%, 
64.6% 

(Results 
rank 2) 

1.71e+00±4.38e–01 40 200000 

75%, 
85% 

(Results 
rank 1) 

PSO–cf 8.48e+00±2.54e+00 40 200000 1.66e+00±1.10e+00 40 200000 
PSO–w–local 5.96e+00±2.09e+00 40 200000 5.70e–01±7.60e–01 40 200000 
PSO–cf–local 5.95e+00±2.95e+00 40 200000 1.78e–01±5.62e–01 40 200000 
UPSO 1.85e+01±3.37e+00 40 200000 2.94e–01±6.71e–01 40 200000 
FDR 2.50e+00±1.46e+00 40 200000 3.59e–01±5.93e–01 40 200000 
FIPS 9.52e–02±9.53e–02 40 200000 5.23e–07±1.24e–07 40 200000 
CPSO–H 1.43e+01±3.53e+00 40 200000 2.10e+00±3.84e–01 40 200000 
CLPSO 3.07e+00±1.61e+00 40 200000 3.43e–04±1.91e–04 40 200000 
ICO–PSO 1.93e+00±1.78e+00 15 70900 1.03e–07±4.02e–07 10 30100 
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APPENDIX A: TECHNICAL NOTES 

This appendix devoted to declare the details of the 
ICO-PSO that will help the reader to fully understand 
the algorithm and reconstruct it if needed. The 
appendix is constructed in the form of separate notes. 

 The velocity of the particles is crucial because 
of the mutation and crossover operations. 
Crossover and mutation may cause sudden 
change in particle position, which leads to 
sudden increase of the particle velocity in the 
next iteration according to (7). Therefore, the 
particle velocity should be treated wisely. 
Regarding this problem, the following 2 steps 
are added to the algorithm: 

o The particles' velocities should be 
bounded. We choose velocity limits 
that are proportional to the search 
space limits. These limits are defined 
according to the following equation: 

max|𝑣𝑖| =
Max𝑥𝑖 −Min𝑥𝑖

4
 

i =1, 2, ...,D 

(4) 

where Max_xi and Min_xi are the 
limits of the search space at 
dimension i. The maximum velocity vi 
(positive or negative) in the i

th
 

dimension are bounded to quarter 
(1/4) of the search range at this 
dimension. 

o Usually, when the calculated particle 
position exceeds the search space 
limits (Max_xi or Min_xi) at the i

th
 

dimension, its position is constrained 
to the limits, not allowed to be beyond 
it. In ICO-PSO, another step is added 
as follows: 
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Inverting the velocity direction and reducing 
its value slightly enhances the performance of 
the algorithm. Without this step, if the velocity 
was big, the particle position well be stuck at 
the limits many iterations until the velocity is 
inverted by the regular movement (7). 
Reducing the velocity is done to dampen 
down the oscillations that may occur to the 
particles near the boundaries. This process 
imitates a ball hitting a wall; it inverts its 
direction and loses some energy. 

 Two cases of the initial position of the swarm 
are tested in the paper; when the initial swarm 
position distributed in the entire search space 
and when it is limited to a part of it. In the first 
case (F1-F11), no need for large velocities, 
even if the search space is large, moderate 
velocities are adequate to the swarm to start 
the global search. While in the other case 
(F12-F15), when it is not distributed in the entire 
search space, larger velocities are needed to 
allow the global search to explore the 
uncovered parts of the search space. These 
velocities are chosen as follows: 

o In case 1 (F1-F11): vi in the initial 
population is uniformly random 
distributed on the interval [–2, 2]. 

o In case 2 (F12-F15): vi in the initial 
population is uniformly random 
distributed on the interval [– (Max_xi–

Min_xi)/6, (Max_xi–Min_xi)/6] where 
Max_xi and Min_xi are the limits of the 
search space at dimension i. 

 While functions (F1-F11) needs no change of 
parameters sittings listed in Table 3, the 
functions (F12-F15) needs more time to global 
and local stages because its initial distribution 
doesn't cover the entire search space. The 
values of glob and loc are set as follows: 

glob = 0.5 N, loc = 0.75 N, where N is the 
number of iterations. 

Table 13 lists FEs instead of N to cope with 
the reference research, so N is chosen as 
6000, 7000, 4000 and 2600 for F12, F13, F14 
and F15 respectively. 

if xi > Max_xi  Then: 

xi = Max_xi 

vi = –0.9 vi 

end 

if xi < Min_xi  Then: 

xi = Min_xi 

vi = –0.9 vi 

end 
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