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Abstract—A free form deformation parametric 
technique for high-speed trains is developed and 
16 design variables are extracted to control the 
deformation of the streamlined nose shape. 
Combined with the proposed parametric 
technique, a multi-objective optimization design 
approach for aerodynamic head shape of the high-
speed train based on Kriging surrogate model and 
the non-dominated sorting particle swarm 
optimization algorithm is proposed. The 
optimization results show that the free form 
deformation parametric technique can be well 
applied to the aerodynamic shape optimization of 
the high-speed train. After optimization the 
aerodynamic drag coefficient of the whole train 
and the lift coefficient of the tail car are reduced 
obviously. The parametric technique for high-
speed trains and optimization approach 
developed in the present paper are simple yet 
efficient, and have important significance to the 
multi-objective engineering optimization design 
for high-speed trains. 
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I.  INTRODUCTION  

Aerodynamic shape optimization design has made 
considerable progress during the past two decades 
with the development of computational fluid dynamics 
(CFD) and computer-aided design (CAD) techniques. 
General optimization methods can be divided into 
surrogate-based optimization [1-2] and gradient-based 
optimization [3-4]. One of the key problems that need 
to be solved for the two methods is to establish a 
shape parameterization technique which can control 
the deformation of the geometric shape effectively and 
satisfy the practical engineering constraints. Various 
parameterization techniques have been developed in 
the field of aircraft shape optimization design. Hicks 
and Henne [5] proposed a compact formulation for 
parameterization of airfoil sections, Sobieczky [6] 
introduced the PARSEC method for airfoil shape 
representation, Kulfan and Bussoletti [7] developed the 
Class function / Shape function Transformation (CST) 
parameterization technique, Sederberg [8] proposed 
free form deformation (FFD) method in field of 

computer graphics and it has been developed and 
applied into aircraft shape optimization.  

In recent years, aerodynamic shape optimization 
design for high-speed trains has attracted more and 
more attention for the reason that aerodynamic 
problems appear more seriously as the running speed 
of high-speed train increases. The aerodynamic drag 
of high-speed trains can be up to 80% of the total drag 
at the speed of 300 km/h [9]. Resistance 
characteristics of the trains are directly related to the 
ability of energy saving and environmental protection 
[10]. Meanwhile, the wheel-track force is significantly 
reduced while excessive aerodynamic lift act on the 
train, which affects the operation safety. 
Parameterization techniques for aircraft cannot be 
applied to high-speed trains directly as the differences 
in appearances and constraint conditions. In the 
present paper, a FFD parameterization method for 
nose shape of high-speed train is developed and 16 
design variables are extracted. Based on non-
dominated sorting particle swarm optimization 
algorithm and Kriging model, a multi-objective 
surrogate-based optimization for high-speed trains is 
carried out. According to the presented method, Pareto 
optimal solutions are obtained. After that, aerodynamic 
performance of the optimized shape and the original 
shape of the high-speed train is comparatively 
analyzed. 

II. FREE FORM DEFORMATION 

The FFD technique allows the deformation of an 
object in a 2D or 3D space. It is based on the idea of 
embedding an object into a parallelepiped lattice of 
control points and transforming the object as the lattice 
deforms. The displacements of control points can be 
defined as the parameterization design variables. In 
addition to the global coordinate system, FFD also 
features a local coordinate system that records the 
relative position between different points, as shown in 
Fig.1. Every point’s local coordinate in the space 
enclosed by the parallelepiped lattice does not change 
in the process of deformation. The relationship 

between local coordinate  , ,s t u  and global 

coordinate  , ,zx y  is defined as follows: 

  0, ,zx y s t u   X X S T U                                (1) 
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When control points are evenly distributed in the 

parallelepiped lattice, the  , ,s t u  coordinates of X can 

easily be found using linear algebra: 
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Obviously, 0 , , 1s t u  . 

 

Fig. 1. Local coordinate system 

The deformation function is usually defined by a 
trivariate tensor product Bernstein polynomial or B-
splines basis [11]. In the present paper, the trivariate 
Bernstein polynomial is adopted. In summary, the 

deformed position  , ,ffd s t uX  of any arbitrary point 

with local coordinates  , ,s t u  is given by 

       , , ,

0 0 0

, ,
l m n

ffd i j k i l j,m k,n

i j k

s t u B s B t B u
  

X P  

(3) 

Where , ,i j kP is the i-th, j-th, k-th control point in the s, t, 

and u direction, and
,i lB , j,mB ,

k,nB are l-degree, m-

degree, n-degree Bernstein polynomials, respectively. 

On account of the symmetry of nose shape of high-
speed train, take the left half into a parallelepiped 
lattice with 18, 6, 5 control points in the x, y and z 
direction, respectively. Therefore, total number of the 
control points in the lattice is 540, as shown in Fig.2. 

 

Fig. 2. Parallelepiped lattice for a high-speed train 

 

 Geometric constraints should be taken into 
consideration as the nose needs to be connected with 
other components of the high-speed train. Boundary 
DEFG is directly connected to the carriage, and the y 
and z coordinates of the control points on this plane 
should remain unchanged. Boundary OCDG is close to 
the track and the z coordinate variation of the control 
points should be limited in a small range so as not to 
intersect the track. Furthermore, because of the large 
number of control points, it is reasonable to choose the 
coordinates of the control points with obvious physical 
significance, which have great influence on the 
aerodynamic performance of the train, as the design 
variables. According to the engineering optimization 
experience, the following control points are selected as 
design variables, as shown in Table 1. 

TABLE I.  FFD DESIGN VARIABLES 

Number 
Design 
variable 

Coordinate 
Physical 

significance 

1 
(0,0,1) x Length of the nose 

2 
(0,0,1) z Height of the nose 

3 
(1,0,0) x 

Length of the 
cowcatcher 

4 
(1,1,0) x 

Length of the 
cowcatcher 

5 
(3,3,1) z 

Height of the 
diversion 

6 
(3,3,2) z 

Height of the 
diversion 

7 
(3,4,0) y Width of the bottom 

8 
(4,4,0) y Width of the bottom 

9 
(5,4,0) y Width of the bottom 

10 
(5,0,3) z Height of the cab 

11 
(6,0,3) z Height of the cab 

12 
(6,3,2) z 

Height of the 
cowcatcher 

13 
(9,4,2) z 

Height of the 
cowcatcher 

14 
(13,4,1) y Width of the nose 

15 
(13,4,2) y Width of the nose 

16 
(14,0,5) z Height of the roof 
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Fig.3 illustrates the corresponding deformation at 
different positions when changing the value of FFD 
design variables. It can be concluded that FFD 
parameterization technique can deform the target zone 
efficiently while it has less effect on other areas. 

 

 

Fig. 3. Parallelepiped lattice for a high-speed train,(a)Length 
of the nose,(b)Height of the nose,(c)Height of the cab 

III. NUMERICAL  DETAIL 

The train model adopted in the present paper is a 
full-scale Chinese Standard EMU train, which consists 
of a head car, a middle car and a tail car. The length of 
the head car and tail car are 26.5m while the length of 
the middle car is 25m. The height of the train is 
denoted by a characteristic length H of 3.50 m and the 
width of the car body is 3.38m. In consideration of the 
accessory parts’ influence on aerodynamic 
performance of the high-speed train, windshields, the 
second bogie of the head car, bogies of the middle car 
and the first bogie of the tail car are included while the 
first bogie of the head car and the second bogie of the 
tail car are neglected for the convenience of 
deformation. The initial streamlined shape and the 
whole train model are shown in Fig.4 and Fig.5. 

 

Fig. 4. Initial streamlined head shape 

 

Fig. 5. Train model 

In this paper, simulations were performed using the 
commercial software STAR-CCM+ which integrates 
the pre-processor, the CFD solver, and the post-
processor into a package [12]. The STAR-CCM+ code 
provides various meshers and tools that can be used 
to generate quality meshes for complex geometries 
and different applications. In this study, a trimmed cell 
mesher was selected to generate the volume mesh 
and a prism layer mesher was selected to generate 

prismatic cell layers next to wall boundaries. The 
height of the first layer mesh was set to 0.8mm and the 
total thickness of the boundary layer was about 20mm, 
leading to values of y

+
 between 30 and 100. Besides, 

local grid refinement is processed at the area of head 
car, bogies and windshields, as shown in Figure 6. The 
total number of volume cells was 21 million. 

 

 

Fig. 6. Surface mesh of different parts, (a) windshield, (b) 
bogie,(c) nose 

The computational domain is extended 30H beyond 
the nose of the head car and 60H from the tail car to 
the outlet. The height and width of the computational 
domain are 30H and 60H, respectively, as shown in 

Fig.7. By employing algorithm SIMPLE and a  SSTk   

turbulent model, the steady incompressible Reynolds-
averaged Navier-Stokes equations were used to solve 
the flow field. The inlet velocity was set to 300km/h 
(83.333m/s) and the ground was defined as moving 
wall with identical velocity as the air. The top wall and 
the side walls were set as slip walls. 

 

 

Fig. 7. Computational domain 

 

IV. OPTIMIZATION METHODOLOGY 

A.  Multi-objective particle swarm optimization 

Particle swarm optimization (PSO) is an 
evolutionary computation method which is originally 
proposed by Kennedy and Eberhart in 1995 [13]. The 

(a) 

 

(b) 

 

(c) 
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PSO uses a simple mechanism that originally inspired 
by behavioral models of bird flocking to guide the 
particles to search for globally optimal solutions. The 
position of a particle represents a candidate solution to 
the optimization problem. Each particle searches for 
better positions in the search space by changing its 
velocity according to certain rules. During the 
evolutionary process, the velocity vector 

 ,1 ,2 ,,i

i i i dV v v v and the position vector 

 ,1 ,2 ,,i

i i i dX x x x  of particle i on dimension d are 

updated as: 

       , , 1 1 , , 2 2 , ,1i j i j i j i j g j i jv t wv t c r p x t c r p x t             (4) 

     , , ,1 1 , 1,2,i j i j i jx t x t v t j d         (5) 

Where w is the inertia weight, c1 and c2 are the 
acceleration coefficients, r1 and r2 are two distinct 
random values in [0, 1], pi is the best previous position 
of the particle itself (pbest) and pg denotes the best 
previous position of all particles of the swarm (gbest). 
The inertia weight w determines how much the current 
velocity of the particle is inherited and an appropriate 
value of w enables the balance between accelerating 
convergence speed and avoiding the local optima. 
During the past decades, different versions of PSO 
have been developed to solve multi-objective 
optimization problems. Coello et al [14] proposed an 
external file which saves every flight experience of 
particles for multi-objective optimization, Li [15] 
introduced the idea of non-dominated sorting, the 
niche count and crowding distance into PSO and 
developed the well-known Non-dominated Sorting 
Particle Swarm Optimization (NSPSO). Fig.8 shows 
multi-objective optimization results of four test 
functions using NSPSO. It can be concluded that it has 
a good performance in multi-objective optimization, 
therefore, the NSPSO is adopted in this paper for 
multi-objective optimization. 

 

 

 

 

Fig. 8. Numerical results of NSPSO,(a) Kursawe function, (b) 
Binh and Korn function, (c) ZDT function 1, (d) Schaffer 
function 1 

B. Sample points and Kriging model 

In order to reduce the design cost, direct 
evaluations of the expensive high-fidelity simulation 
are replaced by the Kriging surrogate model [16] in this 
study. 40 sample points are generated using Latin 
Hypercube Sampling [17] technique according to the 
16 FFD design variables. For all the sampling points, 
the aerodynamic drag coefficient of the whole train (Cd) 
and the lift coefficient of the tail car (Cl) are calculated, 
as shown in Table 2. 

(a) 

 

(b) 

 

(c) 
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TABLE II.  FFD TRAINING SAMPLE POINTS 

Design 
variables 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cd Cl 

Range (-60,30) (-50,50) (-50,30) (-30,20) (-25,20) (-20,15) (-30,30) (-25,25) (-25,25) (-60,50) (-50,40) (-25,20) (-25,20) (-25,25) (-25,25) (-20,15) -- -- 

1 0.37 0.06 0.69 0.33 0.88 0.29 0.89 0.22 0.46 0.28 0.79 0.28 0.80 0.56 0.43 0.76 0.285 0.0466 

2 0.70 0.80 0.88 0.01 0.01 0.18 0.62 0.86 0.29 0.31 0.48 0.98 0.22 0.66 0.65 0.04 0.298 0.0513 

3 0.70 0.64 0.43 0.57 0.75 0.49 0.29 0.62 0.60 0.88 0.62 0.68 0.63 0.19 0.85 0.20 0.291 0.0435 

4 0.35 0.16 0.59 0.50 0.40 0.86 0.25 0.88 0.04 0.59 0.75 0.58 0.56 0.43 0.91 0.73 0.284 0.0415 

5 0.12 0.02 0.38 0.60 0.20 0.59 0.53 0.99 0.98 0.91 0.90 0.26 0.18 0.92 0.53 0.59 0.294 0.0522 

6 0.90 0.98 0.25 0.97 0.96 0.52 0.22 0.38 0.73 0.05 0.27 0.88 0.41 0.42 0.75 0.07 0.286 0.0481 

7 0.48 0.69 0.87 0.64 0.99 0.82 0.98 0.57 0.26 0.93 0.01 0.76 0.61 0.75 0.50 0.45 0.289 0.0549 

8 0.84 0.39 0.42 0.99 0.11 0.65 0.65 0.34 0.63 0.05 0.72 0.73 0.26 0.89 0.80 0.27 0.288 0.0480 

9 0.95 0.48 0.46 0.73 0.32 0.03 0.59 0.93 0.20 0.72 0.97 0.67 0.50 0.78 0.04 0.88 0.291 0.0517 

10 0.80 0.36 0.33 0.39 0.44 0.71 0.96 0.41 0.86 0.16 0.74 0.47 0.08 0.47 0.34 0.82 0.290 0.0496 

11 0.53 0.30 0.71 0.27 0.51 0.01 0.91 0.32 0.35 0.75 0.99 0.31 0.45 0.32 0.13 0.01 0.289 0.0531 

12 0.75 0.70 0.78 0.29 0.84 0.77 0.52 0.05 0.33 0.48 0.31 0.05 0.70 0.25 0.68 0.57 0.286 0.0415 

13 0.27 0.66 0.92 0.91 0.58 0.84 0.74 0.46 0.68 0.24 0.34 0.33 0.04 0.70 0.46 0.63 0.279 0.0390 

14 0.44 0.74 0.28 0.88 0.55 0.42 0.06 0.84 0.39 0.64 0.47 0.03 0.32 0.00 0.18 0.39 0.288 0.0472 

15 0.90 0.22 0.50 0.49 0.93 0.62 0.42 0.79 0.56 0.21 0.07 0.15 0.53 0.39 0.96 0.42 0.295 0.0557 

16 0.03 0.33 0.93 0.09 0.68 0.12 0.79 0.12 0.24 0.55 0.63 0.12 0.92 0.37 0.25 0.60 0.294 0.0528 

17 0.01 0.91 0.12 0.37 0.13 0.24 0.02 0.54 0.89 0.79 0.43 0.21 0.74 0.84 0.72 0.50 0.284 0.0488 

18 0.17 0.56 0.04 0.06 0.28 0.33 0.95 0.25 0.59 0.38 0.81 0.23 0.16 0.17 0.25 0.30 0.295 0.0517 

19 0.99 0.95 0.74 0.46 0.46 0.95 0.86 0.65 0.91 0.13 0.54 0.08 0.24 0.12 0.11 0.79 0.292 0.0435 

20 0.15 0.18 0.96 0.80 0.91 0.37 0.69 0.67 0.41 0.76 0.14 0.44 0.98 0.09 0.05 0.43 0.283 0.0416 

21 0.39 0.60 0.56 0.60 0.35 0.32 0.04 0.59 0.18 0.55 0.22 0.65 0.39 0.13 0.94 0.16 0.288 0.0483 

22 0.55 0.77 0.48 0.25 0.17 0.46 0.39 0.10 0.79 0.35 0.56 0.83 0.96 0.03 0.61 0.95 0.282 0.0461 

23 0.67 0.26 0.67 0.15 0.35 0.55 0.50 0.69 0.52 0.66 0.38 0.93 0.13 0.85 0.17 0.53 0.287 0.0437 

24 0.47 0.89 0.30 0.17 0.04 0.93 0.31 0.50 0.45 0.00 0.88 0.16 0.94 0.80 0.60 0.71 0.286 0.0505 

25 0.97 0.85 0.99 0.83 0.48 0.88 0.33 0.75 0.66 0.34 0.09 0.00 0.77 0.53 0.64 0.33 0.292 0.0488 

26 0.19 0.59 0.08 0.76 0.71 0.21 0.55 0.36 0.81 0.50 0.58 0.37 0.02 0.72 0.50 0.08 0.286 0.0531 

27 0.32 0.46 0.18 0.53 0.41 0.64 0.12 0.14 0.01 0.45 0.93 0.79 0.59 0.22 0.28 0.11 0.289 0.0506 

28 0.28 0.44 0.24 0.44 0.87 0.99 0.44 0.97 0.94 0.40 0.24 0.97 0.11 0.48 0.56 0.48 0.294 0.0481 

29 0.59 0.54 0.77 0.70 0.56 0.06 0.81 0.49 0.16 0.85 0.83 0.61 0.71 0.74 0.77 0.70 0.294 0.0474 

30 0.20 0.09 0.80 0.04 0.27 0.17 0.72 0.01 0.96 0.68 0.52 0.87 0.67 0.07 0.85 0.65 0.287 0.0479 

31 0.52 0.24 0.22 0.85 0.08 0.91 0.26 0.91 0.50 0.26 0.16 0.53 0.28 0.97 0.39 0.25 0.293 0.0479 

32 0.23 0.10 0.02 0.22 0.67 0.55 0.84 0.23 0.53 0.08 0.68 0.18 0.37 0.64 0.22 0.91 0.287 0.0494 

33 0.06 0.51 0.84 0.69 0.82 0.69 0.76 0.15 0.13 0.62 0.87 0.55 0.87 0.52 0.98 0.35 0.285 0.0463 

34 0.08 0.15 0.06 0.67 0.61 0.80 0.47 0.70 0.05 0.46 0.18 0.52 0.85 0.94 0.02 0.13 0.283 0.0362 

35 0.80 0.40 0.36 0.94 0.24 0.38 0.64 0.44 0.70 0.96 0.41 0.50 0.89 0.58 0.88 0.99 0.286 0.0491 

36 0.77 0.95 0.16 0.20 0.79 0.14 0.10 0.81 0.09 0.83 0.66 0.71 0.34 0.34 0.37 0.94 0.284 0.0454 

37 0.62 0.81 0.61 0.32 0.05 0.43 0.13 0.05 0.31 0.18 0.04 0.82 0.82 0.61 0.79 0.21 0.291 0.0519 

38 0.86 0.30 0.54 0.11 0.75 0.09 0.35 0.74 0.10 0.80 0.35 0.41 0.49 0.98 0.42 0.84 0.286 0.0422 

39 0.65 0.83 0.15 0.82 0.20 0.27 0.15 0.18 0.77 0.11 0.29 0.91 0.43 0.29 0.31 0.87 0.292 0.0500 

40 0.40 0.04 0.64 0.40 0.63 0.73 0.18 0.28 0.84 0.99 0.10 0.40 0.07 0.24 0.09 0.30 0.295 0.0524 
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The key problem for training Kriging model is to find 

the optimal values of parameters i , i =1, 2, ···16. In 

the present paper, sample points 1 to 38 are used for 
the construction of Kriging model and the single-
objective genetic algorithm [18] is chosen to obtain the 

optimal values of i . Meanwhile, sample points 39 to 

40 are used to test the prediction accuracy of the final 

Kriging model. Fig.9 illustrates the optimal values of i , 

it can be seen that 2 , 3 , 4 , 7 and 9 are significantly 

larger than the other, which suggests the 
corresponding design variables, height of the nose, 
length of the cowcatcher and width of the bottom have 
more effect on the aerodynamic performance of the 
high-speed train. 

 

Fig. 9. Optimal values of i . 

Table 3 shows prediction accuracy of the Kriging 

model with the optimal i . The prediction error for Cd is 

about 1% and within 5% for Cl. The test results 
indicate that optimal Kriging model performs well at 
predicting the aerodynamic drag and lift of the high-
speed train. 

 

TABLE III.  PREDICTION ACCURACY OF KRIGING MODEL 

Objective Points Actual 
Value 

Predicted 
value 

Error 

Cd 
39 0.292 0.289 1.03% 

40 0.295 0.292 1.02% 

Cl 
39 0.0500 0.0478 4.40% 

40 0.0524 0.0498 4.96% 

 

 

V. RESULTS AND DISCUSSIONS 

In the application to optimization design for high-
speed trains, the aerodynamic drag coefficient and the 
lift coefficient of the tail car are treated as the 

optimization objectives, and the non-dominated sorting 
multi-objective particle swarm optimization is adopted 
to search for the Pareto front. The population of 
NSPSO is set to 100 and the number of generations is 
1500, the optimal Kriging model is used to replace the 
CFD simulation during the optimization process. Fig.10 
shows the Pareto solution of the Cd-Cl optimization 
based on FFD technique and NSPSO-Kriging 
approach. The result shows that a suitable Pareto front 
is obtained after iterations. For comparison, a specific 
individual is chosen as the design point, as the red star 
shows in Fig. 10. 

 

Fig. 10.  Pareto front. 

 

According to the optimization results, the values of 
FFD variables for the design point are listed in Table 4, 
then the final shape of the design point, namely the 
optimal shape, can be obtained. Fig.11 shows the 
comparison of the original shape and the optimal 
shape, where the orange one is the optimal shape and 
the green one is the original shape. It can be 
concluded from Table 4 and Fig.11 that the 
streamlined shape of the high-speed train deformed 
significantly after optimization at different positions. 
The length of the cowcatcher, the height of the cab, 
the width of the nose and the height of the roof 
decreased while the length and the height of the nose 
increased. 

 

TABLE IV.   FFD VARIABLES FOR THE DESIGN POINT 

Design 
variable 

1 2 3 4 5 6 7 8 

Value 16.82 24.29 -46.21 -22.78 -6.60 1.79 -17.35 3.89 

Design 
variable 

9 10 11 12 13 14 15 16 

Value -15.85 45.61 -40.33 11.07 -16.32 -12.98 -15.23 -16.56 
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Fig. 11. Comparison between the original shape and the optimal shape.(the orange is the optimal shape). 

 

Table 5 shows aerodynamic forces coefficients 
comparison between original and optimal shape. After 
optimization, the aerodynamic drag coefficient of the 
whole train is reduced by 3.13% and the aerodynamic 
lift coefficient of the tail car is reduced by 16.46%. 
Obviously, the optimal shape has better performance 
than the original one. 

TABLE V.  AERODYNAMIC FORCES COMPARISON  

Objective Original shape  Optimal shape  Reduction 

Cd 0.2905 0.2814 3.13% 

Cl 0.0662 0.0553 16.46% 

 

Fig.12 illustrates the pressure contour comparison 
between the optimal shape and original shape, the 
surface pressure distribution of the original shape 
differs from the optimal shape in three areas: A1, A2 
and A3. The surface pressure on the lower part of the 
nose decreased after optimization, as shown in A1. 
The shape of the nose side near the diversion was 
changed, resulting in a decrease in pressure in the 
area below the diversion, as shown in A2, and the 
width of the rear half of the nose increased, leading to 
an increase in the negative pressure in the A3 area. 

 

 

Fig. 12. Pressure contour comparison between the optimal 
shape and original shape. 

In order to better understand the influence on 
aerodynamic lift of the tail car due to the change of 
nose shape of high-speed train, the iso-surface of the 
second invariant of the velocity gradient Q in the wake 
flow is shown in Figure 13. Four steady vortices V1, 
V2, V3 and V4 were developed along the surface of 
the streamline of the tail car, where V1 and V4 were 
more intense than the other two vortices. Meanwhile, 
there were some small steady vortices developed in 

the zone of cowcatcher, as shown in T1. After 
optimization, the strengths of V1, V3 and vortices in T1 
were significantly reduced, as a result, the negative 
pressure of the optimal shape in the wake region was 
weaker than the original one, which could be helpful to 
reduce the aerodynamic lift of the tail car. 

 

 

 

Fig. 13. Transient Q iso-surface graphs around the tail car of 
original shape and optimal shape (Q=100).  

VI. CONCLUSIONS 

In the present paper, a multi-objective optimization 
study was conducted based on the FFD parametric 
technique and NSPSO-Kriging approach to pursue the 
head shape of the high-speed train with lower 
aerodynamic drag and lift than the original one. 
Several conclusions have been obtained as follows: 

1) The proposed FFD parametric technique for 
high-speed trains is simple yet practical. By adjusting 
the values of 16 design variables with specific physical 
significance, one can control the deformation of the 
nose shape efficiently.  
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2) The Kriging model with optimal values of 
parameters has a good performance at predicting the 
aerodynamic drag coefficient and lift coefficient.  

3) The optimal shape shows better aerodynamic 
performance than the original one. After optimization, 
the aerodynamic drag of the whole train is reduced by 
3.13% and the aerodynamic lift of the tail car is 
reduced by 16.46%. Surface pressure in certain areas 
of the nose and strengths of vortices in the wake 
region are both reduced for the optimal shape. 
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