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Abstract—We examine the issue of call center 
scheduling in an environment where arrival rates 
are very variable, cumulative volumes are 
uncertain, and the call center is conditioned by a 
global service level constraint. This article is 
inspired by the work with an Albanian call center 
where call volumes express significant variability 
and uncertainty. The contracts with all the clients 
specify a Service Level Agreement that should be 
achieved over a specific period of a week or 
month. We define the problem as a mixed-integer 
stochastic program. Our model has two unique 
characteristics. First of all, we integrate the server 
sizing and staff scheduling steps into a single 
optimization program. Secondly, we clearly 
identify the uncertainty in time-by-time arrival 
rates. We demonstrate that the stochastic 
formulation, generally, calculates a higher cost 
optimal schedule instead of a model that ignores 
variability, but that the estimated cost of this 
schedule is lower. We operate expanded 
experimentation to compare the solutions of the 
stochastic program with the deterministic 
programs, considering mean valued arrivals. We 
discover that, generally, the stochastic model 
gives an important reduction in the expected cost 
of operation. The stochastic model also permits 
the operations manager to make informed risk 
management decisions by taking into account the 
probability that the Service Level Agreement will 
be achieved. 

Keywords—call center; stochastic model 
programming; cost optimization; scheduling; 
uncertainty 

I.  INTRODUCTION  

A call center is composed by a set of resources 
(generally staff, computers and telecommunication 
supplies) that guaranties the delivery of services 
through the phone. The working environment of a 
typical large call center could be imagined as very big 
room with numerous open-space workstations, in 
which people with earphones sit in front of computer 
terminals, providing services/products to “unseen” 
customers (Ekmekçiu, 2015). During the last years the 
growth of the call center’s industry has been very high. 
In particular in Albania, the number of outsourcing call 
centers is more than 300 with 20.000 employees 

(Mapo online, Call-center: Biznesi që vijon lulëzimin). 
Large range call centers are technologically and 
organizationally sophisticated operations and have 
been the object of important academic research. Call 
centers can be categorized into many different 
dimensions: functionality (help desk, emergency, 
telemarketing, teleselling, technical support, market 
research, information providers, etc.), size (from a few 
to several thousands of agent workstations), 
geography (single- or several locations, that can be 
domestic, nearshore or offshore), agents qualifications 
(low-skilled or highly-trained, single or  multiskilled etc. 
), industry (telecommunication, finance, TV and 
internet providers, travel, marketing, sport etc.), line of 
business (inbound, outbound, backoffice etc.), and so 
on (Ekmekçiu et al 2015). Staffing is a crucial issue in 
call center management due to the fact that direct 
labor costs usually account for 70–80% of the total 
operating budget of a call center (Aksin et al., 2007). 
This work addresses the scheduling problem in a call 
center with very variable and uncertain arrival rates. 
The paper is precisely related to a research project 
with an outsourced Albanian call center. This operation 
includes providing help desk support to big corporate 
entities. While the range of services differs from 
account to account, many accounts demand 24/7 
support and virtually all accounts depend on some 
shape of Service Level Agreement. There are different 
types of SLAs, but the most typical determines a 
minimum level of the Telephone Service Factor. A TSF 
SLA determines the fraction of calls that should be 
answered within a given time. For example, a 90/110 
SLA specifies that 90% of calls must be answered 
within 110 seconds. A very significant point is that the 
service level is applied to an extended period, 
generally a week or month. Consequently, the 
workstation is generally staffed so that at some times 
the service level is under obtained, sometimes over 
obtained, and reaches the target for the entire 
extended period (week or month). The main challenge 
implicated with staffing this call center is meeting a 
certain, fixed SLA with a variable and uncertain arrival 
rate pattern. During this analysis, we will evaluate the 
models using three test problems applied on specific 
outsourcing projects. Project A is a corporate help 
desk for a large company handling in average about 
750 calls a day, where the unpredictability of call 
volume is relatively low. Project B is a help desk that 
provides technical support to workers in a retail chain. 
The volume of the calls of this project is about 2000 
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calls a day. Because of the fact that it supports users 
in retail stores, as the opposite of a corporate office, 
the daily seasonality of call volume is really different. 

This company is making important changes in its IT 
infrastructure and because of that call volume is really 
volatile and difficult to forecast. Project C is a help 
desk that provides support to corporate and retail site 
users of another retail chain. This is a smaller project 
with about 500 calls a day, where call volume is 
moderately volatile and shocks are almost ordinary. 
We analyze different scheduling options, too. At one 
extreme, we only permit agents to be assigned to five 
8-hour shifts per week. At the opposite extreme, we 
permit a wide range of part time schedules. We permit 
for a total of five distinctive flexibility options (A-E) that 
are summarized in the Appendix in Tables A.1 and 
A.2. 

II. LITERATURE REVIEW 

There is a big number of literature addressing call 
center issues. Gans et al. (2003) gives a detailed and 
complete review of the literature. Another review of the 
call center literature is provided by Aksin et al. (2007). 
Call center works cover a large range of topics and 
contain a number of OR methodologies that include 
queuing theory, optimization, and simulation. 

The first problem we address in this work is shift 
scheduling. The main approach to this issue was first 
defined in a paper by Dantzig (1954), which addressed 
scheduling toll booth agents. Dantzig developed his 
model like a weighted set covering issue with noted 
staffing requirements; the goal being to find the 
slightest cost involving from a group of available 
schedules. In this approach, the staffing levels in each 
time period are calculated externally and are 
determined as hard restrictions that should be satisfied 
in each feasible schedule. Segal (1974) demonstrated 
that without considering breaks the problem could be 
resolved as a network flow problem in polynomial time. 
Nevertheless, when breaks are scheduled in an 
explicit way the problem becomes NP Hard (Garey 
and Johnson, 1979). Because of the large number of 
possible schedules, particularly when breaks are 
explicitly scheduled, many of the early research 
focused on solution algorithms. 

A lot of early papers concentrated on heuristic 
algorithms. Henderson and Berry (1976) apply two 
kinds of heuristics. The first one decreases the number 
of shift types, scheduling against only a decreased set 
of schedules indicated as the working subset. The 
second approximation is the scheduling algorithm, in 
which the authors use three distinctive scheduling 
heuristics. Another flow of research attacks the 
problem utilizing an absolute scheduling approach. 
Absolute scheduling models use two sets of decision 
variables; one to appoint break less shifts, the other to 
fit breaks. Implicit scheduling approaches are 
forwarded in Bechtold and Jacobs (1990), Thompson 
(1995) and Aykin (1996). Many other articles address 
similar problems (Brusco and Jacobs, 1998, 2000). A 
brief examination of the approach in two stages to 
scheduling in a call center environment is given in 
Section 12.7 of Pinedo (2005). 

Customer service is a substantial consideration in 
call centers, and a lot of centers are subject to SLAs. 
Milner and Olsen (2008) analyze contract structures in 
call centers with SLAs. Baron and Milner (2006) 
analyze optimal staffing under various SLAs. These 
works classify SLAs as Individual Based, Period 
Based, or Horizon Based. IB-SLAs determine a 
financial penalty for every customer not served inside 
the specific service level. The PB-SLA indicates 
penalties for each time period during which the service 
level objective is not achieved. Periods are determined 
as intervals during which the arrival rate may be 
considered constant – in general 15 or 30 minute 
intervals. The HB-SLA indicates penalties for service 
level deficiency over an extended period such as a 
week or month. In this paper we analyze scenarios 
where a HB-SLA has been determined with the 
horizon specified as a week. 

Most call center scheduling models in the literature 
implement a hard restriction for service level on a time-
by-time basis. Scheduling for a PB-SLA is unequivocal 
using the Stationary Independent Period by Period 
(SIPP) approach. This approach is explained in detail 
in Green et al. (2001), but basically the day is divided 
into short periods, generally 15 or 30 minutes. In every 
period, the arrival rate is pretended to be constant and 
performance is pretended to be independent of the 
performance in other periods. In every period, a 
queuing model, usually the Erlang C model, is utilized 
to calculate the staffing level necessary to achieve the 
service level necessity. Then, a set covering integer 
program is utilized to schedule shifts. This two phased 
approach divides the job into a server sizing issue, 
depending on queuing models, and a staff scheduling 
task, based on discrete optimization. 

Some models are formulated to resolve a global 
service level requirement, like an HB-SLA. Based on 
our experience, outsourcing contracts usually specify 
an HB-SLA, and all of the projects we analyzed were 
subject to this kind of SLA. Koole and van der Sluis 
(2003) pursue to develop a staffing model that 
optimizes a global target based on an HB-SLA. Their 
model uses a local search algorithm, and to guarantee 
union to a global optimum they necessitate agent 
schedules with no breaks, and consider no 
abandonment. Their model also considers a time 
varying, but also known, arrival rate. Cezik and 
L’Ecuyer (2007) resolve a global service level problem 
utilizing simulation and integer programming. They 
apply simulation to estimate service level achievement 
and integer programming to produce the schedule. 
The IP model produces cuts via sub gradient 
estimation calculated via simulation. The model 
resolves the sample average problem and as a result 
ignores arrival rate uncertainty, but it does permit for 
multiple skills. This model is a continuation of the 
model presented in Atlason et al. (2004). In an 
analogous paper Avramidis et al. (2007a) utilize a local 
search algorithm to resolve the same problem. A 
similar model is introduced in Avramidis et al. (2007b). 
Fukunaga et al. (2002) explain a commercial 
scheduling application extensively used for call center 
scheduling. Global service level objectives are 
modeled as soft constraints while fixed staffing 
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restrictions are modeled as hard constraints. The 
algorithm utilizes an artificial intelligence depending 
search examining. Atlason et al. (2008) develop an 
algorithm that integrates server sizing and staff 
scheduling into a unique optimization problem. This 
model concentrates on the impact that staffing in one 
time period might have on performance in the 
subsequent period, a fact ignored in SIPP models. The 
algorithm uses discrete event simulation to find out the 
service levels under aspirant staffing models and a 
discrete cutting plane algorithm to search for bettering 
solutions. Any of these models either considers that 
the arrival rate per-period is identified or schedules 
versus the expected arrival rate. The problem of arrival 
rate uncertainty has been considered in several 
papers. Both big call center reviews (Gans et al., 2003; 
Aksin et al., 2007) have sections concerned to arrival 
rate uncertainty. Brown et al. (2005) complete a 
detailed empirical analysis of call center data. Even 
though they discover that a time-inhomogeneous 
Poisson process matches their data, they also 
discover that arrival rate is difficult to forecast and 
suggest that the arrival rate has to be modeled as a 
stochastic process. Different authors try to convince 
that call center arrivals pursue a doubly stochastic 
process, a Poisson process where the arrival rate is a 
random variable, too (Aksin et al., 2007; Whitt, 2006; 
Chen and Henderson, 2001). Arrival rate uncertainty 
might exist for many different reasons. Arrivals may 
show randomness bigger than that predicted by the 
Poisson process due to ignored variables; the weather 
might have an impact on emergency calls (Chen and 
Henderson, 2001), the condition of an organization’s IT 
infrastructure might have an influence on support 
center calls (Robbins, 2007). Call volume is highly 
seasonal during a day, week, month and year 
(Robbins, 2007; Gans et al., 2003; Andrews and 
Cunningham, 1995). Call center managers try to take 
into account these factors when they develop 
forecasts, even though forecasts are subject to 
significant error. Robbins (2007) analyzed four months 
of weekday forecasts to real call volume for 11 call 
center projects. He discovered that the average 
forecast error surpasses 10% for 8 of 11 projects, and 
25% for 4 of 11 projects. The standard deviation of the 
daily estimation to real ratio surpasses 10% for all 11 
projects. Steckley et al. (2009) analyzed forecasted 
and actual volumes for 9 weeks of data taken from 4 
call centers. They demonstrated that the forecasting 
errors are high and modeling arrivals as a Poisson 
process with the estimated call volume as the arrival 
rate may present significant error. Robbins et al. 
(2006) utilized simulation analysis to analyze the 
impact of forecast error on performance measures, 
showing the significant impact forecast error can have 
on system performance. 

Some works direct staffing requirements when 
arrival rates are not certain. Bassamboo et al. (2005) 
evolved a model that tries to minimize the cost of 
staffing plus a supposed cost for customer 
abandonment for a call center with numerous 
customer and server kinds when arrival rates are 
uncertain and variable. They resolve the staffing and 
routing problems using a Linear Programming based 
method which is asymptotically optimal. Harrison and 

Zeevi (2005) utilize a fluid approximation to resolve the 
sizing problem for call centers with numerous call 
types, numerous agent types, and with uncertain 
arrivals. Their model looks for minimizing a 
deterministic staffing cost function along with a penalty 
cost related with abandonment. Their approach 
designs the staffing issue like a multidimensional 
newsvendor model and resolves it through a 
combination of linear programming and simulation. 
Whitt (2006) permits for arrival rate uncertainty and 
also uncertain staffing, like absenteeism when 
calculating staffing requirements. Steckley et al. (2004) 
analyze the kind of performance measures to utilize 
when staffing under arrival rate uncertainty. Any of 
these models combine arrival rate uncertainty into the 
server sizing step, but do not address the staff 
scheduling step, explicitly. 

The model given in our paper pursues to allow for 
arrival rate uncertainty while at the same time merging 
the server sizing and staff scheduling phases. We 
make this through a model formulated as a stochastic 
integer program. The approach of stochastic 
programming is well described.  

Birge and Louveaux (1997) is a text which analyzes 
the theory of stochastic programming and numerous 
solution algorithms, too. 

A standard method of resolving stochastic 
programs is to resolve the sample path problem, 
solving the optimization problem versus a discrete set 
of samples that are referred as scenarios. Mak et al. 
(1999) discuss important statistical properties related 
with sample path optimization. 

III. FORMULATION OF THE PROBLEM AND 

SOLUTION APPROACH 

In this model, we try to find a staffing plan with 
minimal cost that satisfies a global service level 
requirement. Our model predicts the number of calls 
that reach the service level requirement in any period 
by doing a piecewise linear approximation to the TSF 
curve; the curve that correlates the number of agents 
to a specific service level for a specific arrival rate. In 
this section, we firstly present our formulation of the 
model, containing our approach for estimating service 
levels. Then we describe a process for solving large-
scale integer program that emerges. At the end, we 
present a post-optimization approach to determine the 
quality of the arising solution, an important application 
in stochastic program. 

A. Formulation 

We formulate the model as a two phase, mixed-
integer stochastic program. During the first phase, 
staffing decisions are made and during the second 
phase, call volume is accomplished and we calculate 
SLA achievement. We formulate a model with the 
definitions below: 

Sets 

J possible schedules 

I time periods 
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K scenarios 

H points in a linear approximation 

 

Deterministic parameters 

cj cost of schedule j 
aij displays if schedule j is staffed in time 
period i 
g global SLA objective 
mikh tilt of piecewise TSF approximation h 
in period i of scenario k 
bikh intercept of piecewise TSF 
approximation h in period i of scenario k 
pk probability of scenario k 
µi minimum number of agents in period i 
r per point penalty cost of TSF shortfall 
dj maximum number of agents available 
for schedule j 
 
Decision variables 
xj number of agents assigned to schedule 
j 
State variables 
yik number of calls in period i of scenario k 
answered within service level 
Sk proportional TSF shortfall in scenario k 
 
Stochastic parameters 
nik number of calls in period i of scenario k 
 

min  ∑ 𝑐𝑗 𝑥𝑗𝑗Є𝐽 + ∑ 𝑝𝑘𝑟𝑆𝑘𝑘Є𝐾              (3.1)                                                            

 

subject to  yik ≤ nik(𝑚𝑖𝑘ℎ ∑ 𝑎𝑖𝑗𝑗Є𝐽 𝑥𝑗 + 𝑏𝑖𝑘ℎ)                 

Ɐi Є I, k Є K, h Є H,                      (3.2)                        
 
    ∑ 𝑛𝑖𝑘𝑖Є𝐼 𝑆𝑘 ≥ ∑ (𝑔𝑛𝑖𝑘𝑖Є𝐼 − 𝑦𝑖𝑘)                                 
Ɐk Є K,                                         (3.3)                                        
                
  yik ≤ nik       Ɐi Є I, k Є K                         (3.4)                                                                

,                                            
  ∑ 𝑎𝑖𝑗𝑗Є𝐽 𝑥𝑗 ≥ µi           Ɐi Є I                (3.5)                             

,                                                       
  xj ≤ dj           Ɐj Є J                     (3.6)                          
,                                                      
 xj Є Z

+
,   yik Є R

+
,   Sk Є R

+
                            

Ɐi Є I, k Є K, j Є J.                      (3.7)                      
 

The goal of this model (3.1) is to minimize the sum 
of the total cost of staffing and the expected penalty 
cost related with failure to reach the wanted service 
level. The optimization happens over a set K of model 
achievements of call arrivals. Restriction (3.2) 
determines the variable yik as the number of calls 
answered within the SLA target in period i of scenario 
k depending on a convex linear approximation of the 
TSF curve shown in Fig. 3.1. Restriction (3.3) 
calculates the TSF proportional deficit, Sk: the 
maximum of the percentage point difference between 
the target TSF and obtained TSF or zero. Restriction 
(3.4) reduces the calls answered within the SLA target 
to the total calls received in the period. Restriction 

(3.5) determines the minimum number of agents in 
each period. The minimum agent level is fixed to the 
maximum of the global minimum number of agents 
needed by policy, generally two agents, and the 
staffing level needed to obtain a minimum service level 
at expected call volumes. In our test examples, the 
parameter dj is fixed to the maximum of two, and the 
number of agents that results in a service level of at 
least 50% at the average volume for the period. 
Restriction (3.6) defines an upper limit on the number 
of agents appointed to each schedule. The intention of 
this restriction is to limit the number of agents 
appointed to a schedule based on agent availability or 
readiness to work. Practically, this restriction also 
permits the call center manager to turn off certain 
schedules as he sees fit. Restriction (3.7) determines 
the non-negativity and integer conditions for program 
variables. 

For a given planning horizon and scheduling 
interval, the size of the model, and as a result the 
computation struggle needed to solve it, is guided in 
large part by two factors; the number of possible 
schedules (J) and the number of scenarios (K). The 
number of integer variables is the same to the number 
of schedules, while the number of continuous variables 
is equal to the product of the number of scenarios and 
the number of time periods, plus the number of 
scenarios. A usual planning horizon is one week, and 
a usual interval is 30 minutes. 

Expanding the planning horizon or diminishing 
scheduling interval will immediately grow the number 
of time periods (I) and indirectly increase the number 
of schedules (J) and as a result the resources needed 
to resolve the problem. 

In this examination, we are developing schedules 
for a week (with specific breaks between shifts, but not 
within shifts.) In easy cases, where we permit only 5 
day a week, 8-hour shifts, the number of probable 
schedules is 576. In cases where we have a vaster 
range of full and part time schedule options we get 
3696 schedules. (The details are given in Table A.2.) 
We examine the number of scenarios required in the 
next section, but 50 scenarios are not irrational. This 
indicates the requirement to resolve models with 3696 
integer variables and more than 16000 continuous 
variables 

This program above (3.1)–(3.7) is resolved over 
some set of sample results from the statistical model of 
call arrival patterns. Multiple approaches are available 
for generating simulated arrival patterns. An accurate 
analysis is given in Avramidis et al. (2004). For our test 
problems, we utilize a simple two-stage algorithm 
comparable to the model in Weinberg et al. (2007). We 
use a multiphase, multiplicative model where the 
arrival rate is calculated as the product of the number 
of calls in a daily basis and the proportion of daily calls 
received in that time period, which 

. 
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Figure. 3.1. Piecewise approximation of TSF 

are random. In the Appendix in Fig. A.1, are given 
details of the algorithm, but it has to be noted that the 
scheduling algorithm is neither way dependent on the 
model of arrivals. 

 

B. TSF approximation 

The goal of our optimization model is finding the 
lowest cost staffing plan giving a service level 
restriction based on the TSF. In order to satisfy 
service level restrictions, the model has to estimate 
the service level that will be accomplished for a given 
staffing model and call pattern. 

We complete this estimate by using a piecewise 
linear approximation of the TSF curve utilizing the 
Erlang A queuing model. This model is a vastly 
accepted model for call center systems with a non-
insignificant abandonment rate. Erlang A takes for 
granted that calls arrive via a Poisson process with 
rate k and are handled by a group of homogeneous 
agents with an exponentially distributed service time 
with mean 1/µ. If no agent is available when the call 
comes, it is placed in an infinite capacity queue where 
it waits for the next available agent 

Any customer that calls has a patience level, which 
are iid draws from an exponential distribution with 
mean 1/Ɵ. If a customer is not served by the time his 
patience expires, he hangs up. The call center is also 
pretended to have infinite capacity, as a result no calls 
are blocked. For each test project, we use forecasts 
derived from real call center data. In stable state, the 
staffing decision then includes forecasting the arrival 
rate ki and applying the staff level utilizing the Erlang 
A approximation. The result is a nonlinear S-shaped 
curve which, for a fixed arrival rate, correlates the 
obtained service level to the number of agents staffed. 

The TSF curve is not convex and neither concave 
over the complete range of staffing. For very low 
staffing levels, where performance is very weak, the 
curve is convex, and in this case we experience 
increasing efficiency from incremental staffing. For 

higher staffing levels, the curve turns concave, and 
the impact of additional staffing becomes decreasing. 
Notice that the area of convexity coincides to very 
weak system performance, an area where we do not 
plan to operate. Additionally, embedding this function 
in our optimization model would create a nonconvex 
optimization problem. To direct this issue we develop 
a piecewise linear approximation to the TSF curve as 
demonstrated in Fig. 3.1. 

In this chart, the straight lines represent the 
individual restrictions, and the piecewise linear 
function is our approximation of the nonlinear curve. 
This chart has five linear segments, including a 
horizontal segment at a service level of 100%. The 
optimization model demands that the TSF is less than 
any line segment. The piecewise linear approximation 
and the true TSF curve are very near for service 
levels higher than 25%. For very low staffing levels, 
the linear approximation will excessively penalize 
performance, potentially calculating a negative TSF 
level. The optimization process will force these 
restrictions to be binding and will force the TSF to be 
non-negative. Our assumption is that we are nearly 
every time operating in the greater performance 
region. In each of our test cases, we force the 
problem so that the performance expected in every 
period is higher than 50% via restriction (3.5). 

C. Solution algorithm 

Our model is defined with a limited number of call 
arrival patterns, and as a result can be expressed as a 
deterministic equivalent mixed integer program and 
being like that can be solved by an implicit 
enumeration (branch and bound) algorithm. 
Algorithms like branch and bound that ignore the 
special structure of a stochastic program, tend to 
become completely ineffective for large-range 
stochastic programs (Birge and Louveaux, 1997). A 
general approach for solving stochastic programs is to 
utilize the structure of the program across a 
decomposition algorithm (Birge and Louveaux, 1997). 
We realized a version of the L-Shaped decomposition 
algorithm adjusted for a discrete first stage. We break 
down the problem into a master problem where the 
staffing decision is done, and a series of subproblems 
where the TSF deficit is calculated for every scenario. 

Let v designate the major iterations of the 
algorithm. Also let Eikv and eikv designate the 
coefficients of the cut produced in iteration k. The key 
problem is then determined as 

min  ∑ 𝑐𝑗𝑥𝑗 + Ɵ𝑣
𝑗Є𝐽                                                       (3.8)                                                                                                                 

subject to Ɵv  ≥  ∑ 𝑝𝑘𝐸𝑖𝑘
𝑣 ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑒𝑖𝑘

𝑣
𝑗Є𝐽𝑘Є𝐾         

Ɐi Є I,v,                                                                        (3.9)                                                                      

 ∑ 𝑎𝑖𝑗𝑥𝑗𝑗Є𝐽  ≥ µi            Ɐi Є I,                                      (3.10)                                                

xj ≤ dj                                   Ɐj Є J,                                      (3.11)                                                  

 xj Є Z+,    Ɵv Є R+      Ɐj Є J.                                      (3.12)   
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  In this problem, Ɵv represents an estimate of the 
TSF deficit penalty term. Let (xv ,Ɵv ) be an optimal 
solution. For each fulfillment of the random vector k = 
1,...,K, we then solve the following subproblem 

min       rSk                                                                   (3.13)                                                                                                                        

subject to  yik ≤ nik(𝑚𝑖𝑘ℎ ∑ 𝑎𝑖𝑗𝑥𝑗
𝑣 + 𝑏𝑖𝑘ℎ𝑗Є𝐽 )        

Ɐi Є I, k Є K, h Є H,                                                  (3.14) 

 ∑ 𝑛𝑖𝑘𝑆𝑘𝑖Є𝐼  ≥ ∑ (𝑔𝑛𝑖𝑘 − 𝑦𝑖𝑘)𝑖Є𝐼           k Є K,              (3.15)                                                            

yik ≤ nik                                  Ɐi Є I, k Є K,               (3.16)                                         

 xj Є Z+,  yik Є R+,  Sk Є R+     Ɐi Є I, k Є K, j Є J,    (3.17) 

                                          

We utilize the dual variables from the solution of 
the set of sub-problems to improve the approximation 
of the penalty term. Let π1ikh

v
 be the dual variables 

associated with (3.14), π2k
v
 the dual variables 

associated with (3.15), and π3ik
v
 the dual variables 

associated with (3.16). 

Then we calculate the following parameters utilized 
for cut generation: 

𝐸𝑖𝑘
𝑣+1 = ∑ ∑ 𝜋1𝑖𝑘ℎ

𝑣 𝑚𝑖𝑘ℎ ∑ 𝑎𝑖𝑗𝑥𝑗
𝑣

𝑗Є𝐽ℎЄ𝐻𝑖Є𝐼 , 

𝑒𝑘
𝑣+1 = ∑ [𝜋3𝑖𝑘

𝑣 𝑛𝑖𝑘 + ∑ 𝜋1𝑖𝑘ℎ
𝑣 𝑏𝑖𝑘ℎ𝑛𝑖𝑘ℎЄ𝐻 ]𝑖Є𝐼  - 𝜋2𝑘

𝑣𝑔 ∑ 𝑛𝑖𝑘𝑖Є𝐼  

We utilize these values to generate a restriction of 
the form (3.9). Set v = v + 1, add the restriction to the 
master program and iterate. The algorithm resolves 
the master program and then resolves every 
subprogram for the established staffing level 
determined in the master solution. Based on the 
solution of the subproblems, every iteration adds a 
single cut to the master problem. According to 
Geoffrion, 1970, these cuts generate an exterior 
linearization of the penalty function  

The solution of the master problem gives a lower 
bound on the optimal solution, in the time that the 
average of the subproblem solutions gives an upper 
bound (Birge and Louveaux, 1997). In our application, 
we resolve the LP relaxation of the master till an initial 
tolerance level on the optimality gap is obtained, and 
after that we reapply the integrality restrictions. We go 
on with the iteration between the master MIP and the 
subprogram LPs up till an ultimate tolerance gap is 
obtained. While the branch and bound approach 
resolves a single large MIP, the decomposition 
resolves a large number of relatively small LPs and a 
small number of moderately sized MIPs and MIP 
relaxations. A typical instance with 100 scenarios 
needed 30 major iterations, as a result requiring the 
solution of the key problem 30 times and of the 
subproblem 3000 times. The master was resolved as 
an LP relaxation 26 times and as a MIP four times. 
(The Fig. 10-8 in the supplementary material 
demonstrates the convergence of the L-Shaped 
decomposition algorithm for a specific instance with 
384 schedules and 100 scenarios.) 

Like is the case with a branch and bound 
algorithm, nearly good bounds are found in the first 
few iterations. Convergence after that slows as any 
successive iteration cuts a smaller area from the 
feasible region of (3.8)–(3.12). 

                                           

D. Post- optimization examination 

The solution to the classic path formulation of a 
stochastic program is an approximation of the solution 
to the true optimization problem where parameters are 
random variables (Mak et al., 1999). A well-developed 
theory exists for determining the quality of simple path 
approximations based on Monte Carlo sampling 
techniques (Mak et al., 1999; Birge and Louveaux, 
1997; Bayraksan and Morton, 2009). In this section, 
we describe a process by which we utilized this 
method to check the quality of the solution we achieve 
when evaluating against the sample of 25 arrival 
patterns. 

The solution of (3.1)–(3.7) is the optimal solution of 
the sample path problem. We designate the goal 
value of this solution as zn* , where n is the number of 
scenarios utilized to calculate the solution. This is a 
partial estimate of the solution to the true problem; 
which is, the problem evaluated against the 
continuous distribution of arrival rates. We designate 
the goal of the true solution as z*. Mak et al. (1999) 
demonstrate that the expected bias in the solution is 
becoming lower in sample size 

E[𝑧𝑛
∗ ] ≤ E[𝑧𝑛+1

∗ ] ≤ z
* 

From a useful perspective, a key decision is 
establishing the number of scenarios to use in our 
optimization. As we expand the number of scenarios, 
the solution becomes a better approximation of the 
real solution, but the computational cost of finding that 
solution becomes higher. 

To help in this process, we execute a post-
optimization evaluation of the candidate solution 
utilizing a Monte Carlo bounding process explained in 
Mak et al. (1999). Designate the solution to the 

sample problem as �̂� . Then we resolve the 
subprogram (3.13)–(3.17) using �̂�  as the candidate 
solution, to achieve the expected cost of implementing 
this solution. In this analysis, we resolve the 
subprogram with nu equal 500 scenarios produced 
independently from the scenarios utilized in the 
optimization. The solution to the subprogram gives us 

an upper bound on the true solution (�̅�(𝑛𝑢)), while the 

solution to the original problem, zn
*
, is a lower bound 

(�̅�(𝑛𝑙)). 

To achieve better bounds on the true optimal 
solution, we can choose to resolve the original 
problem multiple times, each with separately 
generated scenarios. Designate the number of 
batches (sets of scenarios) utilized to resolve the 
original problem as nl and the sample variance of the 
goal as sl(nl). Likewise, we calculated the model 
variance of the expected result of the candidate 
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solution versus the nu evaluation scenarios. We may 
then determine the following standard errors 

ɛ̃𝑢=
𝑡𝑛𝑢−1,𝛼𝑆𝑢(𝑛𝑢)

√𝑛𝑢
, 

ɛ̃𝑙=
𝑡𝑛𝑙−1,𝛼𝑆𝑙(𝑛𝑙)

√𝑛𝑙
, 

where 𝑡𝑛𝑢−1,𝛼  is a standard t-statistic, like P{Tn ≤ 

𝑡𝑛𝑢−1,𝛼} = 1-α. Now we can determine an approximate 

(1- 2α) confidence interval on the optimality gap as 

[0,[�̅�(𝑛𝑢) − �̅�(𝑛𝑙)]+ + ɛ̃𝑢 + ɛ̃𝑙]. 

Notice that we take the positive portion of the 
discrepancy between the upper and lower restrictions 
because it is possible, because of sampling error, that 
this variation is negative. This procedure permits us to 
create a statistical bound on the quality of our 
solution. (You can find a graphical analysis of the 
optimality gap in Figs. 10-13 and 10-14 in the 
additional material.) In an optimization problem with 
25 scenarios we obtained a gap of €50 on a schedule 
with a cost in exuberance of €11,000, a gap of less 
than 0.5%. According to this analysis, we concluded 
that resolving the stochastic program with 25 
scenarios would give near optimal solutions. In our 
test cases, we utilized 50 scenarios except if noted 
contrarily 

IV. COST AND SERVICE LEVEL COMPROMISE 

In our model we control the certainty with which 
the target service level is obtained by assigning a 
financial penalty to a service level deficit. By adjusting 
the performance penalty factor, r, we fix the favorite 
degree of certainty related with meeting the target. 
While the penalty rate r can be set based on the 
contractual penalty for not achieving the service level, 
there is an additional implicit cost related with the 
perception of poor quality. Saying it differently, 
managers generally want to guarantee a higher 
probability of obtaining the service level than involved 
by the explicit penalty rate. Now we analyze the 
relationship between the cost of service delivery, the 
penalty rate and the confidence related with the 
performance target, like the probability that the service 
level target is obtained. 

In a deterministic optimization approach to call 
center scheduling, we set a performance objective for 
some metric and after that find the minimal cost 
schedule that satisfies that restriction; like we 
implement the service level requirement as a hard 
restriction. In a stochastic setting, the call volume, and 
as a result the service level, is random, and the 

performance objective may only be expressed in 
probabilistic terms. Provided the nature of arrival 
variability, it is neither practical nor wanted to 
generate a schedule that will always obtain the 
service level objective as this schedule would be 
prohibitively expensive. As a result, we want to 
implement the service level requirement as a soft 
restriction. 

In Tables 4.1–4.3, we illustrate the result of an 
experiment figuring out the impact of different penalty 
rates. For every project, we check eight design points,  

each one with a various penalty rate. (We can find 
the same data demonstrated graphically in Fig. 10-9 
of the supplementary material.) 

The scope of this experiment is to establish the 
penalty rate that should be utilized for each project to 
obtain a wanted confidence of achieving the service 
level objective. In any case, we resolve the stochastic 
problem five times, every time with an independent 
amount of 50 scenarios. 

Then we evaluate each solution versus an 
independently generated set of 500 scenarios to 
forecast the expected outcome of implementing the 
candidate solution. The model is resolved with the 
restriction that all schedules are full-time (40 hours), 
utilizing schedule B determined in Table A.2. 

In each case, low penalties result in a zero 
confidence and an expected TSF near 60%. When the 
penalty rate gets higher, the expected TSF starts to 
increase as additional staffing is added to offset deficit 
penalties. Both factors increase quickly and then level 
off as it becomes increasingly expensive to reach the 
service levels in the tail of the arrival rate distribution. 
It is curious to note that each project needs a different 
penalty rate to obtain a desired confidence level. 
Project A that has the largest staff levels and a high 
degree of variability, needs penalty rates in the range 
of €200,000 (€2000 per percentage point deficit) to 
schedule with higher than 80% confidence. Project B, 
a smaller project with moderate variability, lands with 
penalty rates around 100,000. Project C, a stable 
project, balances with penalty rates at/or above 
75,000. The call center manager searches to reduce 
in minimum the cost of staffing, meanwhile 
maximizing the probability of achieving the objective 
service level. These two targets are obviously in 
conflict and the manager should decide how to 
balance cost and risk: a decision that is hidden in a 
deterministic optimization approach 

Table 4.1: Cost and service level compromises – Project A. 
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Table 4.2: Cost and service level tradeoffs – Project B. 

 
 

Table 4.3: Cost and service level tradeoffs – Project C 

. 

 

The managerial implications here are substantial. 
When making day-to-day staffing decisions managers 
have to consider how much risk of missing the service 
level goal they are going to tolerate. Contrarily, they 
also decide how much insurance to buy in the form of 
exuberance capacity. In most of the situations, 
managers have to make these decision based on 
instinct. Our model operationalizes this kind of 
decision by assigning a financial penalty to the 
possibility of not meeting the service level objective 

V. THE IMPACT OF VARIABILITY AND VALUE OF THE 

STOCHASTIC SOLUTION 

A. Overview 

The solution of the mean value program generates 
a partial estimate of the true cost of implementing the 
recommended solution. Resolving a stochastic 
program diminishes that partiality, and the partiality 
drops with the number of scenarios, tending to go to 
zero when the number of scenarios goes to infinity 
(Mak et al., 1999). The expected cost of implementing 
the stochastic solution is diminished versus the cost of 
implementing the mean value solution, or articulated 
in another way we may diminish the expected cost of 
operating the system by specifically considering 
variability in our optimization problem. This kind of 
reduction in cost is known as the Value of the 
Stochastic Solution (VSS). It is simply demonstrated 
that VSS is a zero or positive quantity (Birge and 
Louveaux 1997; Birge, 1982.). (The Fig. 10-11 in the 
supplementary material graphically describes the 
relationship of the distinct costs.) We calculate the 
VSS to define if there is benefit from resolving the 
stochastic version of the issue. During this section, we 
calculate the VSS to show that mean value solutions 
are optimistically biased, but not probable to obtain 
the desired service level, for any of our three projects. 

B. VSS and solution convergence 

In this section, we predict the bias and the VSS for 
the same three projects earlier examined for different 
scenario levels. At each scenario level, we produce 

five independent batches and resolve the program 
once for every batch. The expected outcome is 
identified by evaluating that solution against 500 
evaluation scenarios. In Table 5.1 we find the 
summarized results. 

In every case we identify considerable bias in the 
Mean Value Solution and find considerable value from 
implementing the stochastic solution. On the slightly 
variable project A, the stochastic program reduces the 
expected cost by 13%. On the more variable projects 
B and C, the stochastic solution reduces cost by over 
20%. Notice that the stochastic solution gives a higher 
confidence that the performance objective will be 
obtained. 

For every project filed in Table 5.1 the stochastic 
program reduces overall expected cost by increasing 
direct labor. It is somehow paradoxical that stochastic 
programs give better results by calculating worse 
target functions. However, the intuition is unequivocal; 
deterministic optimization programs take for granted 
away uncertainty and as a result do not sufficiently 
hedge for volatility; increasing staffing is added in 
periods with almost high volumes and high variability. 

We demonstrated in Section 3 that the average 
solution to the stochastic program gives a point 
estimate on the lower bound of the real optimal 
solution, in the time that the average expected 
outcome of the candidate solution makes a point 
estimate of the upper bound of the real optimal. (The 
fig. 10-12 in the additional material plots the point 
forecast of the upper and lower solution restrictions. 
The fig. 10-13 plots the 90% certainty interval on the 
magnitude of the optimality gap.) These charts 
demonstrate that the mean value problem presents 
important bias, but that even with a temperate number 
of scenarios, and several batches, we are able to 
produce moderately compact bounds on the true 
optimal value. 

The data suggests that resolving the problem with 
as few as 25 scenarios gives reasonably good results, 
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while a 50 or 100 scenario model provides us a tighter 
bound that can be useful when trying to make detailed 
comparisons between the choices. 

VI. COMPERATIVE ANALYSIS 

A. Introduction 

Throughout this article, we have examined a model 
that includes abandonment and arrival rate 

uncertainty. None of these conditions is involved in a 
lot of industry standard models. As observed in Gans 
et al. (2003), ‘‘general practice uses the M/M/N 
(Erlang C) queuing model to 

 

 

Table 5.1: Solution bias and VSS. 

 

predict the stationary system performance of short 
interval” p. 92. According to Fukunaga et al. (2002) is 
explained a commercial system used at over 800 call 
centers in which ‘‘agent requisites are calculated by 
practicing the well-known Erlang-C formula.” 
Additionally, common industry practice is making 
staffing decisions based on a time-by-time service 
level requirement, ‘‘each half hour interval’s estimated 
λi and µi give rise to a goal staffing level for the 
period.... determination of an optimal set of schedules 
may after that be explained as the resolution to an 
integer program” (Gans et al., 2003), p. 93. In Section 
5.2, we demonstrated that ignoring arrival rate 
uncertainty drives to verifiable more costly solutions, 
on a wonted cost basis, than models that consider 
variability. During this section, we analyze the 
stochastic Erlang A model to the generally applied 
mean value arrival rate Erlang C model. 

The common approach explained above creates a 
set of fixed staffing requirements in every period, and 
then pursues to find the lowest cost schedule to 
please these requirements. The integer program that 
results is a common weighted set covering problem 
that can be articulated as 

min            ∑ 𝑐𝑗𝑥𝑗𝑗Є𝐽  

subject to   ∑ 𝑎𝑖𝑗𝑥𝑗𝑗Є𝐽  ≥ bi,    Ɐi Є I, 

                   xij Є Z
+
, 

where cj is the cost of the schedule j, xj is the 
number of resources assigned to the jth schedule, and 
aij is the mapping of schedules to periods of time. 

B. Locally constrained Erlang C model 

We quote the standard approach as the locally 
constrained Erlang C model because it utilizes Erlang 
C to produce a hard restriction in every period as 
described in Gans et al. (2003). The general problem 
with this approach is the restriction generated by the 
per-period service level requirement, connected with 
the requirement to schedule resources in shifts. The 
maximum staffing level is set by the peak arrival 
period and, depending on the length of the arrival max 
and the length of the flexibility of the staffing model, a 
significant amount of exuberance capacity can be 
created in other periods because of shift restrictions. 
The magnitude of the exuberance capacity will be an 
element of the flexibility of the possible set of 
schedules. With more flexible staffing alternatives, the 
weighted set covering algorithm may match the 
requirement more approximately. 

To quantify the impact, we run a locally 
constrained Erlang C model for each of the three 
projects for each of the five schedule sets. 

The per-period restrictions are set so that the 
service level with the expected volumes is at least 
80% in every 30 minute period, this way ensuring the 
global SLA of 80% is reached. In Table 6.1, we 
compare the results of this analysis with the results 
produced from solving the stochastic program. We 
resolve every project for each of the five levels of 
staffing flexibility determined in Table A.2. 

The data confirms that the exuberance staffing is 
high for 5 x 8 staffing, but diminishes fast with more 
flexible scheduling alternatives. It also demonstrates 
that this is a more important problem for project A that 
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has a strong seasonality pattern, than for either 
Project B or C. The set covering approach has the 
tendency to overstaff the project and obtains expected 
service levels higher than those achieved in the 
stochastic model. 

Nevertheless, because the set covering model 
takes into consideration only the expected value and 
not the variance of arrivals, it is less efficient at 
hedging versus the stochastic model. Take into 
consideration the case of schedule D for project B. 
The deterministic model owns a wonted service level 
of 86.1%, against the target of 80%, but still has an 
expected penalty cost of €4820. On the other hand, 
the stochastic model has an expected service level of 
83.5%, 2.6% lower, but an expected penalty only a 
little higher at €4493. 

In each case, the stochastic model produces a 
lower direct labor cost and a lower expected cost of 
operation. The benefit of utilizing the stochastic model 
is most important when arrivals have a strong 
seasonal pattern, as in Project A, or when workforce 
flexibility is low. With 5 x 8 only staffing, the stochastic 
model provides at least 10.8% cut in operating costs. 

C. Globally constrained Erlang C model 

In the earlier section, we demonstrated that the 
stochastic model based on the Erlang A model gives 
lower cost solutions than the locally constrained 
Erlang C model discussed in the literature. Another 
approach is to utilize a deterministic Erlang C model, 
ignoring uncertainty and abandonment as in the 
earlier model, but optimizing to global against local 
restrictions. While this approach is not present in the 
literature for what we know, it is a natural 
simplification of the stochastic model we have 
examined until now. As the model is deterministic, it 
takes for granted arrival rates are known, and, it will, 
generally, be easier to resolve than the stochastic 
model. Ignoring abandonment will have the tendency 
to increase recommended staffing, but not considering 

uncertainty will tend to diminish staffing. It can be the 
case that under some circumstances these errors will 
erase each other out, and we can obtain good 
solutions at a lower computational cost. 

The method for formulating and resolving these 
problems is an unequivocal implementation of the 
model (3.1)–(3.7). We resolve a mean value version 
of the problem. The bigger change is that the 
coefficients for restrictions (3.3) and (3.5) are 
calculated based on the Erlang C model. We still need 
a minimum of two agents staffed at all times and a 
minimum service level at expected volume in every 
period of at least 50%. 

We resolve this version of the problem for each of 
the three projects and for each scheduling option. 
Because the model is deterministic, we do not need to 
resolve multiple batches. To judge the expected cost 
of implementing the solution, we go on with the 
evaluation of the resulting schedule against the 
stochastic Erlang A model. We take for granted that 
the Erlang A model with uncertain arrivals is the 
correct model and the goal of this analysis is to 
establish the error presented by using a Globally 
Constrained Erlang C model. The results of this 
analysis are demonstrated in Table 6.2. 

This analysis takes us to several interesting 
understandings. First of all, the stochastic model 
surpasses the global Erlang C model in all cases; in 
some cases this improvement is large and in others it 
is small. Knowing that the two models are scheduling 
to a global target, the difference is due to a better 
hedging strategy. In some cases the stochastic model 
schedules less hours, other times more. 

The second awareness is that the Mean Value 
Globally Constrained Erlang C model does much 
better than the Mean Value Globally Constrained 
Erlang A model, still under the hypothesis that the 
Erlang A model is correct. The GCEC model makes 
two simplifying 

 

Table 6.1: Comparing the stochastic and local Erlang C schedules. 
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Table 6.2: Comparing the stochastic and global Erlang C schedules. 

 

assumptions. First of all, it assumes away 
abandonment that causes the model to be 
overstaffed. The model also assumes away arrival 
rate uncertainty that takes us to understaffing. These 
two effects tend to compensate each other, indicating 
it cannot be reasonable to introduce abandonment 
unless arrival rate uncertainty is also taken into 
consideration. 

VII. CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we examined the problem of short 
term shift scheduling for call centers for which it is 
important to reach a service level commitment over an 
extended horizon. While the analysis focused 
completely on a TSF based SLA, the model could 
without difficulty be adapted to hold up other forms of 
an SLA; like the abandonment rate or the average 
speed to answer. The model was designed to identify 
the uncertainty in arrival rates and was formulated as 
a mixed-integer two-stage stochastic program. Even 
though difficult to resolve, we demonstrated the model 
is manageable and may be resolved in a moderate 
amount of time. We also demonstrated that 
uncertainty is greatly appropriate and that it has an 
actual impact on scheduling decisions in call centers. 

In Section 5.2, we demonstrated the VSS for this 
model is important; ranging from 12.3% to over 21%. 
The obvious association is that, for this model 
formulation, ignoring variability is a costly decision. 
Nevertheless, most models in practice ignore both 
uncertainty and abandonment. The implication is that 
one has not to introduce abandonment into the model 
without also considering uncertainty. In Section 6.2, 
we compared this model with the general practice of 
scheduling to a local Erlang C restriction; which is, 
scheduling based on a model that does not consider 
uncertainty and abandonment but requests the 
service level objective is obtained in each period. 
Comparing our model to this general practice, we 
again fou nd our model obtains lower cost 

results, ranging from 2.4% to 27%. The basic 
implication in this case is that the Erlang C model 
sometimes obtains good results, probably because 
the abandonment and uncertainty assumptions create 
counter balancing errors. Nevertheless, the stochastic 
model always obtains a better solution, and in a lot of 
practical cases the results are considerably better. 
This is especially true when the flexibility of the 
workforce is limited to full- or near-full-time shifts and 
the set covering approach presents abundant loose in 
the schedule. 

At the end, we compared this model to a Globally 
Constrained Erlang C model. This model provides 
better results as compared to the local constrained 
Erlang C, but still our stochastic model exceeds this 
model in each case, by as little as 1% but by as much 
as 16%. The general conclusion is that, compared to 
the alternative methods examined here, the stochastic 
model gives a lower cost of operation schedule, and 
sometimes this difference can be crucial. This is a 
basic property of stochastic programming generally, 
but in this analysis we have demonstrated that the 
difference is important in real world cases. 

Besides providing a lower solution of the cost, the 
model described in this paper addresses the 
scheduling problem from an essentially different 
perspective. The service level restriction is a hard 
restriction, in the standard set covering approach, it 
has to be satisfied and each candidate schedule 
either obtains the service level requirement or it does 
not. But, in reality, the service level is a random 
variable and we will obtain the SLA goal with some 
probability. Our analysis checks this certainly and 
addresses the compromise that managers have to 
make in terms of cost and the confidence of obtaining 
the service level. Our analysis demonstrates that the 
cost of operation grows nonlinearly with the desired 
confidence level. This compromise is confusing in the 
deterministic setting. 

In other future research, this model can be without 
difficulty expanded to utilize different queuing 
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assumptions, like, that relax the requirement for 
exponential service times. The compromise of solution 
precision and computational achievement is an area 
for future research, too, analyzing the impact of 
modifying the convergence parameters examined in 
Section 3.1. 

Appendix A. Algorithms and shift patterns 

See Figs. A.1–A.4 and Tables A.1 and A.2. 

1. Generate a call volumes for each day of 
the week using the mean and standard 
deviation specified for the day. 

2. For each time period in each day 
generate a random proportion of call 
volume based on the specified mean and 
standard deviation for the time period. 

3. Normalize the time period proportions so 
that they sum to 1 for each day. 

4. Calculate the per-period call volume by 
multiplying the daily total by the time 
period proportion. 

Fig. A.1. Simulated call generation algorithm. 

 

1. Generate a week of call volumes using the 
algorithm shown in Fig A.1 and calculate the 
associated per-period arrival rate. 

2. For a given call volume select h+1 probability 
levels for estimating points on the TSF curve. 
(In practice we use values of .3, .72, .9, .98, 
and .995 for all periods with call volumes of 
ate least 5. Different values are used for lower 

call volumes to maintain a concave 
approximation.) 

3. Calculate the staff level required to achieve 
the target probabilities defined in Step 2. 

4. Recalculate the TSF for the integral staffing 
level calculated in Step 3. We now have h+1 
staff level probability pairs on the TSF curve. 

5. Calculate the slope (mikh) and intercept (bikh) 
for each pair of adjacent points found in Step 
5. 

6. Generate a scenario that includes the per-
period call volumes (nik) and h pairs of slope 
and intercept parameters for each period in 
the planning horizon. 

Fig. A.2. Scenario based TSF approximation 
approach. 

 

1. Calculate the average volume in each 30 
minute period of the week. 

2. Using the volumes calculated in Step 1, 
determine the number of agents required to 
achieve the target service level in each 30 
minute period by performing a search. 

3. Set the period staffing requirement to the 
maximum of the number calculated in Step 2 
and the global minimal staffing requirement. 

4. Use the resulting vector of staffing 
requirements as the requirement parameter bi 
in the IP constraint (3.2). 

Fig. A.4. Local constraint generation 

Table A.1 Shift patterns. 

 

Table A.2 Scheduling patterns. 
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