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Abstract—Cryptocurrency (Bitcoin) eliminates 
the need for a trusted third party to process 
payments.  Zero-knowledge proof (ZKP) systems 
allow a Prover to convince a Verifier of the validity 
of a statement while revealing no additional 
information beyond the statement's validity. ZKP 
systems have applications as the building blocks 
in modern cryptography. They are considered to 
be very well suited to resource-limited systems. In 
this paper we suggest a ZKP protocol based on 
Graph Isomorphism Problem which is known to 
belong to the complexity class nondeterministic 
polynomial (NP). 
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I.  INTRODUCTION 

     European Commission [3] reported that “The 2012 
Eurobarometer poll on cyber security found that 38 % 
of EU internet users have changed their behavior 
because of these cybersecurity concerns: 18 % are 
less likely to buy goods online and 15 % are less likely 
to use online banking. It also shows that 74% of the 
respondents agreed that the risk of becoming a victim 
has increased, 12% have already experienced online 
fraud and 89% avoid disclosing personal information”. 
This produce a need for increasingly greater 
development of cryptographic science as its 
development has made possible secure 
communications and electronic payments over 
insecure channels like Internet.  
      The design of protocols is not difficult if a Third 

Trusted Part (TTP) is available. In this case case, all input 

information is given by both parties to it, and then the TTP 

distributes corresponding outputs to each party. For 

instance, the use of a credit card is a form of electronic 
cash which relies on a trusted third party, preventing 
overspending or double spending. But cryptocurrency 

(Bitcoin) eliminates the need for a trusted third party to 
process payments and establish a pure peer-to-peer 
decentralized currency. Every peer in the Bitcoin 
network keeps the collection of all transactions. 
Transactions must be made public but Bitcoin 
addresses can be created without any personal data 
from the owner. ZKP can be used also in smart cards, 

contract signing, secret exchange, certified mail, coin 

flipping and two-sided comparison protocols. 

      In this paper we present a new protocol that 
combines zero-knowledge proofs and key exchange 
methods to provide secure and authenticated 
communication.  
      Zero-knowledge proof (ZKP) systems have been 
introduced by Goldwasser, Micali and Rackoff [5] in 
1985. These protocols allow a Prover to convince a 
Verifier of the validity of a statement while revealing 
no additional information beyond the statement's 
validity. Different problems that are not known to be 
efficiently computable (such as the Graph 
Isomorphism, and Graph Non-Isomorphism problems) 
are shown to admit zero-knowledge proof systems 
[5],[6]. Since they were established, ZKP systems 
have applications as the building blocks in modern 
cryptography and in particular, in security protocols 
requiring authentication. During the authentication 
procedure, a Prover must respond to challenges 
issued by a Verifier over a number of accreditation 
rounds. The Prover must be able to answer all 
challenges successfully to prove his identity. Verifier's 
confidence in Prover's identity increases with every 
single round. In ZKP protocols, the Verifier cannot 
learn anything from the authentication procedure. 
Moreover, the Verifier is unable to cheat the Prover 
because he cannot calculate the Prover's secret. 
Furthermore, the Verifier cannot cheat the Prover 
because the protocol is repeated as long as the 
Verifier is not convinced. A challenge is selected at 
random, so the Verifier cannot pretend to be the 
Prover to a third party. For that reason, the 
computational overhead required for Prover to prove 
his identity is significantly less than that required for 
other ways of authentication without the need for a 
trusted third party such as that of RSA,  while still 
remaining very difficult for an intruder to cheat (due to 
being based upon NP problems). This is the main 
reason why ZKP systems are considered to be very 
well suited to resource-limited systems [1],[2], [16].  

II. PRELIMINARIES  

     In [7] some graph isomorphism problems are 
proved to be polynomial time equivalent: 

 Given two graphs with 𝑛 vertices each, 
decide whether they are isomorphic; 
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 Given two labelled graphs, decide 
whether they are isomorphic;  

 Given two graphs, decide whether they 
are isomorphic, and if so, construct an 
isomorphism from one to the other;  

 Given a graph, determine a generating 
set for the Automorphism Group; 

  Given a graph, determine the order of 
the Automorphism Group;  

 Given two graphs with 𝑛 vertices each, 
determine the number of isomorphisms 
from one to the other. 

     The graph isomorphism problem is known to 
belong to the complexity class nondeterministic 
polynomial (NP) time but not known to be solvable in 
polynomial time nor NP-complete for the general case 
(see [15]). The problems that are polynomial-time 
equivalent to graph isomorphism are called graph 
isomorphism complete [7]. At present it is not known a 
polynomial time algorithm for solving the graph 
isomorphism complete problem in the worst case - all 
known algorithms have exponential time complexity. 
Most of the works available in the literature have been 
focused on finding practical isomorphism testing 
algorithms that solve the general problem in 
polynomial time. As a result, algorithms such as the 
nauty package of Brendan McKay [9], [10], bliss of 
Tommi Juntilla and Petteri Kashi [8], saucy of Martin 
Kutz and Pascal Schweitzer [12], sinauto and conauto 
of Jose Luis Lopez Presa [14], Traces of Aldofo 
Piperno [13], nauty and Traces [11] Vsep of Stoicho 
Stoichev [17] have been developed. 
       

A. Graph Isomorphism and Graph 
Automorphisms 

For the definitions of graph isomorphism and graph 
automorphism we follow [7]. A simple, undirected 
graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 is a finite set of graph 
vertices, and 𝐸  is a (finite) set of unordered pairs 
(𝑣, 𝑤) , where 𝑣  and 𝑤  are distinct vertices. The 
elements of 𝐸 are called the edges of the graph. For a 
graph with 𝑛  vertices the vertex set 𝑉  is {1  ,…, 𝑛 }. 
When considering one-to-one maps from the vertex 
set of a graph 𝐺1 onto the vertex set of a graph 𝐺2, this 
convention allows us to understand as a permutation. 
Two vertices 𝑣  and 𝑤  of the graph 𝐺 =  (𝑉, 𝐸)  are 
adjacent if there is an edge (𝑣, 𝑤) in 𝐸.  

      Let 𝐺 =  (𝑉, 𝐸) be a graph, 𝑉 =  { 1 , … , 𝑛} and 𝑆𝑛 
be the symmetric group of 𝐺. A permutation 𝜋 ∈ 𝑆𝑛   is 
an automorphism of 𝐺  if 𝜋(𝑣), 𝜋(𝑤) is in 𝐸  whenever 
(𝑣, 𝑤)  is in 𝐸 . The set of all automorphisms of the 
graph 𝐺  is a permutation group, called the 
automorphism group, 𝐴𝑢𝑡(𝑋),  of the graph. If the 
automorphism group of a graph 𝐺 is the trivial group, 
then 𝐺 is said to be rigged. 

 Let 𝐺1  =  (𝑉1, 𝐸1)  and 𝐺2  =  (𝑉2, 𝐸2)   be two 
graphs. 𝐺1 is isomorphic to 𝐺2 if there exists a one-to-
one map 𝜄 from 𝑉1 onto 𝑉2 such that ( 𝜄 (v), 𝜄 (w)) is an 
edge of 𝐺2 whenever (𝑣, 𝑤) is an edge of 𝐺1.  

When 𝐺  and 𝐺1  are isomorphic graphs, then the 
number of isomorphisms from 𝐺 to 𝐺1 is equal to the 
order of 𝐴𝑢𝑡(𝐺). 

A graph is represented by its adjacency matrix. A 
graph with 𝑛  vertices, is represented by a matrix, 
where the entry is "1" if there is an edge linking the 
vertex 𝑖  to the vertex 𝑗  and is " 0 " otherwise. For 
undirected graphs, the adjacency matrix is symmetric 
around the diagonal.  

There are two main generalizations of the graph 
isomorphism: subgraph problem (given two graphs, 
determine if one of them is a subgraph to another) and 
largest common subgraph problem (given two graphs, 
determine the common subgraph to both that has the 
maximum number of vertices or edges). 

B. Vsep Algorithm for Computing Graph 
Isomorphism  

      S. Stoichev published a number of papers that 
describe the algorithms he created, i.e. algorithms 
Vsep, exact (Vsep-e) and heuristic (Vsep-h1, Vsep-
h2) for determining the generators, orbits and order of 
an undirected graph automorphism group (see [17]). 

 A basic tool of these algorithms is the adjacency 
refinement procedure that gives finer output partition 
on a given input partition of graph vertices. The 
refinement procedure is a simple iterative algorithm 
based on the criterion of relative degree of a vertex 
toward a basic cell in the partition. In the proposed 
algorithms is used a search tree (ST) in which each 
node is a partition. A non-singleton cell with maximum 
partitioning ability is selected in this partition. The 
partition of a given node of the tree is obtained from 
the parent-node partition by setting in a separate cell a 
vertex in the selected cell. This process is called 
individualization. For this vertex is determined that it is 
not similar to a previous vertex in the cell till the 
moment of the selection. Then the process of a 
refinement starts. These processes of individualization 
and refinement (denoted as IR) continue until a 
discrete partition is obtained. Then, a move back to the 
parent-partition follows. A move back takes place also 
after the whole selected cell of a given selection level 
has been traversed. That way a tower of finer 
partitions on every path of the search tree is obtained. 
The initial partition that is a result of a refinement of the 
input partition is at the top of the tower (root of the 
tree). The algorithm stops when the whole selected 
cell of the root of the tree has been traversed. All 
nonequivalent discreet partitions derivative of the 
selected vertices, called by the author “bouquet” are 
stored in a coded form in a hash table in order to 
reduce the necessary storage. The codes of two 
partitions are compared (instead of comparing the 
partitions) and if they are equal, then the partitions are 
compared to determine if they form an authomorphism. 
A disadvantage of the exact algorithm Vsep-e as it is 
noted in [17] is its higher requirements for memory, for 
instance in some worst cases several millions of 
numbers are stored. The worst cases for the algorithm 

Vsep-e are the graphs with smaller order |𝐴𝑢𝑡(𝐺)|, 
especially the rigid graphs. The heuristic algorithms 
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Vsep-h1, Vsep-h2 are extremely fast (with some 
exceptions) compared with the exact one and are 
“almost exact”. Their requirements for memory are 
very small. 

III.  SUGGESTED  PROTOCOL 

Zero Knowledge Proof Protocol Based on Graph 
Isomorphism Problem is as follows:     
      Given two isomorphic graphs 𝐺1 and 𝐺2 such that 
𝐺2 =  𝜄(𝐺1), i.e. graphs 𝐺1 and 𝐺2  are public key and 

isomorphism 𝜄 is a secret key.  
1. Prover randomly selects 𝑎 ∈{0,1}, i.e. tosses a 

coin. 

2. Prover chooses a random permutation 𝜇 and 
generates new graph 𝐺3 =  𝜇(𝐺𝑎). 

3. Prover sends the adjacency matrix of graph 
𝐺3 to the Verifier. 

4. Verifier sends 𝑏 ∈{0,1},  to the Prover and 
challenges for 𝜆 which maps 𝐺3 to 𝐺𝑏. 

5.  If 𝑎 =  𝑏 , the Prover sends 𝜆 = 𝜇−1  to the 
Verifier. 

6.  If 𝑎 =  0  and 𝑏 =  1,  the Prover sends 
𝜆 = 𝜇−1 ∙ 𝜄   to the Verifier. 

7.  If 𝑎 =  1  and 𝑏 =  0,  the Prover sends 

𝜆 = 𝜇−1 ∙ 𝜄−1 to the Verifier. 

8. Verifier checks if 𝜆(𝐺3)= 𝐺𝑏 and grants access 
to the Prover accordingly. 
 

     Several rounds of these interactions are needed 
for the Verifier to be completely convinced of the 
Prover’s identity, since the Prover can be lucky and 
guess the value of 𝑏  before sending 𝐺3.  As is well 

known, the probability that this happens is  
1

2𝑛 , with 𝑛 

being the number of rounds. Therefore, with several 
rounds, this probability is considerably low, and the 
level of confidence that the Verifier will gain about the 

identity of the Prover is  1 −
1

2𝑛 . Of course, the 

presented protocol needs to satisfy the following 
properties: soundness, completeness and zero-
knowledge 

IV. GRAPHS THAT ARE APPROPRIATE FOR 

IMPLEMENTATION OF THE ZKP PROTOCOLS UGGESTED  

PROTOCOL 

Before the actual implementation of the graph 
isomorphism based ZKP protocol, there are  several 
important  questions that one could ask. Even though 
the graph isomorphism problem is not known to be 
solvable in polynomial time for the general case, there 
are different types of graphs for which polynomial 
algorithms exist. Therefore, a question that one might 
ask is: what types of graphs are appropriate for the 
implementation of the ZKP protocols. There are some 
problems to be solved in this direction. Since the 
graphs 𝐺1 and 𝐺2 constitute the public keys, which all 
the parties involved in the interactions must have, 
envisage the case where the Verifier or any other 
party possess a powerful algorithm such as Vsep. 
Then he will in considerable low time (depending on 
the graph) to obtain the secret permutation 𝜇  which 

has been use to generate 𝐺2. Knowing the secret 𝜇 

will allow him to impersonate the Prover to the Verifier 
or to a third party. Another problem to be considered 
deals with the interception of graph 𝐺3.  
       Taking into account the foregoing problems, it is 
clear how important is to find graphs that are very 
complex for the isomorphism problem. Since (see 
[17]), Vsep is one of the fastest available algorithms, 
we need to find the graphs that are hard for  Vsep. Of 
course, it is good such graphs to be hard for other 
known and available algorithms as well. The search 
for “hard” graphs is not easy (see for instance [4] and 
[12]). It is well known that some graphs must not be 
used to ZKP protocols based on graph isomorphism 
problem. These are trees, random graphs, planar 
graphs, graphs with bounded eigenvalue multiplicity, 
and graphs with bounded genus, permutation graphs 
and convex graphs ([12]). On the other hand, the 
currently known hard instances for canonical labeling 

algorithms are (see [13]):  Projective Planes; 

Random Regular Graphs; Strongly Regular 

Graphs; Grid Graphs; Hadamard Matrix Graphs; 

Miyazaki Graphs.  
     As it is reported in [17] for Vsep-e “hard” graphs 

are those with small order |𝐴𝑢𝑡(𝐺)|,  especially the 
rigid graphs. For instance, the search tree for A50  
rigid graph (benchmark graph from [11])  given by 
Vsep-e algorithm  is shown in Fig.1 [17]: 
 

 
             
 
               Fig.1. Search tree for a rigid graph A50 

 
 
     Our suggestion is to use these “hard” types of 
graphs for the implementation of the ZKP protocols 
based on graph isomorphism. Because the heuristic 
algorithms (like Vsep-h1, Vsep-h2) are very fast, 
another approach is to build the ZKP protocol is to 
limit the time of the Prover to provide the answers to 
the challenges of the Verifier.   

V. CONCLUSION 

     In this paper we have presented the graph 
isomorphism based ZKP protocol. We suggested the 
Vsep algorithm for establishing the graph 
isomorphism. We considered some of the known hard 
graphs for the graph isomorphism problem and 
recommended the types of graphs that are suitable for 
the suggested protocol. As the future work, we want to  
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compare implementation of different algorithms for 
each types of hard graphs and find the most suitable 
one. 
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