
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351827 5747

Zero Knowledge Proof Protocol Based on
Graph Isomorphism Problem

Mariana Durcheva

 Department of Applied Mathematics and Informatics
Technical University of Sofia

Sofia, Bulgaria
E-mail: m_durcheva@tu-sofia.bg

Abstract—Cryptocurrency (Bitcoin) eliminates
the need for a trusted third party to process
payments. Zero-knowledge proof (ZKP) systems
allow a Prover to convince a Verifier of the validity
of a statement while revealing no additional
information beyond the statement's validity. ZKP
systems have applications as the building blocks
in modern cryptography. They are considered to
be very well suited to resource-limited systems. In
this paper we suggest a ZKP protocol based on
Graph Isomorphism Problem which is known to
belong to the complexity class nondeterministic
polynomial (NP).

Keywords—ZKP protocol; Graph Isomorphism
Problem.

I. INTRODUCTION

 European Commission [3] reported that “The 2012
Eurobarometer poll on cyber security found that 38 %
of EU internet users have changed their behavior
because of these cybersecurity concerns: 18 % are
less likely to buy goods online and 15 % are less likely
to use online banking. It also shows that 74% of the
respondents agreed that the risk of becoming a victim
has increased, 12% have already experienced online
fraud and 89% avoid disclosing personal information”.
This produce a need for increasingly greater
development of cryptographic science as its
development has made possible secure
communications and electronic payments over
insecure channels like Internet.
 The design of protocols is not difficult if a Third

Trusted Part (TTP) is available. In this case case, all input

information is given by both parties to it, and then the TTP

distributes corresponding outputs to each party. For

instance, the use of a credit card is a form of electronic
cash which relies on a trusted third party, preventing
overspending or double spending. But cryptocurrency

(Bitcoin) eliminates the need for a trusted third party to
process payments and establish a pure peer-to-peer
decentralized currency. Every peer in the Bitcoin
network keeps the collection of all transactions.
Transactions must be made public but Bitcoin
addresses can be created without any personal data
from the owner. ZKP can be used also in smart cards,

contract signing, secret exchange, certified mail, coin

flipping and two-sided comparison protocols.

 In this paper we present a new protocol that
combines zero-knowledge proofs and key exchange
methods to provide secure and authenticated
communication.
 Zero-knowledge proof (ZKP) systems have been
introduced by Goldwasser, Micali and Rackoff [5] in
1985. These protocols allow a Prover to convince a
Verifier of the validity of a statement while revealing
no additional information beyond the statement's
validity. Different problems that are not known to be
efficiently computable (such as the Graph
Isomorphism, and Graph Non-Isomorphism problems)
are shown to admit zero-knowledge proof systems
[5],[6]. Since they were established, ZKP systems
have applications as the building blocks in modern
cryptography and in particular, in security protocols
requiring authentication. During the authentication
procedure, a Prover must respond to challenges
issued by a Verifier over a number of accreditation
rounds. The Prover must be able to answer all
challenges successfully to prove his identity. Verifier's
confidence in Prover's identity increases with every
single round. In ZKP protocols, the Verifier cannot
learn anything from the authentication procedure.
Moreover, the Verifier is unable to cheat the Prover
because he cannot calculate the Prover's secret.
Furthermore, the Verifier cannot cheat the Prover
because the protocol is repeated as long as the
Verifier is not convinced. A challenge is selected at
random, so the Verifier cannot pretend to be the
Prover to a third party. For that reason, the
computational overhead required for Prover to prove
his identity is significantly less than that required for
other ways of authentication without the need for a
trusted third party such as that of RSA, while still
remaining very difficult for an intruder to cheat (due to
being based upon NP problems). This is the main
reason why ZKP systems are considered to be very
well suited to resource-limited systems [1],[2], [16].

II. PRELIMINARIES

 In [7] some graph isomorphism problems are
proved to be polynomial time equivalent:

 Given two graphs with 𝑛 vertices each,
decide whether they are isomorphic;

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351827 5748

 Given two labelled graphs, decide
whether they are isomorphic;

 Given two graphs, decide whether they
are isomorphic, and if so, construct an
isomorphism from one to the other;

 Given a graph, determine a generating
set for the Automorphism Group;

 Given a graph, determine the order of
the Automorphism Group;

 Given two graphs with 𝑛 vertices each,
determine the number of isomorphisms
from one to the other.

 The graph isomorphism problem is known to
belong to the complexity class nondeterministic
polynomial (NP) time but not known to be solvable in
polynomial time nor NP-complete for the general case
(see [15]). The problems that are polynomial-time
equivalent to graph isomorphism are called graph
isomorphism complete [7]. At present it is not known a
polynomial time algorithm for solving the graph
isomorphism complete problem in the worst case - all
known algorithms have exponential time complexity.
Most of the works available in the literature have been
focused on finding practical isomorphism testing
algorithms that solve the general problem in
polynomial time. As a result, algorithms such as the
nauty package of Brendan McKay [9], [10], bliss of
Tommi Juntilla and Petteri Kashi [8], saucy of Martin
Kutz and Pascal Schweitzer [12], sinauto and conauto
of Jose Luis Lopez Presa [14], Traces of Aldofo
Piperno [13], nauty and Traces [11] Vsep of Stoicho
Stoichev [17] have been developed.

A. Graph Isomorphism and Graph
Automorphisms

For the definitions of graph isomorphism and graph
automorphism we follow [7]. A simple, undirected
graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 is a finite set of graph
vertices, and 𝐸 is a (finite) set of unordered pairs
(𝑣, 𝑤) , where 𝑣 and 𝑤 are distinct vertices. The
elements of 𝐸 are called the edges of the graph. For a
graph with 𝑛 vertices the vertex set 𝑉 is {1 ,…, 𝑛 }.
When considering one-to-one maps from the vertex
set of a graph 𝐺1 onto the vertex set of a graph 𝐺2, this
convention allows us to understand as a permutation.
Two vertices 𝑣 and 𝑤 of the graph 𝐺 = (𝑉, 𝐸) are
adjacent if there is an edge (𝑣, 𝑤) in 𝐸.

 Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑉 = { 1 , … , 𝑛} and 𝑆𝑛
be the symmetric group of 𝐺. A permutation 𝜋 ∈ 𝑆𝑛 is
an automorphism of 𝐺 if 𝜋(𝑣), 𝜋(𝑤) is in 𝐸 whenever
(𝑣, 𝑤) is in 𝐸 . The set of all automorphisms of the
graph 𝐺 is a permutation group, called the
automorphism group, 𝐴𝑢𝑡(𝑋), of the graph. If the
automorphism group of a graph 𝐺 is the trivial group,
then 𝐺 is said to be rigged.

 Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two
graphs. 𝐺1 is isomorphic to 𝐺2 if there exists a one-to-
one map 𝜄 from 𝑉1 onto 𝑉2 such that (𝜄 (v), 𝜄 (w)) is an
edge of 𝐺2 whenever (𝑣, 𝑤) is an edge of 𝐺1.

When 𝐺 and 𝐺1 are isomorphic graphs, then the
number of isomorphisms from 𝐺 to 𝐺1 is equal to the
order of 𝐴𝑢𝑡(𝐺).

A graph is represented by its adjacency matrix. A
graph with 𝑛 vertices, is represented by a matrix,
where the entry is "1" if there is an edge linking the
vertex 𝑖 to the vertex 𝑗 and is " 0 " otherwise. For
undirected graphs, the adjacency matrix is symmetric
around the diagonal.

There are two main generalizations of the graph
isomorphism: subgraph problem (given two graphs,
determine if one of them is a subgraph to another) and
largest common subgraph problem (given two graphs,
determine the common subgraph to both that has the
maximum number of vertices or edges).

B. Vsep Algorithm for Computing Graph
Isomorphism

 S. Stoichev published a number of papers that
describe the algorithms he created, i.e. algorithms
Vsep, exact (Vsep-e) and heuristic (Vsep-h1, Vsep-
h2) for determining the generators, orbits and order of
an undirected graph automorphism group (see [17]).

 A basic tool of these algorithms is the adjacency
refinement procedure that gives finer output partition
on a given input partition of graph vertices. The
refinement procedure is a simple iterative algorithm
based on the criterion of relative degree of a vertex
toward a basic cell in the partition. In the proposed
algorithms is used a search tree (ST) in which each
node is a partition. A non-singleton cell with maximum
partitioning ability is selected in this partition. The
partition of a given node of the tree is obtained from
the parent-node partition by setting in a separate cell a
vertex in the selected cell. This process is called
individualization. For this vertex is determined that it is
not similar to a previous vertex in the cell till the
moment of the selection. Then the process of a
refinement starts. These processes of individualization
and refinement (denoted as IR) continue until a
discrete partition is obtained. Then, a move back to the
parent-partition follows. A move back takes place also
after the whole selected cell of a given selection level
has been traversed. That way a tower of finer
partitions on every path of the search tree is obtained.
The initial partition that is a result of a refinement of the
input partition is at the top of the tower (root of the
tree). The algorithm stops when the whole selected
cell of the root of the tree has been traversed. All
nonequivalent discreet partitions derivative of the
selected vertices, called by the author “bouquet” are
stored in a coded form in a hash table in order to
reduce the necessary storage. The codes of two
partitions are compared (instead of comparing the
partitions) and if they are equal, then the partitions are
compared to determine if they form an authomorphism.
A disadvantage of the exact algorithm Vsep-e as it is
noted in [17] is its higher requirements for memory, for
instance in some worst cases several millions of
numbers are stored. The worst cases for the algorithm

Vsep-e are the graphs with smaller order |𝐴𝑢𝑡(𝐺)|,
especially the rigid graphs. The heuristic algorithms

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351827 5749

Vsep-h1, Vsep-h2 are extremely fast (with some
exceptions) compared with the exact one and are
“almost exact”. Their requirements for memory are
very small.

III. SUGGESTED PROTOCOL

Zero Knowledge Proof Protocol Based on Graph
Isomorphism Problem is as follows:
 Given two isomorphic graphs 𝐺1 and 𝐺2 such that
𝐺2 = 𝜄(𝐺1), i.e. graphs 𝐺1 and 𝐺2 are public key and

isomorphism 𝜄 is a secret key.
1. Prover randomly selects 𝑎 ∈{0,1}, i.e. tosses a

coin.

2. Prover chooses a random permutation 𝜇 and
generates new graph 𝐺3 = 𝜇(𝐺𝑎).

3. Prover sends the adjacency matrix of graph
𝐺3 to the Verifier.

4. Verifier sends 𝑏 ∈{0,1}, to the Prover and
challenges for 𝜆 which maps 𝐺3 to 𝐺𝑏.

5. If 𝑎 = 𝑏 , the Prover sends 𝜆 = 𝜇−1 to the
Verifier.

6. If 𝑎 = 0 and 𝑏 = 1, the Prover sends
𝜆 = 𝜇−1 ∙ 𝜄 to the Verifier.

7. If 𝑎 = 1 and 𝑏 = 0, the Prover sends

𝜆 = 𝜇−1 ∙ 𝜄−1 to the Verifier.

8. Verifier checks if 𝜆(𝐺3)= 𝐺𝑏 and grants access
to the Prover accordingly.

 Several rounds of these interactions are needed
for the Verifier to be completely convinced of the
Prover’s identity, since the Prover can be lucky and
guess the value of 𝑏 before sending 𝐺3. As is well

known, the probability that this happens is
1

2𝑛 , with 𝑛

being the number of rounds. Therefore, with several
rounds, this probability is considerably low, and the
level of confidence that the Verifier will gain about the

identity of the Prover is 1 −
1

2𝑛 . Of course, the

presented protocol needs to satisfy the following
properties: soundness, completeness and zero-
knowledge

IV. GRAPHS THAT ARE APPROPRIATE FOR

IMPLEMENTATION OF THE ZKP PROTOCOLS UGGESTED

PROTOCOL

Before the actual implementation of the graph
isomorphism based ZKP protocol, there are several
important questions that one could ask. Even though
the graph isomorphism problem is not known to be
solvable in polynomial time for the general case, there
are different types of graphs for which polynomial
algorithms exist. Therefore, a question that one might
ask is: what types of graphs are appropriate for the
implementation of the ZKP protocols. There are some
problems to be solved in this direction. Since the
graphs 𝐺1 and 𝐺2 constitute the public keys, which all
the parties involved in the interactions must have,
envisage the case where the Verifier or any other
party possess a powerful algorithm such as Vsep.
Then he will in considerable low time (depending on
the graph) to obtain the secret permutation 𝜇 which

has been use to generate 𝐺2. Knowing the secret 𝜇

will allow him to impersonate the Prover to the Verifier
or to a third party. Another problem to be considered
deals with the interception of graph 𝐺3.
 Taking into account the foregoing problems, it is
clear how important is to find graphs that are very
complex for the isomorphism problem. Since (see
[17]), Vsep is one of the fastest available algorithms,
we need to find the graphs that are hard for Vsep. Of
course, it is good such graphs to be hard for other
known and available algorithms as well. The search
for “hard” graphs is not easy (see for instance [4] and
[12]). It is well known that some graphs must not be
used to ZKP protocols based on graph isomorphism
problem. These are trees, random graphs, planar
graphs, graphs with bounded eigenvalue multiplicity,
and graphs with bounded genus, permutation graphs
and convex graphs ([12]). On the other hand, the
currently known hard instances for canonical labeling

algorithms are (see [13]): Projective Planes;

Random Regular Graphs; Strongly Regular

Graphs; Grid Graphs; Hadamard Matrix Graphs;

Miyazaki Graphs.
 As it is reported in [17] for Vsep-e “hard” graphs

are those with small order |𝐴𝑢𝑡(𝐺)|, especially the
rigid graphs. For instance, the search tree for A50
rigid graph (benchmark graph from [11]) given by
Vsep-e algorithm is shown in Fig.1 [17]:

 Fig.1. Search tree for a rigid graph A50

 Our suggestion is to use these “hard” types of
graphs for the implementation of the ZKP protocols
based on graph isomorphism. Because the heuristic
algorithms (like Vsep-h1, Vsep-h2) are very fast,
another approach is to build the ZKP protocol is to
limit the time of the Prover to provide the answers to
the challenges of the Verifier.

V. CONCLUSION

 In this paper we have presented the graph
isomorphism based ZKP protocol. We suggested the
Vsep algorithm for establishing the graph
isomorphism. We considered some of the known hard
graphs for the graph isomorphism problem and
recommended the types of graphs that are suitable for
the suggested protocol. As the future work, we want to

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 3 Issue 10, October - 2016

www.jmest.org

JMESTN42351827 5750

compare implementation of different algorithms for
each types of hard graphs and find the most suitable
one.

REFERENCES

 [1] H. Aronsson, “Zero Knowledge
Protocols and Small Systems”, Department of
Computer Science, Helsinki University of Technology
(1995).

 [2] T. Beth, "Efficient zero-knowledge
identification scheme for smart cards." Advances in
Cryptology—EUROCRYPT’88. Springer Berlin
Heidelberg, 1988.

 [3] European Commission, “EU Cybersecurity plan
to protect open internet and online freedom and
opportunity”, Brussels, 7 February 2013.

 [4] S. Fortin, “The graph isomorphism problem,”
Technical Report TR 96-20, July 1996.

 [5] S. Goldwasser, S. Micali and C. Rackoff, “The
knowledge complexity of interactive proof systems” ,
in Proc. of STOC 1985, pp. 291-304.

 [6] S. Goldwasser and S. Micali,” Probabilistic

Encryprion”, JCSS Vol. 28. No. 2. April 1984.

 [7] C. Hoffmann, “Group-Theoretic Algorithms and
Graph Isomorphism”,Springer-Verlag, New York 1982.

 [8] T. Junttila and P. Kaski, “Engineering an
efficient canonical labeling tool for large and sparse
graphs,” in Proc. of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX07), SIAM,
2007.

 [9] B. D. McKay, “Practical graph isomorphism,”
Congressus Numerantium, vol. 30, pp. 45-87, 1981.

 [10] B. D. McKay, “nauty User’s Guide (Version
2.2)” Computer Science Department, Australian
National University, 2002.

 [11] B.D. McKay and A. Piperno, Practical Graph
Isomorphism, II, Journal of Symbolic Computation, 60
(2014), pp. 94-112.

 [12] M. Kutz and Pascal Schweitzer, “ScrewBox: a
randomized certifying graph-non-isomorphism
algorithm”, ALENEX 2007.
 [13] A. Piperno, “Search space contraction in
canonical labeling of graphs,” CoRR abs/0804.4881,
2008.
 [14] J. Presa, “Efficient algorithms for graph
isomorphism testing”, Doctoral Thesis, Madrid 2009.

 [15] U. Schöning, “Graph isomorphism is in the low
hierarchy,” in Proc. of the 4th Annual Symposium on
Theoretical Aspects of Computer Science, pp. 114–
124, 1987.

 [16] M. Schukat and P. Flood, “Zero-Knowledge
Proofs in M2M Communication”, 2014 China-Ireland
International Conference on Information and
Communications Technologies (ISSC 2014/CIICT

2014). 25th IET, Limerick, 2014, pp. 269-273.

 [17] S. D. Stoichev, Vsep –New Heuristic and
Exact Algorithms for Graph Automorphism Group
Computation, arXiv:1007.1726.

http://www.jmest.org/
https://arxiv.org/abs/1007.1726

