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Abstract— A hybrid photonic crystal fiber (HyPCF) is 
numerically investigated for the purpose of 
compensating residual chromatic dispersion, which may 
be used in a wavelength-division-multiplexing optical 
fiber transmission system, in the wavelength range of 
1250-2000 nm. The designed fiber exhibits average 
negative dispersion of ‒110.21 ps/nm/km with an 
absolute dispersion variation of 1.49 ps/nm/km over 750 
nm bandwidth. The guiding characteristics are 
investigated using an efficient finite element method with 
perfectly matched layers.  
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A.  Introduction 
Photonic Crystal Fibers (PCFs) [1] consist of 

microstructure air-holes around a solid un-doped core 
in which light is guided by total internal reflection. The 
properties like dispersion, birefringence, confinement 
loss, nonlinearity etc. of PCFs can be controlled by 
tailoring the geometrical structure of cladding & core. 
Among the properties of PCF, chromatic dispersion is 
the most important one for fiber optic communication 
application. Long-haul transmission systems require 
single mode optical fibers (SMFs) with nonzero 
chromatic dispersion to avoid nonlinear interactions like 
crosstalk and information loss [2]. The SMFs have 
anomalous dispersion from 10 to 20 ps/nm/km. So, this 
anomalous dispersion is needed to be suppressed and 
can be done by including a dispersion-compensating 
fiber (DCF) of short length with a large negative 
dispersion in the optical link [3]-[5]. This dispersion 
compensating technique has been studied by many 
research groups and several papers have been 
published on this topic. A flat negative dispersion 
coefficient of about −98.3 ps/nm/km with absolute 
dispersion variation (ΔD) of 1.1 ps/nm/km was 
proposed over S + C+ L wavelength band in [6]. A PCF 
which exhibits ultraflattened negative dispersion over S 
+ C + L + U wavelength bands and average dispersion 
of about −179 ps/nm/km with an absolute dispersion 
variation of 2.1 ps/nm/km was proposed in [3]. The 

design shown in [4] describes flat negative dispersion 
of ‒212 ps/nm/km with a flat variation of 11 ps/nm/km 
over E + S + C + L + U wavelength bands in which the 
core is Ge-doped. Recently, a Negative dispersion 
coefficient of ‒227 ps/nm/km with absolute dispersion 
variation of about 8.6 ps/nm/km has been obtained 
over E + S + C + L + U bands using equiangular spiral 
photonic crystal fiber styles are shown in [5]. The 
improvement of this work was described in [7] with 
negative dispersion of ‒393 ps/nm/km with a variation 
of 10.4 ps/nm/km. More recently, a photonic crystal 
fiber in photonic crystal fiber has been proposed which 
ensure highest average negative dispersion to date 
having average dispersion of –457.4 ps/nm/km over E 
+ S + C + L + U wavelength bands [8]. All the designs 
mentioned above have obtained dispersion profile 
within the wavelength range from 1360 nm to 1690 nm. 
Again, the minimum variation of dispersion of the 
reported designs is about 2.1 ps/nm/km. The designs 
of [4,5,7,8] have complex structures and are very 
difficult to fabricate using conventional stake-and-draw 
method. 

In this paper, a hybrid photonic crystal fiber is 
proposed that exhibits average negative dispersion of 
‒110.21 ps/nm/km with dispersion variation of only 
1.49 ps/nm/km. The dispersion profile is achieved in 
the broad wavelength range of 1260-2000 nm which is 
much broader than the previous designs. The proposed 
geometry is much simpler and can be fabricated easily 
using conventional stake-and-draw method.  

B. HyPCF design 
The cross sectional view of the proposed residual 

dispersion compensating fiber (RDCF) with optimized 
air-hole diameters d1, d2, d3 pitch Λ is shown in Fig. 1. 
The designed structure is a combination of four 
hexagonal inner rings and three octagonal outer rings. 
The proposed design is similar to [9] but modified 
cladding leads to a very distinct dispersion 
characteristics. The hexagonal structure is best for 
dispersion controlling and octagonal structure is well 
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known for confinement loss controlling [10]. As the 
octagonal structure has isosceles triangular lattices, it 
has more air-hole rings in the cladding region in 
contrast to hexagonal PCF (H-PCF). This results in a 
higher air-filling ratio and a lower refractive index 
around the core, thus providing strong confinement 
ability and low confinement losses. The diameters of 
the hexagonal rings have been tailored very carefully to 
obtain large negative dispersion with a very small 
variation in the wavelength range of 750 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 (a) Cross-section of the proposed HyPCF, and (b) Illustration 
of the structure parameters. 

C. Numerical results 
A commercial full-vector finite element software 

(COMSOL) was used for both modal and loss analyses 
of the proposed design. Chromatic dispersion is the 
combination of material dispersion and waveguide 
dispersion. A sellmeier equation was introduced to 
evaluate the material dispersion of silica. The total 
dispersion caused by the combined effect of material 
and waveguide dispersion is calculated by the following 
formula 
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Where λ is the wavelength, c is the velocity of light, 
Re(neff) is the real part of the effective mode index. The 
wavelength dependence of chromatic dispersion 
properties of the proposed structure is shown in Fig. 2. 
This Figure exhibits an average chromatic dispersion of 
‒110.21 ps/nm/km with a dispersion variation of 1.49 
ps/nm/km in the wavelength range of 1250-2000 nm for 
the optimum design parameters: Λ = 0.90 µm, d1/Λ = 
0.38, d2/Λ = 0.52, d3/Λ = 0.60. The comparison among 
the dispersion properties of the proposed structure and 
previous works are shown in Fig. 3. The average 
negative dispersion of our structure is not so large but 
we have achieved flatness in a very long wavelength 
range of 750 nm. Again dispersion variation (ΔD) of our 
work is the smallest of all and it is only 1.49 ps/nm/km. 
It is known that up to ±2% change in air-hole diameter 
can occur unintentionally during fabrication [11]. To 
ensure feasibility of the design, these variations in the 
air-hole diameter should not affect the average 

dispersion and dispersion variation much. The 

tolerance analysis has been performed carefully by 
changing one parameter at a time while other optimum 
parameters remained fixed. 
 
We consider only first three air-hole rings to justify 
dispersion sensitivity because it has already been 
proved by some reports that the outer ring dimension 
has insignificant effect on fiber dispersion [12].  

 
 

 

 

 

 

 
 
 
 
Fig. 2 Flattened negative dispersion at optimum design parameters. 
 

 

 

 

 

 

 

 
Fig. 3 Comparison of dispersion properties of the proposed fiber with 
some recent reported fibers. 

Fig.4 shows the sensitivity analysis of dispersion due to 
the change in first air hole ring diameter (d1) up to ±2%. 
It is seen that the negative average dispersion (D) 
changes only ± 18.6% and the flatness (ΔD) vary 
slightly.  

The sensitivity analysis due to change in second air-
hole diameter (d2) is shown in Fig. 5. The figure shows 
that the average dispersion (D) varies ~±7.13%. 
Wavelength response of dispersion for the variation of 

third air-hole ring diameter (d3) up to ±2% is shown in 
Fig. 6. The average dispersion variations for change in 
d3 and pitch are ~±5.65% and ~±6.43% respectively. 
So there will be no major change in dispersion profile 
due to small change in first to third air-hole ring  
diameters and pitch during fabrication. 

The cure of effective area for the optimum design 
parameters is shown in Fig.7. The value of average 
effective area of this fiber is found to be around 4.5µm

2
. 

The effective area is relatively small and can be used 
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for some nonlinear applications. It is evident from the 
figure that effective area of the fiber increases with the 
wavelength and there is no evidence of abrupt change 
in effective area. The effective area of the fiber at 1550 
nm is 4.2 µm

2
.  

 

 

 

 

 

 

 

 

 

 
Fig. 4 Dispersion properties of HyPCF: optimum dispersion and 
effects of changing d1. 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Dispersion properties of HyPCF: optimum dispersion and 
effects of changing d2. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Dispersion properties of HyPCF: optimum dispersion and 
effects of changing d3. 
 

Wavelength dependence of confinement loss of the 
HyPCF for optimum design parameters is shown in Fig. 
8. The confinement loss is found to be high and this 
value is 0.01dB/m at 1550 nm. Confinement loss in 
HyPCF is much lower than normal hexagonal 
structured PCF due to more air-holes in the cladding 
region for same ring. The techniques about reducing 
confinement loss are discussed in the next chapter. It is 

evident from the figure that confinement loss of the 
fiber increases with the wavelength and there is no 
evidence of abrupt change 
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Fig. 7 Effective area Curve for optimum dispersion curve. 
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Fig. 8 Confinement loss curve for optimum dispersion parameter. 
 
 

Splice loss is higher as the effective area of this fiber is 
quite small. Leon-Saval et al. [13] presented a splice 
loss free interconnection technique for connecting 
single mode fiber and dispersion compensating fiber. 

D. CONSLUSION 

In this paper, a hybrid PCF has been proposed for 
residual dispersion compensation over 750 nm 
bandwidth.  It has been demonstrated that our structure 
shows ultraflattened large negative dispersion of 
‒110.2 ps/nm/km with an absolute dispersion variation 
of 1.49 ps/nm/km in a broad wavelength ranging from 
1250 nm to 2000 nm. The dispersion variation (ΔD) 
and the wavelength range of the obtained dispersion 
profile are most updated. This structure is much easier 
to fabricate and can be applied in the communication 
link for broadband dispersion compensation. 
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