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Abstract—In this paper, we have introduced 
Generalized Rough Left [Right, two-sided, Bi-, 
Interior] Ideal in a semigroup, which is an 
extended notion of a Rough Left [Right, two-sided, 
Bi-, Interior] Ideal in a semigroup, and describe 
few of the properties of these type of ideals. We 
also explain the relations between the upper 
[lower] approximation and upper [lower] 
generalized rough ideals along with their 
homomorphism images. 
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I. INTRODUCTION  

Rough set theory was introduced by Pawalak 
[10] in 1991 to deal granularity and ambiguity in the 
information system. Biswas and Nand [1] introduce 
rough subgroups. In [8] Kuroki discussed new 
properties of the lower and upper approximations 
corrsponding to the normal subgroups and the fuzzy 
normal subgroups. In [7] he introduce rough ideals in 
semigroups. In [14] William Zhu defined generalized 
rough set based on binary relation. 

In this paper, we have define generalized rough 
ideals in semigroups based on binary relation. The 
realistic requirements in classification and model 
construction with incomplete construction [32] 
motivated the researchers to introduce the idea of 
rough sets. The usefulness and versatility of the rough 
set models is very visibly applicable in a variety of 
problems [21,25]. An equivalence class can be 
expressed by the description that when two distinct 
objects are perceived as the same or being 
indistinguishable. 

II. A SURVEY OF SEMIGROUPS  

In this section we will give some basics of 

semigroup. A semigroup is a non-empty set S  

together with an associative binary operation "  " 

.Consider two subset X  and Y  of a semigroup S , 

then the product XY  is defined as: 
 

:= { | , }.XY xy x A y B   

For any subset X  of S  if xy X  for all ,x y X  

then X  is said to be a subsemigroup of S . In addition 

if ,XSX X  then the subsemigroup X  of S  is said 

to be a bi-ideal of S . A left (right) ideal of a semigroup 

S  is a subset X  of S  such that ( )SX X XS X  . 

A two sided ideal is an ideal which is both a left and 

right a ideal of S . A nonempty subset X  of S  is an 

interior ideal of S  if  .SXS X  

III. GENERALIZED ROUGH SETS 

A binary relation   on a semigroup S  is a 

subset of S S . Let   be a binary relation on S . 

Define the lower ( ( ))X
  and upper ( ( ))X

  

approximation operations of a subset X  of S  as 

follows: 
 

  , : ( ) ( )P S P S


  are such that 

( ) = { : , } = { : ( ) }X x S y x y y X x S N x X  


     

 

( ) = { : ,X x S y X


    Such that 

= { : ( ) }.x y x S N x X       

 

where ( ) = { : }N x y S x y   and ( )P S  is the 

collection of all subsets of S . 

The collection ( ) = { ( ), ( )}X X X  
   is called 

a Generalized rough set w.r.t   if ( ) ( ).X X 
 

  A 

relation   on S  is said to be reflexive if a a  for all 

.a S  Recall that a binary relation   in a semigroup 

S  is called compatible if a b as bs   and sa sb  for 

all s S . 

3.1  Theorem 
Let   and   be reflexive and compatible 

relations on a semigroup S and X , Y  be non-empty 

subsets of S . Then the following conditions satisfied: 

(i)  ( ) ( );X X X 
 

    

(ii) ( ) = ( ) ( );X Y X Y  
  

   

(iii) ( ) = ( ) ( );X Y X Y  
  

   

(iv) X Y  implies ( ) ( );X Y 
 

  

(v) X Y  implies ( ) ( );X Y 
 

  
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(vi) ( ) ( ) ( );X Y X Y  
  

    

(vii) ( ) ( ) ( );X Y X Y  
  

    

(viii)    implies ( ) ( );X X
 

   

(ix)    implies ( ) ( ).X X
 

   

 

Proof. (i) Let ( ),x X


  as   is reflexive so x x  

implies x X , which implies ( )X X


 . For any 

x X  , x x  which gives ( )x X


 . Thus 

( ) ( )X X X 
 

  . 

 

(ii) Let ( ). then ( ) ( )x X Y N x X Y  


      

( ( ) ) ( ( ) )N x X N x Y        

( ) or ( )N x X N x Y       

( ) or ( )x X x Y 
 

    

( ) ( ).x X Y 
 

    

 Thus ( ) = ( ) ( )X Y X Y  
  

  . 

 

(iii) Let ( ) then ( )x X Y N x X Y 


     

( ) and ( )N x X N x Y     

( ) and ( )x X x Y 
 

    

( ) ( ).x X Y 
 

    

Thus      ( ) = ( ) ( )X Y X Y . 

 

(iv) Since X Y , so = .X Y X  It follows from(iii) 

that ( ) = ( ) = ( ) ( ).X X Y X Y   
   

   

This gives  ( ) ( )X Y 
 

 . 

 

(v) Given X Y , so =X Y Y . It follows from (ii) 

that ( ) = ( ) = ( ) ( ).Y X Y X Y   
   

   

so ( ) ( )X Y 
 

 . 

 

(vi) Given X X Y   and Y X Y  , it follows from 

(vi) that  

( ) ( ) and ( ) ( )X X Y Y X Y   
   

     

( ) ( ) ( ).X Y X Y  
  

     

 

(vii) Since X Y X   and X Y y  , it follows 

from (v) that  

( ) ( ) and ( ) ( )X Y X X Y Y   
   

   

( ) ( ) ( ).X Y X Y  
  

     

(viii) Since    , so for all ( )x X


 , we have  

( ) ( )N x N x X     

( )N x X   

( )x X


   

so ( ) ( )X X
 

  . 

 

(ix) Let ( )x X


 , then ( )N x X   , so their exist 

( )a N x X  . we have  

( ) ( ) (since ).N x N x      

So ( )a N a X   implies ( )a A


 . This implies  

( ) ( ).X X
 

   

3.2  Theorem 
Given   a reflexive and compatible relation on 

a semigroup S . For any nonempty subsets X  and Y  

of S . ( ) ( ) ( ).X Y XY  
  

  

 

Proof. Let ( ) ( )z X Y 
 

  then =z xy  for some 

( )x X


  and ( )y Y


 . By definition there exists 

,a b S   such that 

and ; and .a X x a b Y y b    

Given   a compatible relation on S , so xy ab .since 

xy XY , so = ( )z xy XY


  

( ) ( ) ( ).X Y XY  
  

   

 
3.3  Definition 

Given a compatible relation   on S  then 

( ) ( ) ( )N x N y N xy    for all , .x y S  If in addition  

( ) ( ) = ( ),N x N y N xy   then   is said to be complete 

compatible relation. 
 
3.4  Theorem 

Given   a reflexive and complete compatible 

relation on a semigroup S  and X , Y  are non-empty 

subsets of S . Then ( ) ( ) ( ).X Y XY  
  

  

 

Proof. Let z  ( ) ( )z X Y 
 

  then =z xy  for some 

( )x X


  and  So  

( ) and ( ) .N x X N y Y    

( ) = ( ) ( ) ;N xy N x N y XY     

which implies that ( ).xy XY


  

Hence ( ) ( ) ( ).X Y XY  
  

  

 
3.5  Theorem 

Let   and   be reflexive and compatible 

relations on a semigroup S . If X  is a non-empty 

subset of S  then ( ) ( ) ( ) ( ).X X X 
  

    

 
Proof. Notice that    is also a reflexive and 

compatible relation on semigroup S . Let 

( ) ( )z X


  . Then ( ) ( ) .N z X      

Let ( ) ( ) ,x N z X   then ( ) ( )x N z   and 

x X .Now  

( , ) ( ) ( , ) and ( , ) .z x z x z x       

This implies that ( )x N z  and ( )x N z . Now 

x X , so  

( ) and ( )x N z X x N z X     

( ) and ( ),z X z X
 

    

and so ( ) ( ).z X X
 

   

Hence ( ) ( ) ( ) ( ).X X X 
  

    
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3.6  Theorem 
Let   and   be reflexive and compatible 

relations on a semigroup S . If X  a non-empty subset 

of S , then ( ) ( ) = ( ) ( ).X X X 
  

   

Proof. Let ( ) ( )z X


   then ( ) ( )N z X    

( ) and ( )N z X N z X     

( ) and ( )z X z X
 

    

( ) ( )z X X
 

    

Thus  ( ) ( ) = ( ) ( ).X X X 
  

   

 

IV. GENERALIZED ROUGH IDEALS  

4.1  Definition 

Let   be a binary relation on a semigroup S . 

If the upper approximation ( )X


 is a subsemigroup of 

S  for any nonempty subset X  of S  then X  is said 

to be generalized upper rough subsemigroup of S . 

The set X  is said to be generalized upper left (right, 

two-sided) ideal of S  if ( )X
  is a left (right, two-

sided) ideal of S . 

 
4.2  Theorem 

Given   a reflexive and compatible relation on 

a semigroup S . Then 

(i) If X  is a subsemigroup of S , then X  is 

generalized upper rough subsemigroup of S . 

(ii) If X  is a left (right, two sided) ideal of S , 

then X  is generalized upper rough left (right, two-

sided) ideal of S . 

 

Proof. (i) Given X  a subsemigroup of S . It follows 

from Theorm 3.1(i),  

( ).X X 


   

Now by Theorm 3.2 

( ) ( ) ( ) ( ).X X XX X   
   

   

This gives ( )X
  a subsemigroup of S  and X  a 

generalized upper rough subsemigroup of S  

 

(ii) Given X  as a left ideal of semigroup S . As we 

know that ( ) = .S S
  It follows from Theorm 3.2 that  

( ) = ( ) ( ) ( ) ( )         S X S X SX X  

Hence ( )X
  is a left ideal and so X  is a generalized 

upper rough left ideal of S . The rest of the cases are 

follows in a similar way.  
 
In the next example we will show that the 

converse of Theorem 4.2 does not hold in general. 

Example 1 Given = { , , , }S a b c d  a semigroup with the 

multiplication table as follows:  

⃰ a b c d 

a a b c d 

b b b b b 

c c c c c 

d d c b a 

 

Let   be a compatible and reflexive relation on S  

such that ( ) = { },N a a  ( ) = { , },N b b c  ( ) = { , },N c b c  

( ) = { }.N d d  Then = { } ,X b S   ( ) = { , }X b c


 and 

{ , } = { , } = { , }b c S S b c b c . This means that the set { , }b c  

is a two sided ideal of S . It is clear that = { }X b  is not 

an ideal of S .  

 
4.3  Definition 

Let   be a reflexive and compatible relation 

on a semigroup S . A non-empty subset X  of S  is 

said to be generalized lower rough subsemigroup of S  

if ( )X


 is a subsemigroup of S . The set X  is said to 

be generalized lower left (right, two-sided) ideal of S  if 

the lower approximation of ( ( ))X X
  is a left (right, 

two sided) ideal of S . 

 
4.4  Theorem 

Given   a reflexive and complete compatible 

relation on S  then 

(i) ( )X


, if it is non-empty, is a subsemigroup 

of S  provided X  is a subsemigroup of S . 

(ii) ( )X


, if it is non-empty, is a left (right, two-

sided) ideal of S  provided X  is a left (right, two sided) 

ideal of S . 

 

Proof. (i) Given X  a subsemigroup of S . It follows 

from Theorm 3.4and Theorm 3.1(iv)  

( ) ( ) ( ) ( )X X XX X   
   

   

So ( )X


 is a subsemigroup of S . 

 

(ii) Given X  be a left ideal of S . It follows from 

Theorm 3.4  

( ) = ( ) ( ) ( ) ( ).S X S X SX X    
    

   

Hence ( )X


 is a left ideal of S . The remaining cases 

can be done in a similar way  
 
4.5  Theorem 

Let   be reflexive and compatible relation on 

a semigroup S , then for any right ideal X  and left 

ideal Y  of S   

( ) ( ) ( ).XY X Y  
  

   

Proof. Given X  a right ideal and Y  a left ideal of S , 

so by definition XY XS X   and XY SY Y   

which implies XY X Y  . It follows from Theorm 

3.1[(v)(vii)] that 

( ) ( ) ( ) ( )XY X Y X Y   
   

     

as required.  
 
4.6  Theorem 

Given   a reflexive and compatible relation on 

a semigroup S  and X  is a right and Y  is a left ideal 

of S , then ( ) ( ) ( ).XY X Y  
  

   

 

Proof.  As .XY X Y   Then by Theorm 3.1(iv) 

http://www.jmest.org/
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 ( ) ( ) ( ).XY X Y  
  

   

as required.  

V. GENERALIZED ROUGH INTERIOR IDEALS  

5.1  Definition 

Let X  be a non-empty subset of S  and   a 

binary relation on S . Then X  is said to be 

generalized lower (upper) rough interior ideal of S  if 

( )( ( ))X X 
 

 is an interior ideal of S . 

 
5.2  Theorem 

Given   a reflexive and compatible relation on 

a semigroup S . If X  is an interior ideal of S  then X  

is a generalized upper rough interior ideal of S . 

 

Proof. As X  is an interior ideal of a semigroup S , so 

SXS X . It follows from Theorm 3.2 that  

 

( ) = ( ) ( ) ( ) ( ) ( ),S X S S X S SXS X     
     

   

so ( )X
  is an interior ideal of S .  

 
 

5.3  Theorem 
Given   be a reflexive and complete 

compatible relation on a semigroup S . If X  is an 

interior ideal of S . Then ( )X


 is, if it is a non-empty 

is an interior ideal of S . 

 

Proof. Given X  an interior ideal of S . Then by 

Theorm 3.1(iv) and Theorem 3.4 
 

( ) = ( ) ( ) ( ) ( ) ( )S X S S X S SXS X     
     

   

so ( )X


 is an interior ideal of S .  

 
5.4  Definition 

The set X  is said to be generalized rough 

interior ideal of S  if it is a lower and upper generalized 

rough interior ideal of S . 

 
5.5  Definition 

Let   and   be binary relation on a 

semigroup S . Then the product    of   and   

defined as follows: 

= {( , ) : ( , ) and( , ) forsome }.x y S S x a a y a S       

 
5.6  Lemma 

Let   and   be compatible relation on a 

semigroup S . Then    is also a compatible relation 

on S . 

 

Proof. Let ( , )x y    and c S . Then  ( , )x a   

and  ( , )a y   for some a S . Now ( , )cx ca   and 

( , ) ( , )ca cy cx cy     .  

Similarly  ( , ) .xc yc    Thus    is a compatible 

relation on S . 

5.7  Theorem 
Given   and   compatible relation on a 

semigroup S  For a subsemigroup, X  of S  

( ) ( ) ( ) ( ).X X X   
  

  

 

Proof. Let z  be any element of ( ) ( )X X 
 

 then 

=z xy  where ( )x X


  and ( )y X


 , 

( ) and ( ) forsome ,a N x X b N y X a b S      

As ,a b X  implies ab X , since X  is a 

subsemigroup of S. Now ( , )a x   and ( , )b y   

( , ) and( , )ab xb xb xy   

(since and arecompatiblerelations)   

so 

( , ) ,xb xy    

implies   

( ) ( )ab N xy   

so  

( ) ( ) ,ab N xy X    

implies 

= ( ) ( ).z xy X 


  

Hence 

( ) ( ) ( ) ( ).X X X   
  

  

VI. GENERALIZED ROUGH BI-IDEALS 

 
6.1  Definition 

Let X  be a non-empty subset of S , with   a 

compatible relation on a semigroup S . If ( )X


 

( ( ))X


 is a bi-ideal of S , then X  is said to be 

generalized upper (lower) rough bi-ideal of S . 

 
6.2  Theorem 

Given   a reflexive and compatible relation on 

a semigroup S . Then every bi-ideal X  is a 

generalized upper rough bi-ideal of S . 

 

Proof. Given X  a bi-ideal of S . It follows from 

Theorem 4.2(i) that ( )X
  is a subsemigroup of S . By 

Theorem 3.1(v) and Theorem 3.2 

( ) ( ) = ( ) ( ) ( ) ( ) ( )X S X X S X XSX X      
      

 

 

so ( )X
  is a bi-ideal of S .  

 
6.3  Theorem 

Given   a reflexive and compatible relation on 

a semigroup S . Then every bi-ideal X  is a 

generalized lower rough bi-ideal of S . 

 

Proof. Given X  a bi-ideal of S . It follows fom 

Theorem 4.4(i) ( )X
  is a subsemigroup of S . By 

Theorem 3.1(iv) and Theorem 3.4 
 

( ) ( ) = ( ) ( ) ( ) ( ) ( ),X S X X S X XSX X      
      

   

so X  is generalized lower rough bi-ideal of S .  
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VII. PROBLEMS OF HOMOMORPHISMS  

A mapping   from a semigroup S  to a 

semigroup T  is said to be homomorphism if 

( ) = ( ) ( )ab a b    for all , .a b S  

 
7.1  Lemma 

Let : S T   be a surject homomorphism 

and 2  be a compatible relation on T . Consider 

1 1 2 1 2 2= {( , ) | ( ), ( ) }.s s S S s s       

Then the following holds: 

(i) 1  is a compatible relation on S . 

(ii) 1  is complete provided that 2  is complete 

and   is single valued. 

(iii) 1 2( ( )) = ( ( ))X X   
 

 for .X S  

(iv) 1 2( ( )) ( ( )),X X   
 

  and if   is single 

valued, then 
 

1 2( ( )) = ( ( )).X X   
 

 

 

Proof. (i) Let 1( , )a b  .then 2( ( ), ( ))a b   . This 

implies  
 

2 2( ( ), ( )) forevery (since iscompatible).t a t b t T      

As   is surjective so for each t T   there is s S   

such that ( ) =s t  

2( ( ) ( ), ( ) ( ))s a s b      

 

2= ( ( ), ( )) ,sa sb    

which implies that 1( , )sa sb  . Similarly 1( , ) .as bs   

Thus 1  is compatible relation on semigroup S  

 

(ii) Let 1 ( ).x N ab  This implies 

 

2 2 2 2( ) ( ( )) = ( ( ) ( )) = ( ( )) ( ( ))x N ab N a b N a N b         

 

since   is surjective, there exists 1 2,x x S  such that 

1 2 2 2( ) ( ( )), ( ) ( ( )),x N a x N b        

and 

1 2 1 2( ) = ( ) ( ) = ( )x x x x x     

since   is single valued, by definition of 1  

1 1 2 1 1 2( ), ( ) and = .x N a x N b x x x    

Thus 

1 1( ) ( ).x N a N b   

This gives 

1 1 1( ) ( ) ( ).N ab N a N b    

On the other hand, 

1 1 1( ) ( ) ( ).N a N b N ab    

Thus 1  is complete. 

 

(iii) Let 1( ( )),b X 


  then there exists 1 ( )a X


  

such that  ( ) = ,a b  so 

1 ( ) ,N a X    

so there exists 1 ( ) .x N a X   Now ( ) ( )x X  , and 

by definition of  1 , 2( ) ( ( )),x N a    so 

2 ( ( )) ( ) ,N a X      

this implies that  2= ( ) ( ( )),b a X  


  so that we get 

1 2( ( )) ( ( )).X X   
 

  

Conversely, let  2 ( ( ))b X 


 , then there exists a S   

such that ( ) =a b . So, 

2 ( ) ( )N b X     

 

2 ( ( )) ( )N a X       

so that there exists x X   such that  ( ) ( )x X    

and  2( ) ( ( ))x N a   . Now by definition of 1 ,  

1 ( ).x N a  Thus 

1 ( )N a X    

 

1 1( ) = ( ) ( ( )).a X b x X   
 

     

this implies that  

2 1( ( )) ( ( ))X X   
 

  

Thus  

1 2( ( )) = ( ( ))X X   
 

 

 

(iv) Let 1( ( )),b X 


  then there exists 1 ( )a X


  

such that  ( ) = ,a b  so we have 

1 ( ) .N a X   

Let  
2 ( )'b N b   then there exists an element  'a S   

such that 

2( ) = and ( ) ( ( )).' 'a b a N a     

Hence 

1 ( )'a N a X   

and so = ( ) ( )' 'b a X  . Thus 

2 ( ) ( )N b X   

which yields that  2 ( ( )),b X 


  so we have 

1 2( ( )) ( ( )).X X   
 

  

Suppose   is single valued and 2 ( ( )),b X 


  then 

there exists a S  such that ( ) =a b  and 

2 ( ( )) ( ).N x X    

Let  
1 ( ),'a N a  then 

2( ) ( ( )) ( )'a N a X      

and so .'a X  Hence 

1 ( ) ,N a X   

which yields  1 ( ).a X


  and 

1= ( ) ( ( ))b a X  


  

so 

2 1( ( )) ( ( ))X X   
 

  

Thus 

1 2( ( )) = ( ( )X X   
   

This completes the proof.  
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7.2  Theorem 
Let   be a surjective homomorphism of 

semigroup S  to a semigroup T  and 2  be reflexive 

and compatible relation on a T . Let X S . Consider 

 

1 2= {( , ) : ( ( ), ( ) )a b S S a b       

 

then 1 ( )X


 is an ideal of S   if and only if 

2 ( ( ))X 


 is an ideal of T  

 

Proof. Let 1 ( )X


 is an ideal of S  then 

1 1( ) ( )S X X 
 

 . This implies  

1 1( ( )) ( ( )).S X X   
 

  

Since   is surjective homomorphism, by above 

Lemma 5.1 we have 

2 2( ( )) ( ( )).T X X   
 

  

Similarly 

2 2( ( )) ( ( ))X T X   
 

  

so 2 ( ( ))X 


 is an ideal of T  Conversely, suppose 

that 2 ( ( ))X 


  is an ideal of T it follows from Lemma 

5.1 we have 

1 1( ) ( ( )) = ( ( ( ))'xx S X T X    
 

  

 

2 2 1= ( ( )) ( ( )) = ( ( )T X X X     
  

  

for any ,x S  
1 ( )'x X


 . Thus there exists an 

element 1 ( ),x X


  such that  ( ) = ( ).'xx x   So we 

have 

 1 ( )N x X    

and 
1 ( ).'xx N x  This implies that 

1 ( )'N xx X    

and so 
1 ( ).'xx X


  Therefore 

1 1( ) ( ).S X X 
 

  

Similarly, 

1 1( ) ( )X S X 
 

  

So 1 ( )X


 is an ideal of S .  

 
7.3  Theorem 

Let : S T   be an isomorphism and 2  be 

complete compatible and reflexive relation on T  and 

X S . Consider 

 

1 2= {( , ) : ( ( ), ( ) )a b S S a b       

 

Then 1 ( )X


 is an ideal of S if and only if 

2 ( ( ))X 


 is an ideal of T  

 
Proof. It follows from Lemma 7.1 that 

1 2( ( )) = ( ( )).X X   
   The similar argument as in 

Theorem 7.2 prove the result.  
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