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Abstract—Linear systems of differential equations 
are of interest because they play a crucial role in 
the classification of the fixed points of nonlinear 
systems. Most problems which arise in the real 
world are nonlinear, and in most cases nonlinear 
systems cannot be solved. One method to find 
approximate solution for the nonlinear systems is 
linearization method. Since most models reduce 
down to two or more such equations, and since 
only two variables can easily be drawn, we 
concentrate more on a system of two equations. 
The objective of this paper is to briefly describe 
the fundamental definitions of the differential 
equations systems about fixed points, stability, 
classification of fixed points, phase portrait plane, 
as well as some applications of those systems to 
population dynamics. Phase plane analysis is one 
of the most important techniques for studying the 
behaviour of nonlinear systems, since there is 
usually no analytical solution for a nonlinear 
system. Another approach shown in this paper is 
that of the geometric one which leads to the 
qualitative understanding of the behaviour, 
instead of detailed quantitative information. 
Consequently, the analysis of the nonlinear 
differential equations is much understandable 
than before. 
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I.  INTRODUCTION  

 

A lot of phenomena of different fields of science and 
technology are modeled mathematically by linear and 
nonlinear differential equations. It is well-known that 
second-order linear differential equations can be 
solved analytically mainly those of constant 
coefficient, while the nonlinear differential equations 
can be solved analytically only in rare cases. For 
these systems we will see the linearization method. 
The aim of this paper is to learn how to interpret 
qualitatively the solutions of the equations of 
differential systems, without passing through the 
analytic process of finding the solutions. This is 
achieved by combing the analytic method and the  
 

 
 
geometric intuition. The object of this study is 
dynamical systems. 
A dynamical system is any mathematical model which 
describes the state of a system in time. 
For example, mathematical models which describe 
the oscillation of the mathematical pendulum, the flow 
of the water in the tube, the number of population in a 
metropolis, etc are dynamical systems.   
In this paper we will treat two linear and nonlinear 
dimensional systems. Things have changed 
dramatically during the last three decades. We can 
easily find computers everywhere, and a lot of 
software packets are at our disposal. They can be 
used to approximate the solutions of the differential 
equations and see the results graphically. As a result, 
the analysis of the nonlinear differential equations is 
airily understood.   
 
 

II. GENERAL KNOWLEDGE 

Let us investigate the dynamical system in the plane, 
 

( , )

( , )

x f x y

y g x y

 

 





     

       (1) 
 
We know the solution of the system (1), in the time 

interval T , is any pair of the functions  ( ), ( )x t y t  for 

which the system equations (1) are transformed into 
identities T . [1], [2] 

The plot of any solution  ( ), ( )x t y t in the system Oxy  

is called the trajectory of the system (1). 
At any point ( , )x y of the 

area 
2

   , where the 

functions f  and g are 

determined, the system 
(1) defines a direction, 
set by the vector 

   ', ' ( , ), ( , )x y f x y g x y .   

 

Thus, in the area 
2

   , the system (1) defines a 

direction field (vectors). 
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So, a trajectory of the system (1) is any line at w, 
which has the quality: at any point of its, whose 
direction of the tangent fits the direction field.  
 
 

Plane 
2

 is the phase space of the system (1). 

Fixed Points  

Definition. The point ( , )x y
 

 is called a fixed point 

(equilibrium point) of the system (1) if  
 

( , ) 0

( , ) 0

f x y

g x y

 

 









 
 

Any fixed point ( , )x y
 

is a ‘trajectory’. If the phase 

point ( , )x y  is found in a moment in the fixed point  

( , )x y
 

 then it is left all the time at that point.[1] 

 

III. LINEAR SYSTEMS 

 

The linear dynamical system in the plane is modelled 

by the linear differential system [1], [4],[5] 

 

x ax by

y cx dy

  

  





       (2) 

 

where ,a ,b ,c and d are real parameters. 

 

Example. It is given the system 

'x x

y y



  





     (3) 

 

Plot the phase portrait when moves from    to  .  

  

Solution  

For 0  , the system (2) has only one fixed point, 

which is the origin of the coordinates (0, 0)O ,  while for 

0  , any point of the Ox -axis’s a fixed point. 

The differential equations of the system are 

independent from each other, thus each equation can 

be solved separately. From their solution we have 

1
( )

t
x t c e


  ,     

2
( )

t
y t c e


  

The pair    0 0
( ), ( ) ,

t t
x t y t x e y e

 
 is the trajectory of 

the system (3) which passes through the arbitrary 

point  
0 0
,x y at the initial point 0.t  The phase 

portraits for different values of the parameter  are 

shown in Figure 1.  

The function ( )y t decays exponentially to zero when

t   , and tends to  when t   .  

While for the function ( )x t  we distinguish some cases. 

 When 0  , the function ( )x t decays 

exponentially, so all the trajectories 

 0 0
,

t t
x e y e

 
approach the origin of the 

coordinates t   ,  move away indefinitely 

when .t    

 When 0  , the function ( )x t changes 

exponentially tending to   (depending on 

the sign of 
0

y ) when t   ,and tend to zero 

when .t    

Thus, all the trajectories  0 0
,

t t
x e y e

 

approach the 

origin of the coordinates when t   and  veer away 

endlessly when .t    We should now show whether 

these trajectories are concave or convex. For this we 

only study the sign of the second derivative: 

 

2

32

2

0 0 0 0 0

3 2 2

00

2

( ) ( ) ( ) ( )

( )

( )( ) ( )( ) (1 )
t t tt t

tt

d y y t x t y t x t

dx x t

y e x e y e x e y e

x ex e

 



  



  

   
 



  


  

 

 

 

Notice that 

   

 

2

02
sgn sgn( 1)

d y
y

dx
   

which means 

 (1)  for
0

0y   we have:    

2

2

0,            1;

:    0,          1 0;

0,            0.

for
d y

for
dx

for







  

   

 







 

 (2)  for
0

0y   we have:  

2

2

0,           1;

:     0,        1 0;

0,           0.

for
d y

for
dx

for







  

   

 







 

This is the way the phase portrait is explained in 

Figure 1, in the cases (a), (c) and (e). 

 In the case  0  , the trajectories 

 0 0
,

t t
x e y e

 

have the form  0 0
,

t
x y e



 which 

means they are perpendicular half lines
0

x x

(Figure 1/d),  where 
0

x    . 

 In the case 1   , the trajectories 

 0 0
,

t t
x e y e

 
have the form  0 0

,
t t

x e y e
 

.  For  

http://www.jmest.org/
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0
0x  , the trajectory is  0

0,
t

y e


 which for 

0
0y   shows half Oy


 - axis, and for 

0
0y   

shows  Oy


. For 
0

0x  , the trajectories 

 0 0
,

t t
x e y e

 
 show the line of the form  

y kx , where 
0 0

k y x   (Figure 1/b). [1],[5]  

 

    

            

             Fig.1 

 

Comments and explanations 

 

In the case(a), when t   , the trajectories 

approach the origin (0; 0)O , tangentially with the Ox -

axis. On the other side, if we look backwards, which 

means t   ,the trajectories, moving away 

endlessly from (0; 0)O , tend to become parallel to the 

Ox -axis. 

In the case (c), the behaviour of the trajectories is the 

same with that of the case of  (a),  with the change 

that the place of the Ox -axis in this behaviour is 

substituted by theOy -axis. In the cases(a) and (c)the 

fixed point (0; 0)O is called’ a stable node’. In the 

case(b)the fixed point (0; 0)O is called ‘a symmetrical 

node’ or  “star”. In the cases (a), (b) and (c), the fixed 

point (0; 0)O  is called “an attracting point ”or ‘’a suction 

point ”. 

All the trajectories that come out of the point around 

the origin (0; 0)O ,approach it when t   .  In fact, 

the point (0; 0)O attracts all the trajectories of the 

phase plane, that is why this point is called globally 

attracting. 

In the case (d), i.e in the case when 0  , there is an 

entire line of nonisolated fixed points in the Ox  - axis. 

Every  trajectory approaches  these fixed points along 

vertical lines. In the case (e),  most trajectories veer 

away endlessly from (0; 0)O ; there is an exception 

only  for the trajectories which start on the points of 

the Oy -axis , so the fixed point (0; 0)O  is unstable. 

In the case (e), the fixed point (0; 0)O  is called a 

saddle point and the  Ox -axis is called  an unstable 

manifold. 

 

IV. CLASSIFICATION OF THE TRAJECTORIES OF THE 

LINEAR SYSTEMS 

 

Let us investigate the linear dynamical system 

 

'x ax by

y cx dy

 

  





     (3) 

 

The origin (0; 0)O is a fixed point of  (3), whatever the 

coefficients are a , b , c , d . But when 

0
a b

c d
 , 

apart from the point O , the system  (3) has a set of  

infinite other fixed points.  

Let us see how the system (1) is solved using the 

matrix calculus. Let us write (3) in the form of 

differential matrix equation 

 

'X AX      (3’) 

where 

x
X

y

 
 
 

,        
x

X
y


 



 
 
 

       and     
   

   

a b
A

c d

 
 
 

. 

The solution  ( ), ( )x t y t can be now written in the form 

of a vector or column matrix
( )

( )
( )

x t
X t

y t

 
 
 

. We search 

the solutions of the equation  (3’) in the form 

 ( )
t

X t e V


 ,                        (4) 

where  is a real or complex constant, and 
1

2

v
V

v

 
 
 

a 

nonzero vector  (column matrix), which does not 

depend on the time t . We can now find   andV . For 

this we substitute ( )
t

X t e V


 in (3’) : 
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t t

e V Ae V
 

    t t
e V Ae V
 

   V AV 

 ( ) 0A I V             (5) 

where the matrix I is a  unit matrix. 

From the algebra course we know that the values of   

for which, the equation (5) has the solutionV O are 

called eigenvalues, while the responsive solutions V

are called eigenvectors. 

In  expanded form, the equation (5) shows the 

homogeneous with two unknowns.
1 1

1 2

( ) 0

( ) 0

a v bv

cv d v





  

  





 

From the algebra course we know that the system (5) 

has a solution different from the zero one only when 

its determinant is equal to zero: 

 
           

0
              

a b

c d









 

 

based on which  we have  

 

 
2

( ) ( ) 0a d ad bc         (6) 

 

and it is called the characteristic equation of the A
matrix.  

We write the equation (6) shortly in the form 

 
2

0          (6’) 

where 

a d     (the trace of the A matrix),  

ad bc         (the determinant of A matrix).[1] 

The eigenvalues are the roots of the equation  (6’): 

 

2

1

4

2

 


  


   

2

2

4

2

 


  


 
 

This way, after determining the eigenvalues and the 

eigenvectors, we find the trajectories of the system  

(3), as well as we study their behaviour around the 

fixed points. 

It is obviously clear that the behaviour of the 

trajectories is defined by the numbers    and  ;  

consequently even the numbers
1 and

2 .  

 

 

The rules of reading the behaviour around the origin 

 

If the values  and  are such that the point ( , )   is 

found in: 

 (1)the open area and restrained by the parabola 
2

4  O


-axis (the first quadrant), then (0; 0)O is 

a unstable node; 

(2) the open area, restrained by the parabola
2

4    

and the O


-axis (the second quadrant), then (0; 0)O

is a stable node; 

(3) the open area, restrained by the parabola 
2

4  and the O


 - axis(the first quadrant), then

(0; 0)O  is an unstable spiral; 

 (4) the open area, restrained by the parabola
2

4  and the O


 - axis (the second quadrant) , 

then (0; 0)O is a centre spiral; 

 (5)the open area below the O - axis (the second and 

the fourth quadrants), then (0; 0)O is a saddle of one 

of its two forms; 

(6)the parabola
2

4   (the first quadrant), then 

(0; 0)O is an unstable star, when 
1 2 0a d    

and 0b c  ,or unstable node when
1 2 0   and

2 2
0b c  ; 

(7) the parabola 
2

4   (the second quadrant), then 

(0; 0)O  is  a stable star when 
1 2 0a d     and 

0b c  , or a stable node when 
1 2 0   and

2 2
0b c  ; 

(8)  O


 - axis,  then the system (0; 0)O is a centre. 

(9) O - axis i.e. 0  , then the system  (3)  has an 

infinite set of fixed points, nonisolated from each 

other, which fill a spoiling line, or one of the axes of 

the coordinates, where the trajectories behave 

towards as in (Figure 1/d). 

All the bahaviours of the trajectories of the dynamical 

system (3) around the fixed point (0; 0)O  as well as 

their classification, are summarized in the diagram of 

Figure2. The presentation of all this information in the 

plane    gives us a visual summary of all different 

linear systems. 

There are certain issues to be taken into 

consideration.  

Firstly, the plane    is a two- dimensional 

representative of that which is a four-dimensional 

space in reality, since the 2 2 matrices are 

determined by four parameters, the coefficients  of the 

matrix. Thus there is an infinite number of different 

matrices which correspond to any point in the plan 

  . Although all these matrices have the same 

configuration of the eigenvalues, there may be 

delicate distinctions in the phase portraits, such as 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 8, August - 2016 

www.jmest.org 
JMESTN42351755 5499 

centres and spirals, or the possibility of one or two 

independent eigenvectors in the case of repetitive 

eigenvectors. 

We also think of the plane   as an analogue of the 

diagram of  bifurcation for the plane linear systems. 

The parabola
2

4 0     of the phase portrait submits 

to a bifurcation: A huge change happens in the 

geometry of the phase portrait.  

In conclusion,  we notice that we can obtain a lot of 

information from   and  concerning the system, 

without taking into account the eigenvalues. For 

example, if 0  , we know we have a saddle point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. NONLINEAR DYNAMICAL SYSTEMS AND THE METHOD 

OF LINEARIZATION 

 

Consider the nonlinear dynamical system 

 

 ' ( , )

' ( , )

x f x y

y g x y




       (7) 

 

Let ( , )x y
 

be  its fixed point, i.e. it satisfies the 

conditions 

 

( , ) 0f x y
 

       dhe ( , ) 0g x y
 

      (8)  

Let 

u x x


       

v y y


    

be the components of a small disturbance from the 

fixed point ( , )x y
 

 to the point ( , )x y . [1] 

If we make substitution in the system (7)  x x u


  ,    

y y v


   

 

It has the form 

( ) ( ,  )

( ) ( ,  )

x u f x u y v

y v g x u y v

  

  

   

   





   (9) 

 

Since x

and y


are constant, their derivatives are zero, 

so that the system (3) has the form 

 

 

 

 

 

 

 

 

 

 

 

( ,  )

( ,  )

u f x u y v

v g x u y v

 

 

   

   





    (10) 

 

If we expand the functions ( ,  )f x u y v
 
   and

( ,  )g x u y v
 
  in the Taylor series with the centre at 

the point ( , )x y
 

, the system (10) takes the form:  

 

2 2

2 2

( , ) ( , ) ( , ) ( ) O( ) ( )

( , ) ( , ) ( , ) ( ) O( ) ( )

f f
u f x y x y u x y v O u v O uv

x y

g g
v g x y x y u x y v O u v O uv

x y

     

     

 
        

 

 
        

 





  
 

where
2

( )O u , 
2

O( )v  , ( )O uv are the sums of the terms 

of the Taylor series of the same order of the quantity 

respectively 
2

u , 
2

v ,  uv .              

Since ( , ) 0f x y
 

  and ( , ) 0g x y
 

  (see  (8)), the 

above system takes the form 

 

Fig. 2 
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2 2

2 2

( , ) ( , ) ( ) O( ) ( )

( , ) ( , ) ( ) O( ) ( )

f f
u x y u x y v O u v O uv

x y

g g
v x y u x y v O u v O uv

x y

   

   

 
       

 

 
       

 






    (11) 

 

In order to understand what happens to a trajectory 

which starts in a point ( , )x y around the fixed point

( , )x y
 

,we take x extremely nearby x


 and y

extremely nearby y


, which means u and v are 

extremely small. 

Since u and v are extremely small, the terms 
2

( )O u , 

2
O( )v and ( )O uv don’t have to be considered (are 

neglected), so the system  (11)  can be approximated 

to the linear dynamical system [1], [5] 

 

( , ) ( , )
'

( , ) ( , )
'

f x y f x y
u u v

x y

g x y g x y
v u v

x y

   

   

 
 

 

 
 

 








  (12) 

 

which has u and v as its dynamical terms. 

The matrix 

( , ) ( , )

( , )
( , ) ( , )

f x y f x y

x y
J x y

g x y g x y

x y

   

 

   

 

 


 

 

 
 
 
 
 
 

 
 

is called a Jacobian matrix in the fixed point ( , )x y
 

.  

 

The essence of the linearization method 

 

In order to study the behaviour of the trajectories of 

the nonlinear system (7) nearby the fixed point ( , )x y
 

, it is fairly enough to study the behaviour of the 

trajectories of the linear system (12) around its  fixed 

point (0;0) .    

The classification of the fixed point (0;0)  the system 

(12)is done by the Jacobian matrix ( , )J x y
 

.  

The behaviour which the trajectories of the system 

(12) have towards the point (0; 0) is the same as the 

behaviour of the trajectories of the dynamical system 

(7) have towards the point ( , )x y
 

. 

 

VI. APPLICATION 

 

Consider the competitive model between  two species 

without overcrowding  (Lotka- Volterra) [2] 

 

 
Fig. 3 

 

Let’s denote the population of the two species ( )x t  

and ( )y t  respectively. Remember  ( )x t shows the 

population of the present prey at time t and  ( )y t

shows the population of the predator at time t . 

Suppose both ( )x t  and ( )y t are nonnegative. 

One system of differential equations which can model 

the changes in the population of these two species is  

 

2
dx

x x xy
dt

dy
y y xy

dt

  

   

 

 

The term 2x  in the equation for  
dx

dt
 represents the 

exponential growth of the prey in the absence of the 

predators, and the term xy corresponds to the 

negative effect over the prey of the interaction 

predator- prey. The term y  in 
dy

dt
corresponds to the  

assumption that the predators die out if there is no 

prey to eat, and the term xy corresponds to the  

pozitive effect  over the predators of the interaction 

predator-prey. 

The coefficients 2,-1,-1 and 1 depend on the included 

species. 

We solve this system by taking 
2 0

0

x x xy

y y xy

   

    





 and 

find the fixed points
1 1

( , ) (0, 0)x y
 

  and
2 2

( , ) (1, 2)x y
 



.The fixed point
1 1

( , ) (0, 0)x y
 

  has a perfect meaning 

-if the two populations predator and prey extinct, we 
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surely do not expect the population to grow at anylater 

time. 

The other solution 
2 2

( , ) (1, 2)x y
 

 , means that, if the 

population of the prey is 1and the population of the 

predator is 2, the system is in perfect equilibrum. 

There is enough prey to support a constant population 

of predators of 2, at the same time there aren’t neither 

many predators (which would cause the extinction of 

the population of the prey) nor less (in which case the 

number of prey would increase).  

 

The birth rate of each specie is exactly the same as 

the its death rate, and these populations are kept at 

an indefinite time. The system is in equilibrum. If 

0x  , the first equation in this system vanishes. That 

is why the function ( ) 0x t  satisfies this differential 

equation without considering what initial condition we 

have chosen for  y  . In this case the second 

differential equation  is reduced to 

 

dy
y

dt
 

 

 

which  we know as an exponential model of the 

extinction for the population of the predators.From this 

equation we know that the population of the predators 

tends to zero in an exponential manner.   

This entire scenario for 0x  is reasonable, because if 

there is no prey for some time, then there will never 

be any prey despite the number of the predators there 

may be. Furthermore, without food supply the 

predators would die out. 

In the same way, notice that the equation for 
dy

dt
 

vanishes if 0y  , and the equation for 
dx

dt
reduces to  

2
dx

x
dt

  

 

which is a model of exponential growth. This means 

that any nonzero prey population grows without bound 

under these assumptions. Once more, these 

conclusions make sense because there are no 

predators to control the growth of the prey population.    

In order to understand all the solutions of this 

predator-prey system 

 

2
dx

x x xy
dt

dy
y y xy

dt

  

   

 
 

it is important to note that the change of either 

population depends both on ( )x t and on ( )y t .  

The phase portrait for this system for a special 

solution is [2], [3], [6] 

 
Fig. 4 

It is often helpful to view a solution curve for a system 

of differential equations not merely as a set of points 

in the plane but, rather in a more dynamic way, as a 

point following a curve which is determined by the 

solution of the differential equation. 

In Figure 4 we show a special solutionwhich starts at 

the point P . As t  increases , ( )x t  increases at first, 

while  ( )y t stays relatively constant. Near 3.3x  , the 

solution curve turns significantly upward. Thus the 

predator population ( )y t starts increasing significantly. 

As ( )y t nears 2y  , the curve starts heading to the 

left. Thus ( )x t has reached a maximum and has 

started to decrease. As t increases, the values of ( )x t

and ( )y t change as indicated by the shape of the 

solution curve. Eventually the solution curve returns to 

its starting point P and begins its cycle again. 

We can plot simultaneously a lot of  solution curves on 

the phase plane using Maple Software. 

In Figure 5 we see the complete phase plane for our 

predator- prey system. Nevertheless, we restrict our 

attention to the first quadrant since it does not make 

sense to talk about the negative populations. [3] 

 

>with(DEtools); phaseportrait([(D(x))(t) = x(t)*(2-
y(t)), (D(y))(t) = (x(t)-1)*y(t)], [x(t), y(t)], t = -10 .. 10, 
[[x(0) = 1, y(0) = 2], [x(0) = 2, y(0) = 1], [x(0) = 4, y(0) 

= 1], [x(0) = 1.1, y(0) = 3.1],[x(0) = 2.1, y(0) = 
4.1],[x(0) = 2.19, y(0) = 4.19],[x(0) = 2.199, y(0) = 

9.199]], x = 0 .. 5, y = 0 .. 5, stepsize = 0.5e-1, 
linecolour = blue, arrows = SLIM, thickness = 2); 
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Fig. 5 

In this predator-prey system, all other solutions for 

which 
0

0x  and
0

0y   yeild other curves that loop 

around the 

equilibrum point 
2 2

( , ) (1, 2)x y
 

 , in a counterclockwise 

manner. 

In the end, they return to their initial points, and hence 

this model forecasts that apart from the equilibrum 

solution, both  

( )x t and ( )y t rise and fall in a periodic manner. 

If we use the linearization method to classify the fixed 
points, we calculate the Jacobian matrix J :   

 

2

1

y x
J

y x

 


 

 
 
 

 

For the fixed point 
1 1

( , ) (0, 0)x y
 

 we have

1

2 0

0
J 



 
 
 

, 
2 0

2 0
0 1

    


, 1 2 1     ,

2
4 9 0      , 

1 2
1, 2   

 

This fixed point is a saddle node.
 

For the fixed point 
2 2

( , ) (1, 2)x y
 

  we have 

0 1

2 0
J



 
 
 

, 
0 1

2 0
2 0


    , 0  ,

2
4 0   

2 1
2i  

 

This fixed point is a centre.

 
 

IV. CONCLUSIONS 

 

There are general formulas for solutions of linear 
systems. These general formulas include all solutions. 
Unfortunately, for nonlinear systems no such general 
formulas exist. This means that it is very difficult, or 
not even possible, to establish properties of solutions. 

Nonlinear systems can be investigated with qualitative 
methods. In two- dimensional systems, the analysis of 
fixed points and linear approximation near the fixed 
points in general allows to understand the system. 
The linearization technique is used to find 
approximate solutions for the nonlinear systems, but 
is it important to emphasize that linearization is valid 
only in a neighborhood of the fixed point. In nonlinear 
systems, stability near a fixed point is dependent on 
initial conditions, and only in specific cases local 
analysis also give insight in the global behaviour of 
the model, that is, the model dynamics far away from 
the fixed point. 
The study of the competition among the living species 
through dynamical systems is the best method ever 
existing. This influences us on the change of the 
behaviour towards them in maintaining the equilibrium 
and the biological ecosystems created during the long 
process of natural evolution, realized from the 
competition within species and among species.  
Nowadays pace of development of the  computer 
graphics enables the numerical graphical presentation 
of the phase portrait of the two – dimensional 
nonlinear dynamical system.  
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