
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 8, August - 2016 

www.jmest.org 
JMESTN42351751 5479 

Dispatching a Traveling Repairman to 
Different Locations with Unreliable Machines  

Abderrahmane Abbou 
Dept. of Mechanical & Industrial Eng. 

University of Toronto, 5 King’s College Road, 
Toronto, Ontario, Canada, M5S 3G8 

a.abbou@mail.utoronto.ca 

Viliam Makis 
Dept. of Mechanical & Industrial Eng. 

University of Toronto, 5 King’s College Road, 
Toronto, Ontario, Canada, M5S 3G8 

makis@mie.utoronto.ca

Abstract—We consider the problem of 
dispatching a single repairman to different 
locations with unreliable machines. The system 
consists of 𝑵 locations and a single repair depot 
denoted by 0. Location 𝒏 (for 𝒏 ∈ {𝟏, … , 𝑵}) has 𝒎𝒏 
identical machines which independently and 
randomly fail during operation, where the failure 
times follow the exponential distribution with 
rate 𝝀𝒏. A downtime penalty 𝒉𝒏 is charged per time 
unit per failed machine in location 𝒏. Failures are 
communicated in real-time to the traveling 
repairman who restores the failed machines into 
“as-good-as-new” condition. The repair time 𝑺𝒏 of 
a single machine at location 𝒏 as well as the travel 

time  𝑻𝒏,𝒗  from  𝒏  to  𝒗  (for  𝒏, 𝒗 ∈ {𝟏, … , 𝑵} ∪ {𝟎} ) are 

stochastic and follow known, but arbitrary, 
distributions. The objective is to dispatch the 
repairman so as to minimize the overall downtime. 
The repairman operations are modeled as a 
multiclass finite population queueing system. We 
obtain the optimal dispatching policy by solving an 
infinite-horizon semi-Markov decision process 
problem under the expected long-run average cost 
criterion. Numerical examples are provided to 
illustrate our approach and to get insights into the 
dispatching problem.  

Keywords—Traveling repairman; unreliable 
machines; downtime; optimal dispatching; finite 
population queues; Markov decision processes 

I.  INTRODUCTION  

This paper considers a single repairman who 

provides on-site corrective maintenance at different 

locations. Each location corresponds to a production 

facility using multiple machines that randomly fail 

during operation. Failed machines incur a downtime 

penalty due to loss of production or reduced quality of 

service. We address the basic research question how 

to dispatch the repairman so as to minimize downtime 

penalties. 

The repairman dispatching problem is particularly 

important when downtime penalties are large. This is 

the case of virtually all capital-intensive industries, e.g. 

energy, mining, telecom, and so on. For instance, an 

out-of-service wind turbine costs about $7,500 per 

week due to lost electricity production as reported by a 

wind farm operator (www.moventas.com). More 

extreme penalty figures have been reported in other 

industries such as semiconductor manufacturing. In 

order to cost-effectively dispatch the repairman, one 

must deal with nontrivial trade-offs. E.g., should the 

repairman visit a nearby low-priority location first or visit 

a distant high-priority location first? Starting with the 

nearby location would save travel time but at the 

expense of delaying the high-priority location visit, and 

vice versa.  This kind of trade-off depends in a 

complicated way on the system parameters, e.g. 

machines’ reliability, travel distances, maintenance 

requirements, downtime severity, etc. In other words, 

intuition may not lead to optimal dispatching, and so a 

computational model is needed. 

Several researchers in the “vehicle routing problem” 
community studied the problem of delivering on-site 
maintenance services. Ref. [1-3] considered the 
problem of routing maintenance technicians to satisfy a 
priori known on-site service requests. Because service 
requests arrive randomly over time, these models do 
not capture the queueing delays, which are a major 
concern when serving delay-sensitive customers such 
as capital-intensive industries (delay corresponds to 
the time difference between the arrival and fulfilment of 
a given request, i.e. downtime in maintenance 
applications). A joint maintenance-routing problem 
where delays are calculated was studied in [4]. In 
addition to being limited to a single machine in each 
customer location, the model in [4] is static as it does 
not adapt to new machine failures. There have been 
limited attempts to incorporate queueing delays into 
dynamic vehicle routing models, as evidenced by the 
recent survey by [5]. Ref. [6] analyzed the situation 
where on-site service requests arrive as a Poisson 
process to a bounded area. The model in [6] is mostly 
suitable when the repairman serves a very large 
number of locations, which may not be the case in 
applications where the repairman provides on-site 
service to a moderately large number of locations.  

The above vehicle routing models have been 
primarily motivated by applications with “time window” 
and “tour duration” constraints, e.g. when the repair 
service is provided to households. These constraints 
may not be critical in capital-intensive applications, 
which motivate our research. Indeed, production sites 
can be accessed virtually any time during the day (they 
operate 24/7) alleviating the time window constraints. 
Furthermore, it is not unusual that a maintenance crew 
spends several days before returning to the repair 
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depot. This is especially the case when the production 
sites are remote. E.g., special-purpose vessels, that 
can accommodate a maintenance crew for a long 
period of time, are used for the maintenance of offshore 
platforms. The tour duration constraint can be safely 
ignored in a similar situation.   

Conceptually, our proposed dispatching model is a 
“polling system”. A polling system consists of a single 
server that attends to multiple parallel queues, where 
changeover times are incurred when the server 
switches between queues. Applications of polling 
systems can be found in production, transportation, 
and telecommunication [7]. The majority of the 
published polling models assume that service requests 
arrive to each queue according to a Poisson process. 
In other words, requests are generated by infinite 
calling populations. This assumption can be 
problematic in our context where there can be as few 
as a single machine at a particular production site. 

We model the repairman operations as a “single 
server multiclass finite source queueing system”. 
Within this framework, each finite source corresponds 
to a production site having a finite population of 
machines, and the server corresponds to the traveling 
repairman who can repair one machine at a time. Thus, 
broken machines form parallel queues, one queue per 
production site, and we wish to schedule the service of 
these queues by the repairman. This scheduling 
problem is solved using the Markov decision process 
approach. 

 

II. PROBLEM DESCRIPTION 

A single traveling repairman provides on-site repair 
to 𝑁 geographically distributed production sites (i.e. the 
customers). Denote the customer set by 𝒩 = {1, … , 𝑁} 
and the repair depot by 0. Customer 𝑛 ∈ 𝒩 owns 𝑚𝑛 
identical machines which independently break down 
during opertaion. The time-to-failure of these machines 
is exponentially distributed with rate  𝜆𝑛 . Failed 
machines must be taken out-of-service. A downtime 
penalty ℎ𝑛  is charged per failed customer 𝑛 machine 
per time unit. Failure events are communicated in real-
time to the traveling repairman who fixes the machines. 
Let 𝑆𝑛 be the stochastic service time required to repair 
a single broken customer 𝑛 machine. Also, let 𝑇𝑛,𝑣 be 

the stochastic travel time between locations 𝑛 and 𝑣, 
where  𝑛, 𝑣 ∈ 𝒩 ∪ {0}. All repair and travel times are 
assumed to follow known distributions. It is assumed 
that each machine resumes normal operation as soon 
as it is repaired, i.e. the repaired machine becomes “as 
good as new”. In addition, the repairman must return to 
the depot when there are no failures in the system. 

The objective is to obtain a dynamic dispatching 
policy for the repairman so as to minimize the expected 
long-run average downtime cost. The problem just 
described is modeled as a “single server multiclass 
finite-source queueing system”. Actually, as machines 
break down, they form repair queues in their respective 
customer locations, which the repairman (i.e. the 

server) must visit and serve. We restrict our attention 
to dispatching policies that are: 
 Nonpreemptive, i.e. the repairman cannot be 

interrupted when he is en-route or when he is 
repairing a particular machine. 

 Nonidling, i.e. the repairman cannot deliberately 
idle while repair request(s) are pending. 

 Nonanticipating, i.e. the repairman cannot travel to 
a location with an empty repair queue in 
anticipation of future failure(s) at that location. 

 Exhaustive, i.e. the repairman must repair all 
broken machines in location 𝑛  (for some 𝑛 ∈ 𝒩 ) 
before he leaves this location. 

Let 𝑄𝑛(𝑡) be the customer 𝑛  queue length at time 𝑡 . 
Obviously, 𝑄𝑛(𝑡)  takes values in the set  𝒬𝑛 =
{0,1, … , 𝑚𝑛}. The queue length vector (𝑄1(𝑡), … , 𝑄𝑁(𝑡)) 

at time 𝑡 takes values in the set 𝒬 = 𝒬1 × ⋯ × 𝒬𝑁. So, 
the expected long-run average downtime cost 
associated with some dispatching policy 𝜋  can be 
defined as, 

 𝑔(𝜋)

= lim𝑡→∞ 𝔼𝜋 {∫
0

𝑡
∑𝑛∈𝒩𝑄𝑛(𝑥)ℎ𝑛𝑑𝑥}/𝑡 

 

(1) 

The expectation in (1) is over the vector-valued 
stochastic process 𝑄 = {𝑄1(𝑥), … , 𝑄𝑁(𝑥)}𝑥≥0 given that 
policy 𝜋 is followed by the repairman.  

 
III. OPTIMAL DISPATCHING 

We find the optimal policy 𝜋∗ = argmin𝜋{𝑔(𝜋)} 
using the Markov decision process approach. Under 
this approach, the stochastic process 𝑄 is controlled at 
specific points in time called “decision epochs”. The key 
idea is to choose these epochs in such a way that it is 
reasonable to make a decision at these epochs and the 
evolution of  𝑄  can be analyzed between any two 
consecutive epochs. Specifically, we must be able to 
derive the expected sojourn times, the expected costs, 
and the transition probabilities (see [8] for more 
details). Once these elements are specified, the 
resulting optimality equations can be solved using 
standard procedures. 

Notation. Probability and expectation are 
denoted ℙ{⋅} and 𝔼{⋅}. Let 𝕀{⋅} be the indicator function, 

i.e. 𝕀{𝛾} = 1 if some condition 𝛾 is satisfied and 𝕀{𝛾} =

0  otherwise. Let  𝔹{𝑗; 𝑘; 𝑝} = (𝑘
𝑗
) 𝑝𝑗(1 − 𝑝)𝑘−𝑗 , i.e. the 

probability mass function of a binomial (𝑘; 𝑝) random 
variable. Define  𝑒𝑛  as the  𝑁 -dimensional vector with 
value 1 in the entry 𝑛  and values 0 elsewhere. The 

expectation of 𝑆𝑛  is denoted  �̅�𝑛 , i.e. �̅�𝑛 = 𝔼{𝑆𝑛}. The 

Laplace-Stieltjes transform of 𝑆𝑛 is denoted �̃�𝑛(⋅), i.e. 

�̃�𝑛(𝜆) = 𝔼{exp (−𝜆𝑆𝑛)} for some real parameter 𝜆. The 
same notation is used for travel times 𝑇𝑛,𝑣. 

Decision Epochs. We select the main decision 
epochs as the points in time when the repairman 
should make a decision which customer location to visit 
next, i.e. the dispatching decision. To make the 
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problem more tractable, we introduce also the 
additional decision epochs which occur whenever the 
repairman completes the repair of a broken machine at 
customer location 𝑛 (for any 𝑛 ∈ 𝒩) or he arrives at the 
new location (including the depot). Thus, the decision 
epochs can be summarized as follows:  

i. The first failure occurs while the repairman is idle 
at the repair depot and the repairman is sent to that 
location.  

ii. Repair completion of a single machine at any 
customer location  𝑛 ∈ 𝒩  considering exhaustive 
service policy.  

iii. Travel completion between any two locations 𝑛, 𝑣 ∈
𝒩 ∪ {0} such that 𝑛 ≠ 𝑣, i.e. the decision epoch is 
the arrival time to the new location.  

It follows by the “as good as new” assumption and the 
“memoryless” property of the exponentially distributed 
failure times that dispatching decisions rely on two 
pieces of information. First, the current location of the 
repairman. Second, the number of failed machines in 
each customer location. Therefore, the tuple (𝑙, 𝑞) is an 
appropriate “state” representation of the queueing 
system at any decision epoch, where 𝑙 ∈ 𝒩 ∪ {0} is the 

current location of the repairman and 𝑞  is the 𝑁 -
dimensional queue length vector whose nth 

element, 𝑞𝑛 ∈ 𝒬𝑛 , is the number of failed machines in 
location  𝑛 ∈ 𝒩 . Let  𝒵 = {(𝑙, 𝑞): 𝑙 ∈ 𝒩 ∪ {0}, 𝑞 ∈ 𝒬} 
denote the state space of the queueing system. 

We refer to the decision that dispatches the 
repairman to location 𝑎 (including his current location 𝑙) 
as “action” 𝑎 . If  𝑎 ≠ 𝑙 , then action 𝑎 means travel to 
location 𝑎 ∈ 𝒩 ∪ {0}. Otherwise, it means to remain in 
the current location  𝑎 = 𝑙 ∈ 𝒩 ∪ {0}  until the next 

decision epoch occurs. The action space is simply 𝒜 =
𝒩 ∪ {0} . Denote by 𝒜𝑙,𝑞 ⊂ 𝒜  the set of permissible 

actions in state (𝑙, 𝑞) ∈ 𝒵. Given our choice of decision 
epochs, it is seen that, 

 𝒜𝑙,𝑞 = {0}, ∀𝑙 ∈ 𝒩 ∪ {0} and 𝑞 = 0 

𝒜𝑙,𝑞 = {𝑙}, ∀𝑙 ∈ 𝒩 and ∀𝑞 ∈ 𝒬 s. t. 𝑞𝑙 > 0 

𝒜𝑙,𝑞 = {𝑛: 𝑞𝑛 > 0 and 𝑛 ∈ 𝒩},

∀𝑙 ∈ 𝒩 ∪ {0} and ∀𝑞
∈ 𝒬 s. t. (𝑞 ≠ 0 and 𝑞𝑙 = 0) 

 
 
(2) 

Here, the 1st line of (2) corresponds to two situations. 
First, idling the repairman when 𝑞 = 0 and 𝑙 = 0, i.e. 
the repair queues are empty upon the repairman's 
arrival to the depot (this is the only option because the 
policy is nonanticipating). Second, returning to the 
depot when 𝑞 = 0 upon repair completion of the last 
failed machine at location 𝑙 (for some 𝑙 ∈ 𝒩). The 2nd 
line of (2) corresponds to initiating a new repair 
operation at location 𝑙 ∈ 𝒩  where the repairman 
currently is (this is the only option because the policy is 
exhaustive). The 3rd line of (2) corresponds to 
dispatching the repairman to some location 𝑛 ∈ 𝒩 (𝑛 ≠
𝑙 ) where at least one machine has failed 𝑞𝑛 > 0 
(because the policy is nonidling). 
     Table 1 shows the simulated states at ten 
consecutive decision epochs of an arbitrary system 
with three customers ( 𝑁 = 3 ) under an arbitrary 

dispatching policy. It should be emphasized that some 
decision epochs in Table 1 are “redundant”. E.g., 
waiting in depot is the only option for the repairman at 
the 1st decision epoch due to the nonanticipating nature 
of the dispatching policy. Likewise, traveling to location 
2 is the only option at the 2nd decision epoch due to the 
nonidling nature of the policy. In fact, all decision 
epochs in Table 1 are redundant except the 4th and 10th 
epochs. The redundant decision epochs are “artificially” 
introduced in order to facilitate the calculation of the 
expected sojourn times, expected costs, and transition 
probabilities (i.e. the building blocks of the Markov 
decision model). 

Table 1. Illustration of a system with three customer 
locations ( 𝑁 = 3). 

Decision 
epoch 

State Possible 
actions 

Action 
taken 

1 𝑙 = 0, 𝑞 = (0,0,0) {0} 0 

The repairman has returned to the depot and 
finds that all repair queues are empty. He 
must wait in the depot until the next failure. 

2 𝑙 = 0, 𝑞 = (0,1,0) {2} 2 

The first failure has occurred at location 2 
which the repairman must immediately visit. 

3 𝑙 = 2, 𝑞 = (0,1,1) {2} 2 

The repairman has arrived to location 2. A 
new failure has also occurred at location 3. 
The repairman must repair the machine in his 
current location 2.  

4 𝑙 = 2, 𝑞 = (2,0,1) {1,3} 1 

The repairman has repaired the machine in 
location 2. Two new failures have occurred at 
location 1. The repairman can either travel to 
location 1 or 3. The dispatching policy selects 
location 1. 

5 𝑙 = 1, 𝑞 = (2,0,1) {1} 1 

The repairman has arrived to location 1 where 
he must start repairing one of the two failed 
machines in this location. 

6 𝑙 = 1, 𝑞 = (1,0,1) {1} 1 

The repairman has completed the first repair 
and must start the second repair. 

7 𝑙 = 1, 𝑞 = (0,0,1) {3} 3 

The repairman has finished repairing the 
second machine at his current location 1 and 
must travel to location 3. 

8 𝑙 = 3, 𝑞 = (0,0,1) {3} 3 
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The repairman has arrived at location 3 and 
must start the repair. 

9 𝑙 = 3, 𝑞 = (0,0,0) {0} 0 

The repairman has completed the repair at his 
current location 3. He must return to depot 
because all repair queues are empty. 

10 𝑙 = 0, 𝑞 = (1,3,1) {1,2,3} 1 

The repairman has arrived to depot and finds 
that new failures have occurred while he was 
en-route from location 3 to the depot. He can 
visit any of the three customer locations. The 
dispatching policy selects location 1. 

 

     Expected sojourn times. Let 𝑑𝑙,𝑞(𝑎)  be the 

expected sojourn time, i.e. the expected time to the 
occurrence of the next decision epoch, given that the 
state is currently (𝑙, 𝑞) and action 𝑎 is taken.   

i. When the repair queues are empty at the time the 
repairman returns to depot (i.e. 𝑙 = 0, 𝑞 = 0), then 
the repairman must remain idle in the depot 
(i.e.  𝑎 = 0 ) and the next decision epoch will be 
triggered by the next failure occurrence. In other 
words, the time to the next decision epoch is the 
minimum of the failure times of the 
currently  ∑ 𝑚𝑛𝑛∈𝒩  operating machines. Because 
the failure times follow the exponential distribution 
with rate  𝜆𝑛 , the minimum of the failure times 
follows the exponential distribution with 
rate  ∑ 𝑚𝑛𝜆𝑛𝑛∈𝒩 . Hence, the expected sojourn time 
in this case is equal to, 

𝑑𝑙,𝑞(𝑎) = 1 ∑𝑛∈𝒩𝑚𝑛𝜆𝑛⁄  (3) 

 
ii. When there is at least one failed machine in the 

repairman’s current location  𝑙 ∈ 𝒩 , then the 

repairman must initiate a new repair at his current 

location (i.e. 𝑎 = 𝑙) and the next decision epoch will 

occur upon repair completion. Hence, the expected 

sojourn time in this case is given by,   

𝑑𝑙,𝑞(𝑎) = �̅�𝑙 (4) 

 

iii. When the repairman completes the repair of the 
last failed machine at his current location 𝑙 ∈ 𝒩 , 
then he will be dispatched to some customer 
location 𝑎 ≠ 𝑙 for which 𝑞𝑎 > 0 or he will return to 
depot if  𝑞 = 0 . Also, when a failure occurs at 
customer location 𝑎 ∈ 𝒩 when the repairman idles 
in the depot (i.e. 𝑙 = 0, 𝑞 = 𝑒𝑎), then the repairman 
will be dispatched to this customer location. In 
these cases, the next decision epoch occurs upon 
travel completion. So, the expected sojourn time is 
equal to,    

𝑑𝑙,𝑞(𝑎) = �̅�𝑙,𝑎 (5) 

     Expected costs between two decision epochs. 
Let 𝑐𝑙,𝑞(𝑎) be the expected downtime penalty incurred 

between two consecutive decision epochs given that 
the queueing system is in state (𝑙, 𝑞) and action 𝑎 is 
taken.  

i. Clearly, no downtime is incurred while the 
repairman idles in the depot because all machines 
are operating, 
 
 𝑐𝑙,𝑞(𝑎) = 0 (6) 

ii. Consider the cases where the repairman initiates a 
repair at his current location  𝑙 . By the time the 
repair finishes, two types of downtime penalty 
would occur. First, a direct penalty due to the 
currently 𝑞𝑛  failed machines,  ∀𝑛 ∈ 𝒩 . The direct 

penalty is simply ∑ 𝑞𝑛ℎ𝑛�̅�𝑙𝑛∈𝒩 . Second, a potential 
penalty due the currently 𝑚𝑛 − 𝑞𝑛  operating 
machines, ∀𝑛 ∈ 𝒩. In fact, the operating machines 
could possibly fail while the repair is in-progress. 
Define 𝜏𝑛(𝑙, 𝑞, 𝑎) as the expected amount of time 

that a currently operating customer  𝑛 machine 
would spend in failed condition while the repair is 
in-progress. So, the potential penalty cost is given 
by  ∑𝑛∈𝒩(𝑚𝑛 − 𝑞𝑛)𝜏𝑛(𝑙, 𝑞, 𝑎)ℎ𝑛 . It is shown in the 

Appendix that  𝜏𝑛(𝑙, 𝑞, 𝑎) = �̅�𝑙 − (1 − �̃�𝑙(𝜆𝑛))/𝜆𝑛 . 
Adding the direct and potential penalty 
components yields, 

 𝑐𝑙,𝑞(𝑎) = ∑𝑛∈𝒩[𝑚𝑛�̅�𝑙 − (𝑚𝑛 − 𝑞𝑛)(1

− �̃�𝑙(𝜆𝑛))/𝜆𝑛]ℎ𝑛 

   

(7) 

 

iii. Consider the cases where the repairman moves to 
a different location 𝑎 ≠ 𝑙. By a similar reasoning, 
the expected downtime cost to be charged by the 
time of travel completion is equal to, 

 𝑐𝑙,𝑞(𝑎) = ∑𝑛∈𝒩[𝑚𝑛�̅�𝑙,𝑎 − (𝑚𝑛 − 𝑞𝑛)(1

− �̃�𝑙,𝑎(𝜆𝑛))/𝜆𝑛)]ℎ𝑛 

 

(8) 

     Transition probabilities. If action 𝑎 is taken at the 
current state  (𝑙, 𝑞) , then the state of the queueing 
system at the next decision epoch will be (𝑎, 𝑞′) with 
probability  𝑃(𝑞′|𝑙, 𝑞, 𝑎) , i.e. the transition probability. 
Observe that the state to which the queueing system 
transitions only depends on the new machine failures 
(if any) that occur between two consecutive epochs. 
This is because the repairman’s location at the next 
decision epoch is known with certainty. So, 𝑃(𝑞′|𝑙, 𝑞, 𝑎) 
is actually the probability that the queue length vector 
becomes  𝑞′  at the next decision epoch given that 
action 𝑎 is taken at state (𝑙, 𝑞).  

i. Suppose the repair queues are empty at the time 
the repairman returns to the depot (i.e. 𝑙 = 0, 𝑞 = 0) 
so that the repairman must idle at the depot 
(i.e. 𝑎 = 0). The state at the next decision epoch 
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will be  (𝑎, 𝑞′) = (0, 𝑒𝑣)  if a customer  𝑣 ∈ 𝒩 
machine is the first to fail. Since failure times are 
exponentially distributed, then the probability of this 
event is 𝑚𝑣𝜆𝑣/∑𝑛∈𝒩𝑚𝑛𝜆𝑛. We have,  

 𝑃(𝑞′|𝑙, 𝑞, 𝑎) = 𝑚𝑣𝜆𝑣 ∑𝑛∈𝒩𝑚𝑛𝜆𝑛⁄ ,

∀𝑣 ∈ 𝒩 and 𝑞′ = 𝑒𝑣 

 

(9) 

ii. Suppose the repairman initiates a repair at his 
current location  𝑙 . A transition into state  (𝑎, 𝑞′) 

implies that  𝑞𝑛
′ − 𝑞𝑛  machines (out of the 

currently 𝑚𝑛 − 𝑞𝑛 operating machines) have joined 
the repair queue at customer location  𝑛  by the 
repair completion time if this customer is not served 
at the current decision epoch. If customer  𝑛  is 
served, then it is implied that 𝑞𝑛

′ − 𝑞𝑛 + 1 machines 
(out of the currently 𝑚𝑛 − 𝑞𝑛 operating machines) 
have joined the queue. This is because the 
customer 𝑛 machine that will have been repaired 
by the next decision epoch will immediately leave 
the repair queue to start operating again. The 
number of such new failures, for each customer, is 
a binomial random variable. This assertion follows 
from the fact that machines fail independently of 
one another, and that all the operating machines of 
the same customer have the same probability of 
failure before the repair terminates. Denote such 
failure probability by 𝜌𝑛(𝑙, 𝑞, 𝑎). It is shown in the 

Appendix that 𝜌𝑛(𝑙, 𝑞, 𝑎) = 1 − �̃�𝑙(𝜆𝑛). Hence, the 
binomial random variable has parameters  (𝑚𝑛 −
𝑞𝑛; 1 − �̃�𝑙(𝜆𝑛)) . In view of the above discussion 
along with the independent failure occurrences 
across different customers, we have,  

 𝑃(𝑞′|𝑙, 𝑞, 𝑎) = ∏𝑛∈𝒩𝔹{𝑞𝑛
′ − 𝑞𝑛

+ 𝕀{𝑛 = 𝑙}; 𝑚𝑛 − 𝑞𝑛; 1

− �̃�𝑙(𝜆𝑛)},

∀𝑞′ ∈ 𝒬 s. t. 𝑞′ ≥ 𝑞 − 𝑒𝑙 

 

 

(10) 

 

iii. The transition probabilities when the repairman is 
dispatched to a different location can be derived in 
the same way, 

𝑃(𝑞′|𝑙, 𝑞, 𝑎) = ∏𝑛∈𝒩𝔹{𝑞𝑛
′ − 𝑞𝑛; 𝑚𝑛 − 𝑞𝑛; 1

− �̃�𝑙,𝑎(𝜆𝑛)},

∀𝑞′ ∈ 𝒬 s. t. 𝑞′ ≥ 𝑞 

 

(11) 

     Optimality equations. A stationary dispatching 

policy is defined as the mapping 𝜋: 𝒵 ↦ 𝒜  which 
prescribes action 𝑎 ∈ 𝒜l,q  whenever the state of the 

queueing system is found to be (𝑙, 𝑞) ∈ 𝒵 at a given 
decision epoch. The optimal dispatching policy  𝜋∗ =
argmin𝜋{𝑔(𝜋)}  can be obtained using the value 
iteration algorithm for semi-Markov decision processes 
[8]. The optimality equation, ∀(𝑙, 𝑞) ∈ 𝒵, at iteration 𝑛 ≥
1 of the value iteration algorithm is as follows,  

 𝑉𝑛(𝑙, 𝑞)

= min
𝑎∈𝒜𝑙,𝑞

{
𝑐𝑙,𝑞(𝑎)

𝑑𝑙,𝑞(𝑎)
+ (1 −

𝑑

𝑑𝑙,𝑞(𝑎)
) 𝑉𝑛−1(𝑙, 𝑞)

+
𝑑

𝑑𝑙,𝑞(𝑎)
∑𝑞′∈𝒬𝑃(𝑞′|𝑙, 𝑞, 𝑎)𝑉𝑛−1(𝑎, 𝑞′)} 

 
 
 

(12) 

The parameter  𝑑  in (12) can be chosen arbitrarily, 

where 0 < 𝑑 ≤ min(𝑙,𝑞)∈𝒵,𝑎∈𝒜𝑙,𝑞
{𝑑𝑙,𝑞(𝑎)}.  

The optimality equation (12) can be solved 
iteratively. However, the value iteration algorithm only 
works for systems with a moderate number of 
customers and a moderate number of machines in 
each location. In fact, the proposed semi-Markov 
decision process formulation quickly suffers from the 
“curse of dimensionality” due to the multidimensional 
state space 𝒵.    

 

IV. NUMERICAL ILLUSTRATION 

In this section, we provide a numerical example 
illustrating our approach to the problem of dispatching 
a traveling repairman.  

Consider a system with four customer locations 
(𝑁 = 4 ). The number of machines in each location 
is  𝑚1 = 6, 𝑚2 = 3, 𝑚3 = 5, 𝑚4 = 8 . Further, suppose 
that all customers use identical machines. In  particular, 
the machines have the same failure 𝜆𝑛 = 0.005 (∀𝑛 ∈
𝒩 ), i.e. the mean time between failures is equal to 
1 𝜆𝑛⁄ = 200 time units. Also, the machines have the 
same repair time which is uniform between 6 and 12 
time units, i.e. 𝑆𝑛 ∼ 𝑈(6,12). However, the customers 

have different downtime penalties, 𝑐1 = 4, 𝑐2 = 3, 𝑐3 =
2, 𝑐4 = 1 in $ per time unit. In other words, customers 
are ordered by decreasing priority level. The travel 
times are chosen to be deterministic and symetric, 

where the travel time matrix 𝑇 = (𝑇𝑛,𝑣) is equal to, 

𝑇 =

− 𝟎 𝟏 𝟐 𝟑 𝟒
𝟎 0 16 12 8 6
𝟏 − 0 12 20 14
𝟐 − − 0 8 9
𝟑 − − − 0 6
𝟒 − − − − 0

 

 

     We apply the value iteration algorithm to solve for 
the optimal policy 𝜋∗. The stopping parameter of the 
algorithm is set to  5% , i.e. the algorithm terminates 
when the relative difference between the lower and 
upper bounds for the minimum expected long-run 
average downtime cost, 𝑔, is less than or equal 5%. 

     The value iteration algorithm converged in about 75 
seconds for the considered problem. The minimum 
expected long-run average downtime cost was found 
to be $13.47 per time unit (this value represents the 
midpoint between the lower bound and upper bound 
generated by the algorithm).  
     The value iteration algorithm results reveal an 
interesting property of the dispatching policy. Namely, 
the optimal policy is not necessarily monotone in the 
queue lengths. E.g., Figure 1 shows that it is optimal to 
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dispatch the repairman from his current location 𝑙 = 1 
to location  𝑎 = 4  for all  𝑞 = (0,0,2, 𝑞4)  such that  1 ≤
𝑞4 ≤ 5 . However, when  𝑞4 ≥ 6 the repairman is 
dispatched to location 𝑎 = 3 (the same phenomenon is 
depicted in Figure 2). This phenomenon is somewhat 
counterintuitive because one would expect that the 
larger the number of failures in a particular location the 
more desirable it is to visit that location (if all else being 
equal). A possible explanation for such phenomenon is 
that the optimality equations (12) chooses not to 
dispatch the repairman to location  𝑎 = 4  when the 
queue length  𝑞4  exceeds 5  failures because such 
equations recognize that this action would cause an 
excessive delay to the higher priority customer  3 (in 
view of the exhaustive nature of the dispatching policy).   

 

Figure 1. The optimal dispatching actions when the 
repairman’s current location is  𝑙 = 1  and the repair 
queue length vector 𝑞 is such that 𝑞1 = 0, 𝑞2 = 0, 𝑞3 >
0, 𝑞4 > 0. 

  𝑞4  

  1 2 3 4 5 6 7 8 

𝑞3 

1 4 4 4 4 4 4 4 4 

2 4 4 4 4 4 3 3 3 

3 3 3 3 3 3 3 3 3 

4 3 3 3 3 3 3 3 3 

5 3 3 3 3 3 3 3 3 

 

Figure 2. The optimal dispatching actions when the 
repairman’s current location is  𝑙 = 3  and the repair 
queue length vector 𝑞 is such that 𝑞1 > 0, 𝑞2 = 0, 𝑞3 =
0, 𝑞4 > 0. 

  𝑞4  

  1 2 3 4 5 6 7 8 

𝑞1 

1 4 4 4 4 4 4 4 4 

2 4 4 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 1 

 

Now, we show that a naïve dispatching policy can 
severely deviate from optimum. Consider the “nearest 
neighbor” policy which selects the nearest location with 
nonempty repair queue for the next visit. This policy 
has an expected long-run average downtime cost 
of $17.03 per time unit, which is around 26% away from 
the minimal average cost 𝑔(𝜋∗). 

V. CONCLUSIONS 

We have considered the problem of dispatching a 
traveling repairman to different locations with unreliable 
machines. The objective has been to obtain a dynamic 
dispatching policy minimizing the overall downtime 
penalties. The repairman operations are modeled as a 
multiclass finite population queueing system. Then, a 
semi-Markov decision process model has been 

formulated to find the optimal policy. A numerical 
example is provided to illustrate our approach. In 
particular, the optimal dispatching is not necessarily 
monotone in the number of machine failures. Moreover, 
it is shown that a naïve dispatching policy such as the 
nearest neighbor can perform poorly compared to the 
optimal policy. As a direction for future research, it 
would be interesting to consider a more general 
machine failure time distribution such as the Erlang 
distribution.   
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APPENDIX 

Here, we derive both 𝜏𝑛(𝑙, 𝑞, 𝑎)  and  𝜌𝑛(𝑙, 𝑞, 𝑎) . 
Suppose the repairman initiates a repair at his current 
location  𝑙 . Let  𝑓𝑆𝑙

(⋅)  and  𝐹𝑆𝑙
(⋅)  be the pdf and cdf 

corresponding to the random repair time 𝑆𝑙. Let 𝐵𝑛 be 
the random time-to failure of an operating customer 𝑛 
machine. Then, 

𝜏𝑛(𝑙, 𝑞, 𝑎) = 𝔼{∫
0

∞
𝕀{𝐵𝑛 < 𝑡, 𝑆𝑙 > 𝑡}𝑑𝑡} 

= ∫
0

∞
𝔼{𝕀{𝐵𝑛 < 𝑡, 𝑆𝑙 > 𝑡}}𝑑𝑡 

= ∫
0

∞
ℙ{𝐵𝑛 < 𝑡, 𝑆𝑙 > 𝑡}𝑑𝑡 

= ∫
0

∞
ℙ{𝐵𝑛 < 𝑡}ℙ{𝑆𝑙 > 𝑡}𝑑𝑡 

= ∫
0

∞
(1 − exp{−𝜆𝑛𝑡}) (1

− 𝐹𝑆𝑙
(𝑡)) 𝑑𝑡 

= ∫
0

∞
(1 − 𝐹𝑆𝑙

(𝑡)) 𝑑𝑡

− ∫
0

∞
exp{−𝜆𝑛𝑡} (1

− 𝐹𝑆𝑙
(𝑡)) 𝑑𝑡 

= �̅�𝑙 − (1 − �̃�𝑙(𝜆𝑛)) 𝜆𝑛⁄  

 
 
 
 
(13) 

Most notably, the 4th expression of (13) holds because 
the time-to-failure and the repair completion times are 
independent, i.e.  𝐵𝑛  and  𝑆𝑙  are independent. The 5th 
expression holds because 𝐵𝑛 is an exponential random 
variable with parameter 𝜆𝑛 . The last expression is a 
result of a basic property of Laplace transforms. Also, 

 𝜌𝑛(𝑙, 𝑞, 𝑎) = ℙ{𝐵𝑛 < 𝑆𝑙} 

= ∫
0

∞
ℙ{𝐵𝑛 < 𝑆𝑙|𝑆𝑙 = 𝑡}𝑓𝑆𝑙

(𝑡)𝑑𝑡 

= ∫
0

∞
(1 − exp{−𝜆𝑛𝑡})𝑓𝑆𝑙

(𝑡)𝑑𝑡 

= ∫
0

∞
𝑓𝑆𝑙

(𝑡)𝑑𝑡

− ∫
0

∞
exp{−𝜆𝑛𝑡} 𝑓𝑆𝑙

(𝑡)𝑑𝑡 

= 1 − �̃�𝑙(𝜆𝑛) 

 
 
 
(14) 
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The 2nd expression of (14) is an application of the law 
of total probability, while the last expression follows by 
definition of a Laplace transform. 
     With the same line of thinking, it holds 

that  𝜏𝑛(𝑙, 𝑞, 𝑎) = �̅�𝑙,𝑎 − (1 − �̃�𝑙,𝑎(𝜆𝑛)) 𝜆𝑛⁄  and 

that  𝜌𝑛(𝑙, 𝑞, 𝑎) = 1 − �̃�𝑙,𝑎(𝜆𝑛)  when the repairman 

travels from 𝑙 to 𝑎. 
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