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Abstract—After the establishment of the 
concept of surface tension, Young's equation 
depicting the contact angle for a liquid drop resting 
on a planar surface has been extensively applied 
for different designs and extended to various 
physical situations, the Boruvka-Neumann 
equation especially. Instead of the traditional free 
energy minimization method, in this paper, we use 
the infinitesimal fluid element approach to derive 
the contact-angle equations for a liquid resting on 
a curved surface and take the effect of surfactant 
into consideration. This method makes it possible 
to deform the solid substrate into other shapes and 
elucidates the characteristics of contact angle 
more directly. The results could be reduced to a 
planar solid surface or a vertical tube. Hence, the 
derived equations could be considered as an 
extended form of the Boruvka-Neumann equation. 
A liquid with angular velocity in an axisymmetric 
solid container also has been analyzed and it is 
found that the contact angle is insensitive to the 
angular velocity. 
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I.  INTRODUCTION 

The concept of surface tension was almost 
constructed simultaneously by Laplace [1] and Young 
[2]. In Laplace’s work, he argued that there shall be an 
appropriate contact angle between the liquid and solid 
substrate to make the liquid drop stay stably on the solid 
substrate. Later, Young [2] proceeded to discuss the 
Laplace's formulation and clarify the results without any 
formula. Since then, the equation depicting contact 
angle has been called Young's equation. Several 
decades later, the line tension along the triple contact 
line was argued by Gibbs [3] and others [4-6] in which 
the Young's equation was derived in a more general 
form giving a more precise relation between the contact 
angle and surface tensions. This is the so-called 
Boruvka-Neumann equation. Young's equation has 
been extensively applied for many research fields such 
as those involving coating [7] and electrowetting [8-10] 

problems. From Young's equation, we learn that the 
major factor affecting the contact angle is the surface 
tension, and the magnitude of surface tension may be 
changed under various circumstances, for example, the 
presence of surfactant. Surfactants are used widely in 
numerous applications due to their ability to lower the 
surface tension. Accordingly, the contact angle also 
may be affected by the addition of surfactant in the liquid 
and its effect has received much attention in the 
literature [11,12]. Most studies considered the liquid is 
put on a planar solid surface. Recently, a liquid drop 
resting on an inclined plane [13, 14] or on a curved 
surface [15,16] also has been considered. 

In the present study, we consider the force balance 
of an infinitesimal fluid element on the contact line to 
recover Young's law. This infinitesimal fluid element 
approach makes the behaviors of surface tension and 
line tension visible which is very different from the 
conventional free energy minimization method [6,15-
19]. Hence, it becomes possible to deform the solid 
substrate into other shapes and investigate the 
corresponding characteristics. There are two equations 
being derived to describe the relationship between the 
surface tensions and the contact angles in which the 
adhesive force and the surfactant concentration at the 
contact line are taken into consideration. One depicts 
the force balance in the horizontal direction and the 
other is in the tangential direction. Both equations can 
be reduced to the special cases that involve a planar 
surface or a vertical tube. When the tangential force 
balance is considered, the adhesive term can be 
removed [15,16] and the result is more succinct. The 
other advantage of the infinitesimal fluid element 
approach is to explain the reason why the gravity and 
rotational effect are absent in Young's equation. It has 
been proved that the contact angle is irrelevant to the 
rotational effect for a planar surface [18] and a vertical 
surface [20]. Here we further consider a liquid with 
angular velocity in an axisymmetric solid container and 
prove the contact angle is also insensitive to the angular 
velocity as the phenomenon in a planar or vertical case. 
The present results could be generalized for the studies 
of axisymmetric and nonaxisymmetric curved surfaces. 
The details of the derivation are described in the 
following. 
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II. THE INFINITESIMAL FLUID ELEMENT APPROACH TO 

YOUNG'S EQUATION FOR NON-PLANAR SURFACES 

The contact angle of a liquid drop resting on a planar 
solid surface is related to the original Young's equation. 
Consider the line tension along the circumference, the 

contact angle  satisfies the Boruvka-Neumann 

equation [4-6], 

,0cos
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where lv , sl  and sv  are respectively the surface 

tensions between the liquid/vapor, solid/liquid, and 
solid/vapor interfaces, and r0 is the radius of the 
boundary of the liquid. In this paper, we denote the liquid 
by a subscript l, the vapor atmosphere by v, and the 
solid surface by s. 

 The formulation of Young's equation and Boruvka-
Neumann equation contain significant geometric 
meaning which can be thought as a result of force 
balance. Firstly, we derive the magnitude of the 
centripetal force caused by the line tension. Consider a 
circle with radius r0 and a constant line tension τ as 
shown in Figure 1. A sector with central angle 2α is 
affected by the line tension τ. Hence, there is a 
centripetal force Fτ,α acting on the arc of the sector. 
Obviously, the arc length lα is 2r0α and the centripetal 
force Fτ,α is 2τsinα. The behavior of the centripetal force 
at an infinitesimal element can be found when   0+. 

Therefore, the centripetal force per unit length at the 
circle produced by the line tension is 

00
0

,

0 2

sin2
limlim

rrl

F 













 

. (2) 

In the horizontal direction, there are four forces 

indicated by sv , sl , lv , and . Equation (2) acquaints 

us the magnitude of the centripetal force caused by the 
line tension. Thus, for an infinitesimal fluid element on 
the triple contact line, the summation of these forces per 
unit length in the horizontal direction results in (1). 

In general, the solid substrate may be non-planar 
and the liquid shape may be non-axisymmetric. We 
consider a liquid stably in a solid container with an 
arbitrary shape as shown in Figure 2. We partition the 

contact into two angles, 1  and 2 , which are above 

and below the horizontal plane, respectively. The 

contact angles 1  and 2  may not be constant along 

the triple contact line. It is assumed that the triple 
contact line is located on a horizontal plane and a 
sufficiently smooth plane curve. For an assigned point 
P on the contact line, the infinitesimal region close to P 
is approximated to a portion of the osculating circle with 
radius r0, where r0 is the radius of curvature of the triple 
contact line at point P. The point O is set to be the center 
of the osculating circle along the contact line at P. Let α 

be a small angle, and Q1 and Q2 are the two points on 

the contact line which satisfy  Q1OP = Q2OP = α. 
According to (2), we can derive the centripetal force per 
unit length at P produced by the line tension is  / r0 

when α approaches zero. Because the solid/liquid 
interface may be non-horizontal, the adhesive force 
between the liquid and solid shall be concerned. By 
using f to account for the adhesive force per unit length 
at the contact line, the formula depicting the contact 
angle relation for an arbitrary shape is 

.0sincoscoscos 2
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Note that  , f, 1 , and 2 are the functions of the 

position on the triple contact line. For the special case 

as the liquid rests on a planar surface, 02  , equation  

(3) reduces to (1), which is the original Young's equation 
or Boruvka-Neumann equation. 

 Generally, it is hard to measure the adhesive force f. 
Therefore, we concern the force balance in the direction 
which is tangent to the container instead of the 
horizontal direction due to the reason that the adhesive 
force is normal to the solid/liquid interface. The force 
balance equation becomes 

,0cos)cos( 2

0

21  
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which has been demonstrated by minimizing the free 

energy [15,16]. When 2  equals π/2, the solid surface 

becomes a vertical tube and (4) reduces to 

,0sin 1  sllvsv   (5) 

which is exactly the force balance in the vertical 
direction [21]. 

 

 
Fig. 1. A sector with central angle 2α and radius r0. The arc is 
acted by the line tension τ along the tangent direction and the 
arc length is lα. Fτ,α is the total centripetal force caused by the 
line tension τ. 
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Fig. 2. Liquid stably put in a solid container with an arbitrary 
shape. The triple contact line is assumed to be located on a 
horizontal plane. On the contact line, A point P on the contact 
line is chosen to illustrate the contact angles 

1  and 
2 . Here 

r0 is the radius of curvature of the triple contact line at the 
point P, and O is the center of the osculating circle along the 
contact line at P. For an assigned small angle α, Q1 and Q2 
are the two points on the contact line satisfying Q1OP =
Q2OP = α. 

 

Fig. 3. The five forces caused by surface tension and line 
tension exert on an infinitesimal element around a triple 
contact line. In the horizontal direction, the summation of the 
five forces should be zero. 

Figure 3 shows the equilibrium of the surface 
tension, the adhesive force, and the line tension in the 
horizontal direction which results in the formula (3). This 
is exactly the main idea of graphical interpretation that 
the surface tensions maintain the equilibrium of a 
material element around a triple contact line [22]. 

Comparing (4) with (1), we can find both equations 
give the same interpretation that the total force tangent 
to the solid substrate should be zero. The only 
difference is that the force produced by the line tension 
in Figure 3 may not be parallel to the solid/liquid 
interface. Accordingly, the term caused by the line 

tension in (1) should be multiplied by 2cos . The 

magnitude of gravitational force acting on liquid is ρg per 
unit volume, where ρ is the density of the liquid but the 
other forces is measured per unit length. It is a 
comprehensive way to realize why the contact angle 
satisfies (3) or (4) and not affected by gravity directly. 

III. THE CONTACT ANGLE WITH THE EFFECT OF 

SURFACTANT 

Because the surface tensions are sensitive to the 
presence of surfactant, here we further consider the 
concentration of the surfactant in the liquid. It is well 
known that surfactants may decrease the interfacial 
tension. Let Γ be the concentration of the surfactant in 
the liquid. The formation of micelles as the 
concentration of surfactant is greater than the critical 
micelle concentration, precipitation due to gravity, and 
other reasons may cause a non-uniform distribution of 
surfactant concentration in the liquid. Hence, Γ is a 
function of position and time. In general, the surfactant 
concentration changes slowly. Hence, we suppose the 
concentration of surfactant alters the surface tension 
linearly through the relations 

),( 00,  lvlvlv E  (6) 

),( 00,  slslsl E  (7) 

where 0,lv is a constant surface tension on the 

liquid/vapor interface at a constant surfactant 
concentration 

0  and 0/  lvlvE  . The surface 

tension 0,sl  and corresponding variable slE  are 

defined in a similar way. As a result, equation (3) could 
be written in the following form 
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and by considering the force balance in the tangent 
direction, equation (4) could be expressed as 
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IV. THE CONTACT ANGLE FOR LIQUID IN A CHANNEL 

Liquid in a channel with invariable cross-sectional 
area as shown in Figure 4 is a limiting case of the 
situation in Figure 2, in which all the triple contact lines 
are straight and the radius of curvature of the contact 
line is infinite everywhere. Thus, the line tension makes 
no contribution for the equation of force balance for an 
infinitesimal fluid element on the contact line. Therefore, 
equation (8) becomes 
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and (9) reduces to 
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For stead fully developed open channel flow with a 
constant cross-section, the shape of the liquid/vapor 
interface is invariable and the flow velocity is 
independent of time and perpendicular to the cross-
section. It implies that the result still does not be affected 
because the force balance is the same as the 
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configuration shown in Figure 4. Consequently, 
equation (11) exhibits an important boundary condition 
in the simulation of surface tension dominated flows. 

 

Fig. 4. Liquid in a channel with a constant cross-section. The 
two contact lines are assumed to be located on the horizontal 

plane. The contact angles 
1  and 

2 are above and below the 

horizontal plane, respectively. 

V. THE CASE FOR AXISYMMETRIC SURFACES WITH 

ANGULAR VELOCITY 

In this section, we consider the case of an 
axisymmetric liquid container with an ideal axisymmetric 
solid surface surrounded by a gaseous phase. In 
addition, the solid container rotates and the liquid in it 
has an angular velocity   with respect to the axis of 

symmetry. Note that the angular velocity   is a function 

of position. Here we restrict the problem to a stationary 
case, namely, the shape of liquid inside the container is 
fixed and the angular velocity   is time-independent. 

 

Fig. 5. Liquid rotates with an angular velocity  . For an 

infinitesimal element on the contact line, it is acted by the 
forces of surface tension, line tension, adhesive force, 
pressure, and friction in the horizontal direction. 

The magnitude of the centripetal force acting on the 
liquid is 2d  per unit volume, where d is the distance 

from the location of liquid to the axis of symmetry. For 
an infinitesimal fluid element on the contact line as 
shown in Figure 5, there are surface tension, line 
tension, adhesive force, pressure, and friction acting on 
it by considering the force balance in the horizontal 
direction. As a result, we can obtain 
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where shearF  means the friction per unit volume. By 

dividing (12) with dzdr 0 , equation (3) or (8) is derived 

again as dr approaches zero. We have known that (8) 
accounts for the force balance per unit length for an 
infinitesimal element. Thus, the rotating effect does not 
impact the contact angle directly. This result implies the 
relation between the contact angles is the same as 
indicated in (8) or (9) even though the container is 
rotating. 
It is found that the contact angle is irrelevant to the 
rotating effect with a fixed surfactant concentration. The 
reason is similar to that for the phenomenon that the 
contact angle is almost independent of gravity which 
has been proved by the method of free energy 
minimization for the cases of planar surface [18] and 
vertical surface [20]. In reality, the rotating effect may 
change the surfactant concentration on the contact line, 
so the contact angle may be affected indirectly. 

VI. DISCUSSION 

It is obvious that the summation of 1  and 2  in (9) 

and (11) have the same meaning as the contact angle 

1  in (1). Both of them express the contact angle 

between the liquid-vapor interface and the solid 

substrate. The summation of 1  and 2  could be 

approximated by to the contact angle   in (1) once the 

line tension τ is ignored. In general, it is true because 
the magnitude of line tension is much weaker than that 
of the surface tension. For example, the contact angle 
of mercury in a vertical tube made of soda-lime glass 
and exposed to air is about 140° [23], so the summation 

1  and 2  for a mercury flow in an open channel made 

of soda-lime glass is also about 140°. 

VII. CONCLUSIONS 

The present work investigates the force balance of a 
liquid resting on a non-planar solid surface and derives 
the equations which can be considered as an extension 
of Boruvka-Neumann equation to depict a general 
relation between the contact angles, surface tensions, 
and surfactant concentration. These equations 
represent the force balance in the horizontal direction 
and the tangential direction by the employment of an 
infinitesimal fluid element approach. The horizontal one 
contains the adhesive force and the corresponding 
Boruvka-Neumann equation is exactly the force 
balance in the horizontal direction for the case of planar 
surface. For the force balance in the tangential 
direction, the adhesive force is absent and the result is 
more concise than that in the horizontal direction. The 
equations in the works of Rusanov [15] and 
Bormashenko [16] considered the force balance in the 
tangential direction only by the method of free energy 
minimization. The present results are more general 
including the force balance in both horizontal and 
tangential directions, and manifest the relationship 
between the contact angles and surface tensions on the 
free surface of a liquid resting on a non-planar surface 
with the surfactant effect, in which the concentration of 
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surfactant is supposed to alter with the surface tension 
linearly. 

The infinitesimal fluid element approach has the 
advantage of graphical interpretation of the Boruvka-
Neumann equation by using the difference between the 
units of gravity and surface tension to conclude that the 
contact angle is independent of gravity. The result that 
the contact angle is independent of the angular velocity 
is due to the same reason. The line tension is generally 
much weaker than the surface tension, so the term 
representing the effect of line tension approaches zero 
when the radius of curvature of the triple contact line is 
large enough. In summary, the data of contact angles 
for various materials are applicable for most situations 
from a macroscopic point of view.  

 

REFERENCES 

[1] P. S. Laplace, Theory of Capillary Attraction. 
Supplement of Celestial Mechanics, Courcier, Paris, 
1805. 

[2] T. Young, “An essay on the cohesion of fluids,” 
Phil. Trans. Roy. Soc. London, vol. 95, pp. 65, 1805. 

[3] J. Gibbs, The Collected Papers of J. Willard 
Gibbs Vol. I, Yale University Press: London, 1957. 

[4] L. Boruvka and A. W. Neumann, 
“Generalization of the classical theory of capillarity,” J. 
Chem. Phys., vol. 66, pp. 5464, 1977. 

[5] B. Widom, “Line Tension and the Shape of a 
Sessile Drop,” J. Chem. Phys., vol. 99, pp. 2803, 1995. 

[6] E. Bormashenko, “Young, Boruvka - 
Neumann, Wenzel and Cassie - Baxter equations as 
the transversality conditions for the variational problem 
of wetting,” Colloids Surf., A, vol. 345, pp. 163, 2009. 

[7] S. J. Spencer, G. T. Andrews, and C. G. 
Deacon, , “Contact angle of ethanol - water solutions 
on crystalline and mesoporous silicon,” Semicond. Sci. 
Technol., vol. 28, pp. 055011, 2013. 

[8] F. Mugele and J. C. Baret, “Electrowetting: 
From basics to applications,” J. Phys. Condens. Matter, 
vol. 17, pp. 705, 2005. 

[9] F. Mugele, “Fundamental challenges in 
electrowetting: from equilibrium shapes to contact 
angle saturation and drop dynamics,” Soft Matter, vol. 
5, pp. 3377, 2009. 

[10] L. Chen and E. Bonaccurso, “Electrowetting - 
From statics to dynamics,” Adv. Colloid Interface Sci., 
vol. 210, pp. 2, 2014. 

[11] E. H. Lucassen-Reynders, “Contact angles 
and adsorption on solids,” J. Chem. Phys., vol. 67, pp. 
969, 1963. 

[12] P. D. I. Fletcher and R. J. Nicholls, “Contact 
angles of surfactant solutions in oil solvents on low 
energy solid surfaces,” Phys. Chem. Chem. Phys., vol. 
2, pp. 361, 2000. 

[13] B. Krasovitski and A. Marmur, “Drops Down 
the Hill: Theoretical Study of Limiting Contact Angles 
and the Hysteresis Range on a Tilted Plate,” Langmuir, 
vol. 21, pp. 3881, 2005. 

[14] E. Pierce, F. Carmona and A. Amirfazli, 
“Understanding of sliding and contact angle results in 
tilted plate experiments,” Colloids Surf., A, vol. 323, pp. 
73, 2008. 

[15] A. Rusanov, “Thermodynamics of solid 
surfaces,” Surface Science Reports, vol. 23, pp. 173, 
1996. 

[16] E. Bormashenko, “Wetting of Flat and Rough 
Curved Surfaces,” J. Chem. Phys. C, vol. 113, pp. 
17275, 2009. 

[17] E. M. Blokhuis, Y. Shilkrot and B. Widom, 
“Young's law with gravity,” Mol. Phys., vol. 86, pp. 891, 
1995. 

[18] E. Bormashenko, “Contact angles of rotating 
sessile droplets,” Colloids Surf., A, vol. 432, pp. 38, 
2013. 

[19] V. A. Lubarda., “Mechanics of a liquid drop 
deposited on a solid substrate,” Soft Matter, vol. 8, pp. 
10288, 2012. 

[20] V. A. Lubarda., “The shape of a liquid surface 
in a uniformly rotating cylinder in the presence of 
surface tension,” Acta. Mech., vol. 224, pp. 1365, 2013. 

[21] P.-G. de Gennes, F. Brochard-Wyart and D. 
Quere, Capillary and Wetting Phenomena -Drops, 
Bubbles, Pearls, Waves, Springer, Paris, 2002. 

[22] M. Nosonovsky and R. Ramachandran, 
“Geometric Interpretation of Surface Tension 
Equilibrium in Superhydrophobic Systems,” Entropy, 
vol. 17, pp. 4684, 2015. 

[23] F. W. Sears and M. W. Zemanski, University 
Physics 2nd ed., Addison Wesley, United States, 1955. 

 

http://www.jmest.org/

