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Abstract—As Cameroon hurtles toward its urban 
future, the amount of municipal solid waste is 
growing even faster than the rate of urbanization. 
Though the current waste management policy 
represents an interesting solution to the current 
waste problem in the country, questions remain 
regarding the prediction of waste’s quantity as a 
crucial tool for planning, designing and 
programming for sustainable municipal solid 
waste management. This descriptive and 
exploratory study uses the Autoregressive 
Integrated Moving Average (ARIMA) time series 
model to explore the dynamics of solid waste 
generation and to forecast monthly solid waste 
generation in the Douala municipality of 
Cameroon. The study uses monthly municipal 
solid waste generation data from January 2003 to 
December 2014 obtained from the database of 
“Hygiène et Salubrité du Cameroun”, the nation’s 
private waste management enterprise. Minitab 
17.1 and SPSS 20 statistical softwares were used 
to build a class of ARIMA models following the 
Box-Jenkins method. Following the distribution of 
the autocorrelation and partial autocorrelation 
functions of the log transformed differenced(1) 
series and the principle of parsimony, 
ARIMA(1,1,1):Xt =-.29+. 𝟓𝟒𝟗𝛂𝐭−𝟏 + 𝛂𝐭 was identified. 
The model was subjected to statistical diagnostic 
check using the Ljung-Box Q test statistic and the 
Schwarz Bayesian Information Criterion (BIC). The 
analysis proved that the model is statistically 
significant, appropriate and adequate. The 
forecasted values indicated that by January of 
2017, the monthly generation will attain 46159 
tons with a 95% confidence interval lying between 
4540 and 51214 tons. The methods and findings of 
this study may assist experts, decision-makers, 
planners and scientists involved in waste 
management. 

Keywords: ARIMA, Hygiène et Salubrité du 
Cameroun, Douala municipality, BIC, Ljung-Box Q 
test statistic  

 

Introduction  

As the world hurtles toward its urban future, the 
amount of Municipal Solid Waste (MSW), one of the 
most important by-products of an urban lifestyle, is 
growing even faster than the rate of urbanization. 
Commonly called “trash” or “garbage,” Municipal Solid 
Waste (MSW), includes wastes such as durable goods 
(e.g., tires, furniture), non-durable goods (e.g., 
newspapers, plastic plates/cups), containers and 
packaging (e.g., milk cartons, plastic wrap), and other 
wastes (e.g., yard waste, food), but excludes industrial, 
hazardous, and construction wastes [1]. World 
production has almost doubled in the past decade and 
is expected to reach 2.5 billion tons per year in 2025 
[2], under the combined effect of urban development 
and changing consumption patterns. The same 
authors projected that, globally, solid waste 
management costs will increase from $205.4 billion per 
year in 2012 to about $375.5 billion per year in 2025. 
They further claim that this will be most severe in low 
income countries (more than 5-fold increases) and 
lower-middle income countries (more than 4-fold 
increases), managing waste effectively and efficiently 
remains one of the most intractable problems for local 
authorities in urban centers.  

 

In the Douala municipality of Cameroon where this 
research was carried out, municipal solid waste 
generation has been steadily increasing from less than 
2,000 tons per day in the year 2000 to more than 
4,000 tons per day in 2014 [3]. Despite the modern 
techniques put in place by the municipality to ensure 
optimal management of municipal solid wastes, solid 
waste management is still constrained by a number of 
setbacks ranging from the absence of environmentally 
reliable disposal sites to inadequate solid waste 

http://www.jmest.org/
mailto:dndoh2009@gmail.com


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 7, July - 2016 

www.jmest.org 
JMESTN42351709 5289 

transportation vehicles to the current disposal site. 
Consequently, the urban landscapes is characterized 
by such environmental problems such as open spaces 
and roadsides littered with refuse, drainage channels 
and gutters choked with waste, and beaches strewn 
with plastic solid wastes, leading to inundations and 
floods, air pollution, and public health impacts such as 
respiratory ailments, diarrhea and dengue fever. 
Accurate and detailed forecasts of solid waste 
generation can play an important role in strategic 
planning with respect to collection, personnel, and 
truck utilization, transportation to the landfill and final 
disposal.  

A number of forecasting and prediction approaches 
have been used for MSW management including 
derived probability distributions [4], Interval-Parameter 
Fuzzy-Stochastic Programming Approach [5,6], and 
the Two-Stage Interval-Stochastic Programming Model 
[7]. In recent years, attention has been turned to the 
use of Artificial Neural Networks (ANNs) models [8]. In 
terms of dynamic modeling, a significant number of 
research deals with analysis and prediction in 
environmental applications based on univariate 
models, taking the information in the form of time 
series [9]. In this context [10] applied the grey 
prediction technique to deal with the forecasting of 
solid waste generation when the number of samples is 
very few.  

A number of other studies had employed the 
Autoregressive Integrated Moving Average models, 
ARIMA models [11]. It provides a convenient 
framework which allows an analyst to find an 
appropriate statistical model which could be used to 
answer relevant questions about the data. ARIMA 
models describe the current behaviour of variables in 
terms of linear relationships with their past values and 
have been proven to be relatively robust than more 
sophisticated structural models in terms of short-run 
forecasting ability [12]. ARIMA methodology of 
forecasting is different from most methods because it 
does not assume any particular pattern in the historical 
data of the series to be forecast. It uses an interactive 
approach of identifying a possible model from a 
general class of models. 

Clearly there is no convergence in literature in 
terms of the method that can be best applied in the 
prediction of solid waste. However, because of the 
accuracy desired, the context of forecast, the 
relevance and availability of statistical data, the time 
period to be forecasted, easiness of interpretation and 
availability of guidelines from available literature, this 
study used the ARIMA time series model to explore 
the dynamics of solid waste generation and also 
forecast monthly solid waste generation in the Douala 
municipality of Cameroon. Despite the numerous 
successes registered by municipal authorities over the 
years, solid waste still remains one of the most 
pernicious local pollutants as a large quantity still 
remains uncollected. Accurate forecasting of municipal 
solid waste’s quantity is seen by local experts as 
crucial for designing and programming municipal solid 
waste management system in the municipality. 
Specifically, the research aims to: 

1. Explore the time series data of municipal solid 
waste generated in the Douala municipality to identify 
optimal parameters for accurate prediction 

2. Build an Autoregressive Integrative Moving 
Average (ARIMA) model and use it to make 
predictions on the MSW generated in the municipality. 

The study is expected to contribute to effective 
planning, cost effective and sustainable strategies for 
efficient solid waste collection, handling and disposal 
systems. Ultimately, the results of the study can be 
useful not only for future policy formulation and 
implementation but more importantly, for other cities 
that are experiencing similar solid waste management 
problems. 

Materials & Methods  
 
Study Area 
 
The city of Douala, with a surface area of 210 km2 
/80 sq mi is the capital of the Littoral region of 
Cameroon. It is Cameroon’s economic capital, the 
richest city in the whole CEMAC region of six 
countries,  located on the banks of the Wouri River, at 
4°02′53″ N Latitude 9°42′15″E Longitude, situated in 
the Wouri division at an average elevation of 13m 
above sea level[3]. Five urban municipalities (also 
known as districts) and one rural municipality form the 
urban community of Douala: the town districts of 
Douala I whose headquarters is at Bonanjo, Douala II 
whose headquarters is at New Bell, Douala III whose 
headquarters is at Logbaba, Douala IV whose 
headquarters is at Bonassama, Douala V whose 
headquarters is at Kotto, and Douala VI whose 
headquarters is at Manoka (Fig.1).  
 

 

 Figure 1. Location of the study area; “a-f”: CEMAC 
countries 

 
    Together, the six local governments are commonly 
referred to as the Douala Urban Council (DUC). DUC 
is an industrial city and one of the fastest developing 
urban areas in Africa and ranks first at national level. 
Politically, the 2005 population census estimates the 
population to a controversial figure of 1.907 million 
[13]. However, according to current estimates from the 
Douala urban council, the population of the 
municipality is estimated to at 5,000,000 people with 
an average growth rate of 4.8%. 
 
     The city of Douala became the first city in 
Cameroon to outsource the management of its 
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municipal solid waste to a private operator, “Hygiene 
et Salubrite du Cameroun” (HYSACAM), after having 
realized that the municipal solid waste management 
system was failing [14]. HYSACAM operates across 
the entire municipal solid waste management chain, 
from collection to processing. 
 
Research design  
Both descriptive and experimental research designs 
were explored to achieve the objectives of this study. 
These describe, examine relationships, and determine 
causality among variables, where possible. Statistical 
analysis was conducted to determine significant 
relationships and identify differences and/or 
similarities within and between different categories of 
data. According to [15], experimental research is often 
used where there is time priority in a causal 
relationship, consistency in a causal relationship, and 
also where the magnitude of the correlation is great.  
 
Data Collection 
Through their annual solid waste reports, HYSACAM 
office provided historic data on quantities of waste 
generated daily, weekly, monthly and yearly. The data 
represents the period from January 2003- December 
2014, with a total of 144 samples. Additionally, an 
extensive review of the existing literature on solid 
waste management was carried out to understand the 
current state-of – the - art knowledge.  
 
Model Development Procedure 
The general non-seasonal model, ARIMA (p, d, q) 
was the starting point of the modeling process:  
 

- A pth-order autoregressive model, or 

AR(p), takes the form: 

    0 1 1 2 2 ...           t t t p t p tY Y Y Y
        [1]                                                 

 

 Where: 
 
 
 
 

 
 
 

- d is the number of differences. ARIMA (p, 0, q) 
= ARMA (p, q). A model with autoregressive 
terms can be combined with a model having 
moving average terms to get an ARMA (p, q) 
model: 
                             

0 1 1 2 2 1 1 2 2
... ...          

     
         

t t t p t p t t t q t q
Y Y Y Y

 [2]      

             
 

ARMA (p,q) models can describe a wide variety of 
behaviors for stationary time series. 

- A qth-order moving average model, or MA (q), 
takes the form:    
                        

1 1 2 2 ...             t t t t q t qY
         [3]

                                            

Where: 
                         

response variable at time 

constant mean of the process

regression coefficients to be estimated

error in time period -
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     In addition to the non-seasonal ARIMA (p, d, q) 
model, is the seasonal ARIMA (P, D, Q) parameters 
for the data were also identified:  

- Seasonal autoregressive (P),  
- Seasonal Differencing (D) and  
- Seasonal moving average (Q).  

The general form of the above model describing the 
current value Xt of a time series by its own past is: 
 
(1 − ∅1𝛽)(1 −∝1 𝛽12)(1 − 𝛽12)𝑋𝑡 = (1 − 𝜃1𝛽)(1 − 𝛾1𝛽12)𝜖𝑡       [4] 
 
Where: 
 
1 − ∅1𝛽 is the non seasonal autoregressive of order 1 

1 −∝1 𝛽12  is the seasonal autoregressive of order 1 
 𝑋𝑡 is the current value of the time series examined 
1 − 𝜃1𝛽, the non-seasonal moving average of order 1 
𝛽 is the backward shift operator: 
 

                𝛽𝑋𝑡= 𝑋𝑡−1 and 𝛽12𝑋𝑡= 𝑋𝑡−2 
 
1- 𝛽 = First order non-seasonal difference 

1 − 𝛽12      = Seasonal difference of order 1 
1 − 𝛾1𝛽12  = Seasonal moving average of order 1 
 
ARIMA modeling was developed using the Statistical 
Package for the Social Sciences (SPSS) version 20 
software and Minitab version 17.1 according to the 
following five –step algorithm: 
 
In the preliminary stage, the data was explored to 
identify and eliminate possible cyclical and seasonal 
behavioral patterns in the municipal solid waste data, 
as they frequently exhibit such behaviors. The 
objective was to find the integer values of p, d, and 
key questions answered at this stage included: 

a) Is there a trend, or on average, do the 
measurements tend to increase (or decrease) 
over time?  

b) Is there seasonality- a regularly repeating 
pattern of highs and lows related to calendar 
time such as seasons, quarters, months, days 
of the week, and so on?   

c) Is there a long-run cycle or period unrelated to 
seasonality factors?  

d) Is there constant variance over time, or is the 
variance non-constant?, and  

e) Are there any abrupt changes to either the 
level of the series or the variance?   

Using descriptive statistics, correlograms plots 
(autocorrelation and partial autocorrelation functions), 
multiplicative time series decomposition and 
autocorrelation plots [16] such worries were 

response variable at time 

observation (predictor variable) at time 

regression coefficients to be estimated

 error term at time 









 





t

t k

i

t

Y t

Y t k

t

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 7, July - 2016 

www.jmest.org 
JMESTN42351709 5291 

thoroughly explored for stationery behaviours. An 
autocorrelation function (ACF) shows the serial 
correlation coefficients for consecutive lags while 
partial autocorrelation function (PACF) partials out the 
immediate autocorrelations and estimates the 
autocorrelation at a specific lag. 
In the second stage (model identification) stationery 
behaviours were eliminated. The following techniques 
were used to stationarise the time series: 
a) Detrending: This is simply the removal of the trend 

component from the time series: 
 
𝑋𝑡 = (𝑚𝑒𝑎𝑛 + 𝑡𝑟𝑒𝑛𝑑 ∗ 𝑡) +  𝜀                             [5]    
  
    Where, 

𝑋𝑡= MSW generated at time t, and 
𝑡 = 𝑡𝑖𝑚𝑒 

𝜀 = error term: 𝜀~𝑁(0, 𝜎2), 
 
The part in the parentheses was removed and the rest 
was used to build an appropriate model for the data. 
b) Seasonality: Because data is likely to exhibit a 

kind of seasonal pattern that is not stable over 
time, considerations were made for the possible 
addition of sAR term to the model in case the 
autocorrelation of the appropriately differenced 
series becomes positive at lag s, where s is the 
number of periods in a season. It is worth 
mentioning that if the autocorrelation of the 
differenced series is negative at lag s, an sMA 
term should be added to the model. This situation 
is likely to occur if a seasonal difference has been 
used, which should have been done in this 
analysis if the data had a stable and logical 
seasonal pattern.  

c) Differencing: This technique was used to remove 
non-stationarity in the data. Non-stationary 
stochastic process is indicated by the failure of the 
estimated autocorrelation functions to die out 
rapidly. To achieve stationarity, a certain degree 
of differencing (d) is required. In this paper, this 
was done by fitting the first order AR model to the 
raw MSW data to test whether the coefficients φ is 
less than one. The objective was to identify an 
appropriate sub-class of model from the general 
ARIMA family (Eq. 1). 
 

               ∅(𝐵)∇𝑑𝑍𝑡 = 𝜃(𝐵)𝛼𝑡                       [6]                    
 
The degree of differencing (d), necessary to achieve 
stationarity is attained when the autocorrelation 
functions (Eq. 4) die out fairly quickly. 
 

       𝑋𝑡 = (1 − B)𝑑 = ∇𝑑𝑍𝑡                                        [7]     
                                                     

The autocorrelation function of an AR (p) process tails 
off, while its partial autocorrelation function has a cut 
off after lag p. Conversely, the ACF of a MA (q) 
process has a cut off after lag q, while its partial 
autocorrelation function tails off. However, if both the 
ACF and PACF tail off, a mixed ARMA (p,q) process 
is suggested. The ACF of a mixed ARMA (p,q) 

process is a mixture of exponentials and damped sine 
waves after the q-p lags. Conversely, the PACF of a 
mixed ARMA (p,q) process is dominated by a mixture 
of exponentials and damped sine waves after the first 
p-q lags. In this paper, the time series was 
differentiated until a rapidly decaying Autocorrelation 
Function (ACF) compatible with that of an ARIMA 
process was obtained [16]. 
 
Once a stationary series had been obtained, an 
optimal model was built in stage 3 (Model Estimation) 
by comparing the sample ACF and PACF plots to the 
theoretical ACF and PACF for the various ARIMA 
models. The principle of parsimony was employed for 
the final model selection. 
 
The fourth stage was a diagnostic stage, which is, 
assessing to see how well your model fits your data. 
The objective was to find optimal parameters for the 
model. We assess this through ACFs and PACFs. 
Several (p,d,q) combinations were explored to ensure 
that values found in previous section were not just 
approximate estimates. The Bayesian Information 
Criterion, BIC [17], (Eq. 2), was employed for model 
selection among the finite set of models under test. 
 

    𝐵𝐼𝐶 = 𝑛 [𝑙𝑛 {
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖−1 }] + 𝑘[{ln (𝑛)}]         [8]      

                    
 Where,  
 
𝑛  = The number of data points/observations, or the 
sample size;  
 
𝑘 = The numbers of free parameters to be estimated, 
 

�̂�2
𝑒  = 

1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖−1  = The error variance, and 

 
𝑥 = The observed data (here, MSW generated) 
To test the overall randomness of the model (or 
independence of residuals), the Ljung-Pierce Q-
statistics [18] was employed (Eq 3). 
 

     𝑄 = 𝑇(𝑇 + 2) ∑
𝑟2

𝑘

𝑇−𝐾

𝑠
𝑘=1                                           [9]                                          

Where  
        T= number of observations 

       s = length of coefficients to test autocorrelation  
        𝑟𝑘 = Autocorrelation coefficient (for lag k) 
 
If the sample value of 𝑄 exceeds the critical value of a 
𝜒2 distribution with s degrees of freedom, then at least 
one value of r is statistically different from zero at the 
specified significance level. 
 
As a general rule, given any set of estimated models, 
the model with the lower value of BIC is the one to be 
preferred. In addition to the residual plots and Ljung-
Pierce Q-statistics, the R-squared, Root Mean Square 
Error (RMSE), Mean Absolute Percentage Error 
(MAPE) were used to check on the efficiency of the 
model. Usually the fitting process is guided by the 
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principal of parsimony, by which the best model is the 
simplest possible model – the model with the fewest 
parameters that adequately describes the data.   
 
Once the final ARIMA model was found, it was then 
used in a final stage (stage 5) to make predictions on 
the future time points for MSW. Prediction intervals 
based on the forecasts were also constructed.  
 

Results and Discussions 
 

Exploring the MSW data for a pattern   
 
From January 2003 to December 2013, the minimum 
quantity of MSW generated in the Douala municipality 
was 14554 tons and this occurred in the month of 
January, 2003. The maximum amount of generated 
was approximately 43417 tons which occurred in 
August, 2013(table 1). 
 
Table 1: Summary Statistics of Solid Waste Generated in 
the DM 
Mini
mum  

1st 
Quar
tile 

Medi
an 

Mea
n 

Std. 
devia
tion  

3rd 
Quar
tile 

Maxi
mum 

Skew
ness 

Kurt
osis 

1455
4 

2175
6.50 

3118
3.00 

2979
2.83 

8109
.883 

3698
0.25 

4341
7 

.005  -
1.45
1 

The median > mean signifying a right skewed 
distribution (Skewness = .005). The kurtosis= -1.451< 
3 signifying a near platykurtic distribution (a bit flatter 
than a normal distribution with a wider peak). This 
implies that the probability for extreme values is less 
than for a normal distribution, and the values are 
wider spread around the mean. Clearly, this indicates 
a strict deviation from normality (Fig. 2). 

 
     Figure 2: Normal probability distribution plot for MSW 

data, Xt  

 
A visual observation of the MSW correlogram (Fig 3) 
shows an increasing trend with fluctuations across 
time, indicating that data is non-stationary. 
 

 
Figure 3: Graph of original series 𝑋, of MSW (2003-2014)  

 
It can be inferred from the correlogram that: (1)the 
month to month trend clearly shows that the MSW 

generations have been increasing without fail, (2) 
there seem to be the presence of trend in the mean 
since the left hand side of the plot is lower than the 
right hand side. The fluctuation differences also 
suggest trend in variance, and (3) there is no 
evidence of seasonal components since no regular 
peaks and troughs are observed.  
The stacked annual plot with the accompanying 
additive seasonal effects (Fig.  4) shows that there is 
a fairly consistent month on month variation with the 
months from July to October as the peak months for 
MSW generation..  

 
(a)                                             (b) 

         Figure 4: Seasonal plot for the waste data, Xt 

 
It is observed that the seasonal pattern is quite similar 
from year to year (Fig. 3a), and that the MSW 
generated over the decade are gradually increasing 
(monotonic increasing). If they weren’t, the lines would 
be on top of each other (all mushed together).  
The data was further decomposed to (multiplicative 
time series decomposition) to decipher the underlying 
patterns (cyclical, exponential, seasonal) in MSW 
generation data using the following model (Eq.4). 
  
    𝑌𝑡 = 𝑇𝑟𝑒𝑛𝑑𝑡 ∗ 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑡 ∗ 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑡             [4] 
                      
Figure 5 clearly shows that the data exhibits a non-
systematic linear trend but the existence of 
seasonality is suggested.  
 

 
Figure 5: Decomposition of multiplicative MSW 

generated time series. 

This behaviour could be as a result of irregular 
components in the time series. An alternative to this 
model is the additive decomposition time series 
model. However, it would have made very little 
difference in terms of conclusion drawn from this time 
series decomposition data. Additionally, plain vanilla 
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decomposition models like these are rarely used for 
forecasting. Their primary purpose is to understand 
underlying patterns in temporal data to use in more 
sophisticated analysis like Holt-Winters seasonal 
method or ARIMA.  

Model Identification  
The sample autocorrelations of the original series (Fig 
6) failed to die out at high lags, with significant Ljung-
Box Q(18)( 𝑋2

(𝑑=18)  =1731.568, p=.000), confirming 

the non-stationarity behaviour of the series, and  a 
weak ARIMA model.  
 

 
Figure 6: Residual plot of ACF for MSW generated, ARIMA 
(0, 0, 0) with a constant 

 
Seasonality usually causes the series to be 
nonstationary because the average values at some 
particular times within the seasonal span (months, for 
example) may be different than the average values at 
other times. This syndrome can be treated by either 
the difference or logarithmic methods of 
transformations or both.  Firstly, the series was 
transformed using the first order difference method (d 
= 1) and stationary was attained (Figure 7).  
 

 
Figure 7 First Difference natural log of Solid waste Data, Xt 

 
From the figure, it can be seen that the differenced 
series looks stationary, as the observations somehow 
beat about a constant mean.  However, the series 
seem not to be stationary on variance i.e. variation in 
the plot is increasing as we move towards the right of 
the chart. Consequently, the series was transformed 
by taking the second differences of the natural 
logarithms of the values in the series so as to attain 
stationarity in the second moment (Eq. 5). 
 
𝑋𝑡

𝑛𝑒𝑤 = 𝑙𝑜𝑔𝑒(𝑋𝑡) = 𝑙𝑜𝑔𝑒(𝑋𝑡) − 𝑙𝑜𝑔𝑒(𝑋𝑡−1)                [5]                               
  
Where, 
                                

0 1 1 2 2 ...           t t t p t p tX X X X
 

 
Following this transformation, the data became 
stationary on both mean and variance (Fig 8). 
 

 
Figure 8: Transforms:Natural log, Difference (1) 

Clearly, the series looks stationary on both mean and 
variance. This also gives us the clue that I or 
integrated part of our ARIMA model will be equal to 1 
as first difference is making the series stationary. The 
autocorrelation and partial autocorrelation functions of 
the log, differenced series indicated no need for 
further differencing as they tend to be tailing off 
rapidly. They also indicated no sign of seasonality 
since they do not repeat themselves at lags that are 
multiples of the number of periods per season. 

Model Identification 

For the first log differenced series, ARIMA (p, 1, q) are 
considered where d=1 is the order of differencing. 
Comparing the resulting autocorrelation functions with 
their error limits, significant autocorrelation was 
observed at lag 1(Fig 9a). Partial autocorrelations 
were observed at lags 1 and 2 as the spikes 
exceeded the significance bounds (Fig. 9b).  

 
                      (a)                                  (b) 
   Figure 9.  Sampled ACF (a) and PACF (b) for differenced 
(1) Solid Waste Data  

 
Clearly, there is no need for sARIMA as patterns in 
the log difference (1) data suggests a variety of 
ARIMA models including ARIMA(2,1,2), ARIMA (2, 1, 
1), ARIMA (2, 1, 0), ARIMA(1,1,1) and ARIMA(1,1,2) 
as potential fits for  data.  
 
 
 
           Model Diagnosis and Selection 
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The models efficiencies were evaluated using the R-
squared, Root Mean Squared Errors (RMSE), Mean 
Absolute Percentage Error (MAPE), the normalized 
BIC and the Ljung-BoxQ statistics (table 2). 
 
    Table 2. Evaluation of various ARIMA models 
 

   Model 

Model statistics Ljung-BoxQ(18)  
Outlier

s R-
squared 

RMSE MAP
E 

Normal
ized 
BIC 

Statistics DF Sig. 

ARIMA(2,1,2) .890 2715.80 6.36 16.037 13.469 14 .490 0 

ARIMA(2,1,1) .890 2704.20 6.38 15.991 13.813 15 .540 0 

ARIMA(2,1,0) .880 2714.74 6.53 15.962 17.711 16 .341 0 

ARIMA(1,1,2) .890 2705.83 6.36 15.992 13.632 15 .554 0 

ARIMA(1,1,1) .890 2698.59 6.38 15.950 15.447 16 .492 0 

All ACF and PACF residuals of fitted well in all 
models. All the estimated coefficients are significantly 
different from zero and the root mean square errors 
(RMSE), MAPE, R-squared and BIC are similar for all 
models. In addition, there were no white noises at 5% 
significance limit for all models as there were no 
spikes outside the insignificant zone for both ACF and 
PACF plots. Furthermore, all residuals were 
independent, identically distributed and were therefore 
adequate for the observed data. Therefore, either 
model is adequate and provides nearly the same 
three-step-ahead forecasts. 
 
Since the AR (1) model has two parameters (including 
the constant term) and the MA(2) model has three 
parameters, applying the principle of parsimony the 
simpler AR(1) model was selected to forecast future 
readings. Moreso, ARIMA (1, 1, 1) outperformed other 
potential models in terms of MAPE, and RMSE and 
BIC measures. The coefficient of both the AR and the 
MA were not significantly different from zero with 
values of -.298 and .549 respectively (Table 3). 
 
              Table 3: ARIMA (1, 1, 1) model parameters 

Variable Estimate SE t Sig. 

Constant -.003 .009 -.343 .732 

AR1 -.298 .118 -2.533 .013 

MA1 .549 .104 5.26 .000 

Hence, the forecasting model for Xt  , should be of the 
form: 

𝑋𝑡 = 𝜇 + (∅𝑋𝑡−1 + ⋯ + ∅𝑝𝑋𝑡−1) − (𝜃1𝑒𝑡−1 + ⋯ +  𝜃𝑞𝑒𝑡−𝑞) 

 
Where: 
 
𝜇 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑒𝑟𝑚, 
 (∅𝑋𝑡−1 + ⋯ + ∅𝑝𝑋𝑡−1) = AR terms (lagged value of x), 

and 
  −(𝜃1𝑒𝑡−1 + ⋯ +  𝜃𝑞𝑒𝑡−𝑞) = MA terms (lagged errors). 

 
Usually p + q ≤ 2 and either p = 0 or q = 0 (pure AR or 
pure MA model). By convention, the AR terms are (+) 
while the MA terms are (-). This model enables us to 
write the model equation as:  

 
𝑋𝑡 = −.298𝑡𝑡−1 +  .549𝛼𝑡−1 +  𝜖𝑡                              [7]   
 
The low value of RMSE (2698.550) indicates a good fit for 

the model. Also, the high value of the R-squared (.890) and 

MAPE (6.382) indicate a perfect prediction over the mean. 

A further look at the plots of residuals, ACF and PACF (Fig 

10) reveal a random variation from the origin (0). The 

points below and above are all uneven, hence, the model 

fitted is adequate. 

                                 

 
FIGURE 10. AUTOCORRELATION & PARTIAL AUTOCORRELATION 

FUNCTIONS OF THE RESIDUALS 

 

The adequacy and significant appropriateness of the model 

was confirmed by exploring the normalized Bayesian 

Information Criterion (BIC). As Indicated, amongst the set 

of statistically significant ARIMA (P,D,Q) models fitted to 

the series, ARIMA (1,1,1) model had the least BIC value of 
15.950. Hence, the model seems adequate and appropriate 

for the MSW data. The plot that follows (Fig 12) represents 

the actual series and the fitted ARIMA (1, 1, 1). 

 

       
Figure 12: Plot of observed and fitted ARIMA (1,1,1) model 

 
Our model agrees with results from recent studies [19, 
20, 21] who also suggested that ARIMA (1, 1, 1) 
model is the best among all parametric time series 
models for forecasting solid waste generation. 

 
FORECAST OF MSW GENERATED USING THE BEST 

FIT ARIMA MODEL 
The forecasted values indicate that by January of 
2017, the monthly generation according to the model 
will attain 46159 tons with a 95% confidence interval 
lying between 4540 – 51214 tons (Fig. 11; Table 4) 
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Figure 11: Holt-Winters Additive prediction for tons of MSW 
generated 

 
Table 4. Three-step forecast of the ARIMA (1, 1, 1) Model 
 Jan Feb Mar

s 
Apr
. 

Ma
y 

Jun Jul Au
g. 

Se
p. 

Oct
. 

No
v. 

De
c. 

20
15 

409
58 

435
50 

401
23 

446
26 

423
84 

419
20 

422
55 

445
97 

446
96 

433
42 

450
01 

434
37 

20
16 

446
85 

450
25 

415
98 

461
01 

438
59 

433
94 

460
71 

460
71 

461
78 

448
17 

464
75 

449
11 

20
17 

461
59 

477
91 

431
56  

483
22  

455
87  

458
53  

461
18  

463
84  

466
49  

435
42  

438
08  

440
73  

From figure 11, the forecasted solid waste values (in 
tonnage) are shown by the thicker pink sinusoidal 
curve, whilst the bounded light pink shaded region 
areas show 80% and 95% prediction intervals 
respectively.  

Conclusion 
One of the major challenges in many developing 
economies is to develop and promote sustainable 
solid waste management systems that could 
anticipate and take into account the quantity of solid 
waste that could be generated in the foreseeable 
future. This study analyzed, compared and selected 
the best time series model for forecasting amount of 
solid waste generated in the Douala municipality of 
Cameroon among ARIMA  models. The past data 
used are monthly amount of solid waste collected by 
the city waste management enterprise (HYSACAM) 
from year January 2003 to January 2014.The result 
indicated that ARIMA (1, 1, 1) outperformed other 
potential models in terms of MAPE, R-squared, 
RMSE, BIC and AIC measures and hence used to 
forecast the amount of the solid waste generation for 
the next years. The forecasted values indicate that by 
January of 2017, the monthly generation according to 
the model will attain 46159 tons with a 95% 
confidence interval lying between 4540 – 51214 tons. 
The model is validated and could be adequate for 
forecasting solid waste generation in the foreseeable 
future. The paper recommends that since solid waste 
generation is a function of population growth, planning 
and implementing a comprehensive program, such as 
an integrated solid waste management system for 
waste planning, collection, transport, and disposal 
along with activities to prevent or recycle waste can 
eliminate the numerous problems which these wastes 
do cause. An integrated solid waste management 
(ISWM) program can help reduce greenhouse gas 
emissions and slow the effects of climate change.  
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