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I. INTRODUCTION

The elliptic equation has a strong background, and
has many applications in physics and engineering. For
the recent developments of weak solutions of elliptic
equations, we refer the reader to [1-3]. The aim of this
present paper is to obtain the unigueness of weak
solutions of non-homogeneous A-harmonic equation
with very weak boundary values. Our result is a
generalization of the reference [4].

In this present paper, we consider the following
non-homogeneous A-harmonic equation

divA(x, Vu) =divF (x,u) (1.2)
where A:QxR" — R" satisfies the conditions
HD)(A(X,&),&) 2 alé],
(H2)|A(X, &)~ AX &) < B(&|+|&D 2 &~ &l
(H3) <A(x, E)-AKXE) & - §2> >0Whenever g =&,

for almost every xeQ and all £,&,& eR", a, >0
are constants, 1< p<n and F(x,u) e (L.(X))",

A
—p>2
<1+ A(p-2)/r

. n
where 1= mln{S,—q}-
n+q
A 1<p<2

Throughout this paper, ©Q will denote bounded
open setin R", and E —oQ is a closed set and small
in an appropriate capacity sense. In order to avoid
some technical difficulties related to the imbedding
theorem we shall illustrate our approach only for p

smaller than the spatial dimension of Q.

The prototype of equation (1.1) is the
homogeneous A-harmonic equation

divA(x, Vu) =0. (1.2)
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When the mapping A(x, §)z|§|p‘2§, (1.2) generates
the p - harmonic equation

div|Vu|p72 Vu=0 (1.3)
which satisfied the assumptions (H1)-(H3).

Definition 1.1 A function ueW_:P(Q) is called a

C

weak solution of A-harmonic equation (1.1) if u
satisfies

Iﬂ(A(x,Vu),Vgo) dx = IQ<F(X, u), V) dx (1.4)

forallp e Cy(Q) .-

The solutions belong to the local Sobolev space
ueWlP(Q) and we prove a uniqueness result for

loc

solutions provided that they belong to u eW' (Q) for

loc
r < pand that they take the same boundary values in
O0Q\E where E<oQ is a closed set and small in an
appropriate capacity sense.

In order to formulate our theorem we need to
consider local boundary values. Let
FcoQ and ueW:’(Q) We say that u has zero

boundary values at F in the W'?-sense, abbreviated
ueW:P(Q;F), if eachxeF has a neighborhood U

loc

and a function neC;(U) such that n=1 in some
neighborhood of x andnu eW,"?(Q) .

Suppose that BEV\/ui'cp(E) .We say that u has the

boundary values ¢ at F in the W'P -senses if
u—0eW:P((;F) and if for each x e F there exists 7

loc

as above with 70 eW"?(QQ). Note that then also nu
belongs to WP (QY) .

If u has the boundary values @ at F in the W*P-
sense, then u has the boundary values 6 at a
neighborhood of F . Hence we may always assume
that F is open relative to Q.
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For our main result we assume that the numbers

pe@,n), ge(,©), se(,) and r>max{l, p—-1
satisfy
t— sq _>1. (1.5)

r

Here (p—2)" = p—2 if p>2 and 0 otherwise.

Note. If t>n , then capE=0 implies E=¢ .

Hence only the values t<n are of interest. Let #°
denote the s -dimensional Hausdorff measure. It is

well known that 2" (E) < coimplies cap,E =0.

Theorem 1.2 Suppose that 8 cW"(Q) and that

loc

u,u, are weak solutions of non-homogeneous A-
harmonic equation (1.1) such that

() u,andu, have boundary values @ in the WP -
sense at 0Q\E;

(i) u,—u, e LY(QY);

(iii) Vu, —Vu, € LS(Q);

(iv) Vu,Vu, e L' (Q)if p> 2.
IfcaplE =0, then u, =u, inQ.

Note. Let divF(x)=0, then our main results is
Theorem 1.1 in [4].

Il. PROOF OF THEOREM 1.2

Let u,u, be weak solutions of non-homogeneous

A-harmonic equation (1.1),Q be a bounded open set.
Condition (i) in Theorem 1.2 implies that each
y € 9©Q\ E has a neighborhood U =U (y)such that

u eW*UNQ), i=12 (2.1)
Thus for each neighborhood V of E we have
u eW™(Q\V), i=12. 2.2)

Fix a ball Bcc Q. Since cap,(E)=0, we can

choose an open set DcR" such that EcD ;
B<R"\D and cap,(E;D)=0 . Here cap,(E;D)=0
refers to the usual variational t -capacity of the
condenser (E;D)®? "4 Given £>0 we can find

an open set U, and ¢£eCy(D) such that
EcU,ccD, 0<&<1, £=1onU, and

[ veldx<e
Hence
[vel, <e.
Write 7=1-& . Then =0 in U, , =1 in

R"\D,0<p<1, peC”(R"),and

||V 77||t <e. (2.3)

The above inequality has important role in the
following proof. Note that here we get 7 =1in B.

Let W be a neighborhood of E with

&

EccW, ccU, . Let
@ =n(u —U,).

Since (3.2) holds and u,—u, eW;P(Q;6Q\E) by
Condition (i) in Theorem 1.2, then oW, P(Q), and
the support of ¢ stays away from E . Thus we can use
@ as a test function in Definition 1.1, i.e.,

[l (A VUV (70, ~0,)) ) ik
[ (RO (s -u) o5, i=12
Hence £
IQ<A(X'V“1) — A(X,VU,),V (n(u, —u,))) dx
= [ (FOcw) =F(x.u,), v (n(u, —u,))) dx

here we have used ;=0 in VVS Thus using the
condition (H2) we obtain from the above formula

| = _"Qn<A(x,Vu1) —A(X,VU,),V(u, —u,)) dx
= —IQ (u, —u,) (A(X, Vuy) — A(X, Vu,), V77) dx
+IQ<F(x,u1)— F(x,u,),V(n(u, —uz))> dx
< IQ|A(X,VU1) — A(X, VU,)||u, —u,| [V 77| dx
+IQ|F(X, u) = F (X, u,)|Ju, —u, ||V 7| dx

+IQ|F(X, u) = F(%,U,)||V(u, —u,)| dx

-2
< ﬁjﬂ(|Vul|+|Vu2|)'D [Vu, = Vu,||u, —u,||V 77| dx
+IQ|F(x,u1)—F(x,u2)||u1—u2||V77| dx
+IQ|F(X, u;) = F (X, u,)|[V (U, —u,)||z| dx
=l +1,+1,
(2.4)

Case 1: p > 2 .Using the Holder inequality with

we have

|1=,3j (Vu)+vuy) H vy, _Vu2||L11—u2||v;7| dx
<B(] (ulevulf o " ([ pu-vafe)
(IQ |Ul_uz|qd><)a (IQIV 77|tdx){ :
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By (2.3) and the conditions (ii)-(iv) in Theorem 1.2 we
have

I, <Ce. (2.5)

Similarly, using the Hélder inequality we have

I, :IQ|F (X, u)—F (%, u,)|lu, —u,| [V 7 dx

p-2 1
P -
r s

<\ [ F (0w —F (x, u, -2 d
Q 1 2

(1o (e

.. S
Noticing that F(x,u) e (Lj,.(®)" and 1< ———
(uu) € (L (" and <

for p>2, by (2.3) and the conditions (ii) in Theorem
1.2 we have

I, <Ces. (2.6)
Similarly, Using the Hoélder inequality with

C= s D=t

and poincaré inequal|ty[5] we have

=[x, u)~F (x,0,)[V (U, ~u, ) dx

p-2,11
"n'q

F(x,u)-F(x,u n+q+nq(pz)”dx
(J FOxu)-F (xu,) )

n-t

(I Vu,—Vu,| dx) U lv,ﬂntdx)m

2

1
+=+
ron

ok

_onar
SUQ“: (x,u)—F(x, Uz)|"”qr+nq(p—2)dxj

(IQ |Vu1—Vu2|sdx)g (IQ 4 77|th){
F(x,u) e (L. ()" and
by (2.3) and the

Noticing that

< nq for p>2,
n+q+nq(p-2)/r
conditions (iii) in Theorem 1.2 we have

I, <Ces. 2.7)
Thus by (2.4)-(2.7) we have
| <Ce. (2.8)

Case 2: p<2 .
[Vu,|<1}. Then

L =A[, (Vul+Vu])™ Vu -V - 7 ox
SﬂjM (|Vu1|+|Vuz|)p72 VU, =V, |u, ~u,| [V 7 dx (2.9)
+ﬂIQ\M (IVU1|+|VUZ|) " IVUI—VUZHJI—UZHVU| dx.

Let M ={xeQ:|vuy|<1 and

To obtain (2.5) in this case, we estimate the first term
on the right-hand of the above inequality. Using the

Hdolder inequality, we have

-2
Ly =B (IVu]+[Vu, ) [Vu, - Vu,[lu, —u, [V 7] dx
< ,BJ.M (IVu,| +|Vu2|)p_1 |u, — U, ||V 7] dx
SZ,BIM|ul—u2||Vn| dx
SZ,B(I Ju, —u,[* dx) ( |V77|q dx)
where q'= cil Noticing that t = — iq/ for p<2,

then q'<t. Thus we obtain

1 '
Ly <2100 (f,Ju— v, ox ) ([ [V dx)' (2.10)
<Ce.

Next we estimate the second term on the right-hand of
the inequality (2.9). Using the Hdélder inequality with

1+1+}—1
s gt

we have

—,BI W (Vuy |+|Vu2|) IVUrVUzIIUrUzIIVUI dx
sﬂIQIVul—Vu2| lu,—u,| [V 77 dx

<A (], Vu-vuf dx)i (], b—uf dx)3
(.[ v A dx): (2.11)

<Ce.

1

N

Similarly, using the Hoélder inequality with
—+—+=-=
s gt

we have

1,=[ JF (. u)=F (x. 0, —u,| [V dx

1

S(IQ|F (%, u,)—F(x, u2)|sdx)g

(1o (1o

Noticing that F(x,u)e (L. ()" and r<s for p<2,
by (2.3) and the conditions (ii) in Theorem 1.2 we have

|, <Ce. (2.12)

Similarly, Using the Hoélder inequality with
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11
p——
t n)

ez
n q s

and poincaré inequality we have

l=], JF 04 u)~F (x,0,) 7 (U, Y o o
S(UF (ou)=F(x uz)|nn+2dX)n+q
(oo ol

g \n'g

S(UF (x,u,)—F(x, u2)|”+qu)
1 1
S t

‘(IQWU1—VU2|SdX) ('[Q|V77|ldx)

Noticing that F(x,u)e (L, ()" and 7 <" for
n+q

p <2, by (2.3) and the conditions (iii) in Theorem 1.2

we have

I, <Ce. (2.13)
Thus by (2.4),(2.10)-(2.13) we have

I <Ce. (2.14)
Hence in both cases we have the estimate

| <Ceg, (2.15)

where C <o is independent of ¢ . This estimate

together with the condition (H3) yields

0< [ (A VU) = A(X, VU,), (U, ~U,)) dx < Cz. (2.16)

Note that here we have used 7 =1 in B. Letting
& —0 we obtain Vu, =Vu,a.e. in B. Since BccQ
was arbitrary, Vu,=Vu, in Q and hence
u, =u, =C =const. in each component of Q.

Now cap,(E)=0 and since the boundary of an
arbitrary bounded domain cannot be of t -capacity
zero, in each component V of Q the condition
U, —u, € WP (V;8V \E) implies C=0. Thus u, =u, in
Q and the theorem follows. This completes the proof
of Theorem 1.2.0
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