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Abstract— In this article we present a parallel 
implementation of the simultaneous methods 
algorithms for finding the roots of polynomials of 
high degree in OpenMP platform. We have 
implemented both a CPU version in C++ and a 
compatible version with OpenMP platform. The 
main result of our work is to emphasize the 
advantages of parallel implementation in solving 
higher degree polynomial equations. This platform 
has the benefit of using a personal computer at 
the optimal usage. 
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I.  INTRODUCTION  

One of the most important problems in solving 
nonlinear equations is the construction of the initial 
conditions which provide rapid convergence of 
numerical algorithm. In this paper we present three 
methods Durand – Kerner, Börsch – Supan and 
Ehrlich – Aberth, which have some initial new 
conditions to ensure convergence of methods for 
solving algebraic equations. The stated initial 
conditions are of practical importance since they are 
computationally verifiable, they depend only on the 
coefficients of a given polynomial, its degree n and 
initial approximations to polynomial roots. [1] 

One of the main problems in the solution of 
equations of the form f(z) = 0 is the construction of the 
initial conditions which offer guaranteed convergence 
of numerical algorithms. These initial conditions 
include an initial approximation z

(0)
 to the root of f with 

which starts the implementation of the algorithm to 

generate the sequence 
 ( )

1,2,...

m

m
z

  of approximations 
tends to the root of f. The study of a general problem 
of the construction of the initial conditions and the 
choice of initial approximation to ensure convergence 
is very difficult and generally can not be solved in a 
satisfactory way, even for simple functions such as 
algebraic polynomials. 

II. THE SIMULTANEOUS METHODS 

In this paper we present three methods that provide 
improved conditions and fast convergence. These 
methods are: Durand – Kerner, Börsch – Supan and 
Ehrlich – Aberth. These conditions depend only on the 

coefficients of the given polynomial 
1

1 1 0( ) n n
nP z z a z a z a
    

 of degree n and the 

vector of initial approximations  (0)(0) (0)
1 , , nz z z . 

Most of iterative methods for the simultaneous 
determination of roots of o polynomial can be 
expressed as:   
 

   ( )( 1) ( ) ( )
1 , , , 0,1,
mm m m

i i n nz z C z z i I m      (1.1)  

 

Where ( ) ( )
1 , ,
m m

nz z  are distinct approximations to 

simple roots 1, , n   respectively, obtained in the m-

th step. The term    ( )( ) ( )
1 , ,
mm m

i i n nC C z z i I   will 

be called the iterative correction term or simply the 
correction. [1] 

Let ( )i  a close neighborhood of the root  i ni I   

and the function    1 1, , , ,n i nz z F z z  that 

satisfies the following conditions for each ni I :  

 

 

   

 

1

1

1

(1) , , 0,

(2) , , 0 ,

(3) , ,

i n

i n i i

n
i n

F

F z z for distinct approximations z

F z z is continuous in

 





 

  
 
If the correction term of iterative method 1.1 has the 
form 

 
 

 
 1

1

, ,
, ,

i
i n n

i n

P z
C z z i I

F z z
    (1.2)                   

for which conditions (1) – (3) hold and (0) (0)
1 , , nz z  are 

the initial approximations to the polynomial roots, in [5] 
proved that this method is convergent if there is a real 
number (0,1)   such that satisfies the following 

inequalities::  

 

   

( 1) ( )

(0) (0) (0) (0)

( ) 0,1, .

( ) ( ) , ,

m m
i i

i j i j n

i C C m

ii z z g C C i j i j I





  

    

 

A. THE DURAND – KERNER METHOD  

One of the most useful simultaneous methods for 
solving a polynomial is the Durand - Kerner 
(Weierstrass) method expressed as follows:  
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 ( 1) ( ) ( ) , 0,1,m m m
i i i nz z W i I m                (1.3) 

 
where 
 

 

 
 

( )

( )
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, 0,1,

m
im
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i j
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In this case the correction term is equal to 
Weierstrass's correction  

 

 1, ,

i
i i

i n

P z
C W

F z z
    

ku      1

1

, ,

n

i n i j n

j
j i

F z z z z i I




   .  

 
The Durand – Kerner Algorithm  

1. Compute initial values  0 1; ; nz z   

2. Let m=1;  
3. do 

4. max 0z  ; 

5. for  j = 0, ..., n-1 

6.   
1m m

j jz z  ;  

7.    1 1m m
j iz H z  ; 

8. Set 

1

max

m m
j j

m
j

z z
z

z


  ; 

9. k=k+1; 

10. while maxz    

 

B. THE BÖRSCH – SUPAN METHOD 

The Börsch – Supan method is a simultaneous 
method, which is determined by the iterative formula  
 

 

( )
( 1) ( )

( )

( ) ( )
1

( , 0,1, ) (1.4)

1

m
m m i
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where ( )m
iW  is given by (1.2). This formula has term 

correction:   
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where   
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The Börsch – Supan algorithm  

1. Compute initial values  0 1; ; nz z   

2. Let m=1;  

3. do 

4. max 0z  ; 

5. for  j = 0, ..., n-1 

6.      
1m m

j jz z  ;  

7.        1 1m m
j iz H z  ;  

8. Set 

1

max

m m
j j

m
j

z z
z

z


  ;  

9. 

 

( )
( 1) ( )

( )
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1

1

m
m m i

i i mn
j

m m
j i j
j i

W
z z

W
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



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
;  

10. k=k+1;  

11. while maxz    

 

C. THE EHRLICH – ABERTH METHOD 

The Ehrilch - Aberth method is one of the most 
efficient methods for finding simple roots 
simultaneously [17, 18]. Its iterative formula [8] is:

 
   

 ( 1) ( )

( )

( ) ( ) ( )
1

1
, 0,1, (1.5)

1

m m
ni i m n

i

m m m
i i jj

j i

z z i I m
P z

P z z z





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






 
As the Börsch – Supan method, the Ehrlich – Aberth 
method (1.5) has cubic convergence.  
In [9] Carstensen demonstrated the identity:  

 

 
1 1

1
ji

i i j i i jj i j i

WP z

P z z z W z z
 

 
   
  
 

   

As compared with the iterative formulas (1.4) and 
(1.5), we conclude that they are equivalent. 
Theoretically, these two formulas should give the 
same results, but in practice, the effect of round - off 
error due to the use of a single – precision arithmetic 
brings that approaches computed by (1.4) and (1.5) to 
have a small difference. However, this effect is 
negligible in the first iterations.    
 
The Ehrlich – Aberth algorithm  

1. Compute initial values  0 1; ; nz z   

2. Let m=1;  

3. do 

4. max 0z  ; 

5. for  j = 0, ..., n-1 

6.      
1m m

j jz z  ;  
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7.        1 1m m
j iz H z  ;  

8. Set 

1

max

m m
j j

m
j

z z
z

z


  ;  

9. ( 1) ( )

( ) ( )

1

1
1

m m
i i
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m m
i i jj i

z z
W
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
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;  

10. k=k+1;  

11. while maxz    

III. APPLICATION 

In this section will compare the execution time in 
sequential algorithms (in C++ programming language) 
and in parallel algorithms (in OpenMP platform) 
mentioned above.  

We consider the cubic polynomial 3 26 11 6x x x   ,  

with roots 1, 2 and 3. Dispensing with the 
parameterization that was introduced in [19] for 
special purposes, we take directly the following initial 
approximations, which add up to zero and allow 
comparison  

 (0) (0) (0)
1 2 30.5, 1.5, 2.5x x x     

 

TABLE I.   

The 
Method 

The Execution Time 
Example 

 3 26 11 6x x x    

C++ OpenMP 
The 

Roots 
The 

iteration 

Durand – 
Kerner  

8.174s 6.786s {1,2,3} 6-th 

Börsch – 
Supan  

7.831s 5.741s {1,3,2} 5-th 

Ehrlich – 
Aberth  

7.238s 6.053s {1,3,2} 5-th 

 

IV. CONCLUSIONS  

As seen from Table 1, OpenMP execution time is 
more quail than the execution of the same algorithm in 
C++. The execution of the Durand - Kerner algorithm 
in OpenMP approximates the roots in the sixth 
iteration and for a time 1.2045 times faster than its 
execution in C++. The execution of the algorithms of 
three other methods in OpenMP approximate the 
roots in the fifth iteration and the time of execution in 
OpenMP of Börsch – Supan algorithm is 1,364 times 
faster than the time of its execution in C++, while the 
execution time of the Ehrlich - Aberth algorithm in 
OpenMP is 1.1978 times faster than its execution time 
in C++. So we concluded that: 
By testing these three simultaneous methods we see 
that the OpenMP platform is more qualitative than the 
sequential execution. As seen on the platform 

OpenMP implemented in our algorithms, their 
performance increases and this happens in the same 
drive hardware, with the same parameters, just 
exploiting parallelism and increasing the use of all 
potential multithread processor.  
OpenMP is well adapted to intensive computing. We 
parallelized the Durand-Kerner algorithm, Börsch – 
Supan algorithm and Ehrlich – Aberth algorithm for 
polynomial roots - finding and we obtained 
encouraging results. Indeed, the experimental study 
confirms that our program determines the same roots 
than the sequential version for high degrees. The 
contribution of the parallel solution allows us to 
accelerate the execution time and to study even more 
important degrees of polynomial.  
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