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Abstract—The emission of greenhouse gases 

varies non-linearly with vehicle’s speed and 
acceleration, which indicates a possibility to 
optimize it through mobility control on urban 
corridors. A 1.5-mile 4-lane highway section with 
one on-ramp meter was modeled and simulated at 
various scenarios by adjusting red-time interval of 
the meter. It is observed that in light or moderate 
traffic senarios, the optimal red time interval 
increases with traffic density. However, when 
traffic becomes very heavy or jammed, the optimal 
red time actually decreases. Our simulation also 
shows the overall emission decreases with 
highway speed limit. The fact that the red time 
interval needs to be reduced under heavy traffic in 
order to reduce CO2 emission indicates a trade-off 
between improving highway throughput and 
reducing CO2 emission. Optimization plans solely 
targeting for higher throughput not necessarily 
leads to lower emission, on the contrary, it may 
increase the emission in some cases.  

Keywords—Traffic modeling, highway mobility, 
emission optimization 

I.  INTRODUCTION  

While “global warming” gradually turns into a fact 
rather than a hypothesis, people are more and more 
concerned about the greenhouse emissions generated 
from both civil and industrial sources. President Obama 
pledged at the United Nations conference in 
Copenhagen to reduce American greenhouse 
emissions by 17 percent by 2020 compared with 2005 
level. This has stimulated many activities in both city- 
and state-levels aiming at reducing greenhouse gas 
emission from a variety of sources.  

Although electricity generation, industrial wastes, 
neighborhood activities (dry cleaners, lawn mowers etc) 
and farming all contribute to the greenhouse emissions 
in southern California, automobile emission remains to 
be the most challenging problem due to the rapidly 
increasing populations and expanding urban areas 
during recent decades. This stems from the use of 
gasoline for power. The burning of cheap, ordinary 
gasoline gives off not only pollutants (hydrocarbons 
(HC), carbon monoxide (CO), and nitrogen oxides (NO)) 
[1], but also carbon dioxide (CO2) which is considered 
the major factor for global warming. These products 

contribute greatly to smog, ozone, cancer, lung disease, 
illness, and the greenhouse effect. A gallon of gasoline 
is assumed to produce 8.8 kilograms (or 19.4 pounds) 
of CO2 [2]. In cities such as Los Angeles, California, the 
problem is extremely apparent due to the large 
population of automobile vehicles. 

While replacing existing gasoline based vehicles 
with those using clean energies is the ultimate solution, 
it is rather a long term process. Therefore, the first 
solution in mind may be to reduce the number of 
vehicles on road by providing public transportation etc. 
However, due to highly distributed neighborhoods and 
business areas, the public transportation can satisfy 
only a very limited percentage of residence, therefore 
reducing number of vehicles on road has limited 
success in southern California areas. Nevertheless, 
there is another option we may chose: reduce the 
greenhouse gas emission through intelligent operation 
control on urban corridors, including highways and 
major local roads. It has been reported that the rate of 
greenhouse emission from running vehicles highly 
correlates with their speed as well as acceleration [3,4]. 
Moreover, the emission rate is also tightly correlates to 
the vehicle type, for example, heavy trucks emit 4 times 
more than passenger cars on average [4-6]. The 
difference may enlarge during stop-and-go conditions 
as heavy vehicles need more propulsion to accelerate. 
An intuitive learning from these facts is that if all 
vehicles are moving smoothly (without frequent 
accelerations and brakes) at a moderate speed, the 
overall emission will be minimized. This can be 
achieved by implementing a variety of intelligent 
operation strategies, such as adaptive ramp meter 
control.  

California is one of very few states that started 
intelligent transportation systems’ (ITS) implementation 
in 70’s. Nowadays, California already has relatively 
matured ITS infrastructures, including Freeway 
management systems, Incident management systems, 
Arterial management systems etc. California also took 
lead in the development of a performance 
measurement system (PeMS) that will serve 
transportation professional and decision makers to 
actively control the mobility on corridors based on real-
time road conditions. Adaptive ramp meter is just one 
example of these intelligent operations strategies.  
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Current studies on adaptive roadway controls aims 
mostly on improving traffic efficiency or highway 
mobility [8-12]. Controller design methods vary from 
artificial neuron networks [8-9], model predictive control 
[10-11, 13] to fuzzy logic [12]. Few of them take 
greenhouse emissions into consideration. A recent 
work of Zegeye [13] considers optimizing pollutant 
emissions on roadways through active speed limit 
control. Although the road model they considered in 
this work is a simple straight road without ramp and 
local roads, they illustrate that a traffic control strategy 
aiming solely at reduction of total time spent does not 
necessarily reduce the level of emission. B. Park et. al 
[16] compared the average fuel consumption between 
strategies aiming to reducing queuing time and 
strategies aiming to minimize fuel consumption on local 
arterials. They also concluded that strategies aiming to 
reduce queuing time not necessarily reduce emission. 
So a specific controller aiming at reducing emission is 
necessary. This study contributes to the field by 
considering a comprehensive highway model with 
on/off ramps and an adjustable ramp meter. The 
roadway control is achieved by ramp meter control, 
which is more practical now compared with active 
speed control.  Our goal is to monitor the effect of ramp 
meter control on total greenhouse emission, therefore, 
suggest a feasible road control strategy in terms of 
minimizing the greenhouse emission. 

II. DATA COLLECTION 

Collecting real world traffic data, such as incoming 
traffic flows, class of vehicles and percentage, speed of 
movement, traveling time in construction zone, is 
necessary to build a model that produces reliable 
results. In this project, two types of data are needed, 
vehicle greenhouse gas emission data and the real 
world traffic data.  

A. Vehicle Emission Data 

The CO2 emission data were collected through 
internet resources. Nowadays, all vehicles on market 
are required to be accompanied by a parameter called 
global warming score. Therefore, the CO2 emission of 
each type of vehicle could be found from a variety of 
websites [4-6]. This eases our data collection 
significantly.  To further simplify our model, we 
categorized the vehicles into 6 categories, i.e. Cars, 
SUVs, Hybrid vehicles, Light-duty trucks, Buses and 
Cargo Trucks. The collected emission data for each 
type of vehicle are then scaled to speed dependent 
profile according to [15]. Fig.1 shows emission vs. 
speed plot for passenger cars. This result is an average 
of 11 different models of gasoline passenger cars, 
including Honda, Toyota, Audi and many more. SUVs, 
Pick-up trucks, Hybrid vehicles, Cargo trucks and 
Buses all show a similar trend of variation as a function 
of speed.  

In addition to speed, acceleration is another factor 
affecting CO2 emission. Speed variation is expected 
frequently on urban corridors, especially in crowded LA 
area. Therefore, consideration of instantaneous 
acceleration will improve the validity of our model. 

Panis et al. has developed a model of CO2 emission as 
a function of acceleration [14]. Their model is scaled 
and combined with our velocity data for our CO2 
emission calculation, which will be explained later in 
this article. 

 

Fig. 1 Passenger Car CO2 emission rate (grams/mile) as a 
function of speed [4-6]. 

B. Traffic Data 

Collecting real world traffic data, such as incoming 
traffic flows, class of vehicles and percentage, is 
necessary to build a microscopic traffic model that 
produces reliable results. For this part of data 
collection, we used video monitoring method. We 
placed digital camcorder on interested roadway 
sections at selected time slots of a day. We took video 
recording of I-710 south bound at 9:00am, 12:00pm, 
4:00 pm and 7:00pm. Each video recording was about 
20 minutes long. The vehicle counts and vehicle type 
are then documented. The data are collected at 4 
different locations: before the on ramp, on the on-ramp, 
on the off ramp and after the off-ramp. The raw data is 
then formatted into Origin-Destination matrix as shown 
in Table 1. Fig. 2 below shows a snapshot of our raw 
video recordings.  

 

Fig. 2 Video snapshot on I-710 southbound. 

III. MODEL DEVELOPEMENT 

In this study we modeled a 1.5 mile long, 4-lane 
highway section, single direction, with an on-ramp and 
an off-ramp using PARAMICS software.  

A. Paramics Software 

PARAMICS software (by QUADSTONE) is a 
microscopic  traffic  simulation  package,  which  
supplies  modeling  ability  to  simulate  complicated  
road  networks  and  monitor  individual  section  of  
highways . In PARAMICS, the instantaneous traffic 
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data, such as traffic flow, instantaneous velocity and 
instantaneous acceleration, are collected by placing 
loop detectors on interested locations. The collected 
data are in .cvs format as a function of time. This eases 
the total emission calculation as the total emission rate 
is not only changing with velocity, but also the 
acceleration. Moreover, the emission needs to be 
monitored at each time point and summed to reach the 
total emission. So, a velocity and acceleration data at 
individual time point is necessary.  

In PARAMICS, the traffic flow is controlled by Origin-
Destination Matrix (OD Matrix), i.e. the number of 
vehicles moving from a certain Origin to a certain 
Destination. The OD matrix is derived from the 
collected traffic data. Placing a Ramp meter signal is 
also convenient in PARAMICS. The signal profile, i.e. 
red interval and green interval, can be easily adjusted 
to monitor different control strategies. 

B. Traffic Model Configuration 

Fig. 3 shows a configuration of the road section to 
be modeled. Detectors are placed on main highway 
only. Each lane is monitored by its individual detectors.  

 

Fig. 3 Road configuration of a 4 lanes highway section with 

one on ramp and one off ramp. 

 

Fig. 4 Screen shot of PARAMICS model. 

Fig. 4 shows a screen shot of our PARAMICS 
model. The left hand side panel is the complete view of 
the road model. Zone 1 is the incoming origin of 
highway, zone 2 is the destination of highway, zone 3 
is the origin of on-ramp, zone 4 is the destination of off-
ramp. The OD matrix controls the number of vehicles 
traveling between zones. The top right panel is the 
blow-up of detectors. It can be seen that the detectors 
are equally spaced. The bottom right panel is the blow-

up of ramp meter signal. The signal in PARAMICS 
could be either a 3 phase signal (green-yellow-red) or 
a two phase only (green-red). In this study, since we 
are modeling a ramp meter, a two phase signal profile 
is used with fixed green time interval. 

Table 1 Origin-Destination Matrix for 6 types of vehicles for 
40000 vehicle/hour simulation 

Zone 1 2 3 4

1 0 15452 0 900

2 0 0 0 0

3 0 1000 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 3784 0 208

2 0 0 0 0

3 0 192 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 8652 0 444

2 0 0 0 0

3 0 504 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 3728 0 176

2 0 0 0 0

3 0 156 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 4256 0 160

2 0 0 0 0

3 0 256 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 132 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

Bus

Cars

Hybrid

SUV

Pickup

Cargo

 

Table 1 displays the OD matrix used for a typical 
traffic density, 40000 vehicles per hour. In our model, 
six types of vehicles are considered, i.e. Cars, Hybrid 
vehicles, SUVs, Light-duty trucks, Buses and Cargo 
trucks. A specific OD matrix is used for each of them. 

http://www.jmest.org/
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The matrix displays the number of vehicle traveling 
from a specific original zone to a specific destination 
zone. The vertically numbered zones are origins and 
the horizontally numbered zones are destinations.  

The model calibration was done by tuning the global 
simulation parameters with the goal to minimize the 
vehicle count difference at specific locations between 
simulation and video recording. The parameters being 
adjusted include: queue gap distance, queuing speed 
and mean driver reaction time. After calibration, the 
queue gap distance is set at 8.00 ft; queuing speed is 
set at 9.00 mph; and mean driver reaction time is set at 
0.45 s. The default values for those parameters are 
32.81 ft, 4.47 mph and 1.00 s, respectively. The huge 
difference between default and calibrated value 
indicates the necessity for calibration. 

C. Emission Model 

The total CO2 emission is then calculated using the 
following formula.  


 


n

i j

jj GramsYNEmission
1

6

1

)06214.0(  

Where, 

 i = ith section of the freeway (The freeway is divided in 

to ‘n’ sections, each of 100m length, i.e. 0.06214 mile) 

j = jth vehicle type 

Nj = Number of vehicles of type ‘j’ (on the freeway section 

i) 
Yj = Emission from the vehicle of jth type 

 

j=1: REGULAR CARS  

Y1=Max [0, A1 + A2Vn(t) + A3Vn(t)² + A4An(t) + 
A5An(t)² + A6An(t).Vn(t)] 

j=2: HYBRID CARS  

Y2= Max [0, B1 + B2Vn(t) + B3Vn(t)² + B4An(t) + 
B5An(t)² + B6An(t).Vn(t)] 

j=3: SUVS 

Y3= Max [0, C1 + C2Vn(t) + C3Vn(t)² + C4An(t) + 
C5An(t)² + C6An(t).Vn(t)] 

j=4: PICKUP TRUCKS  

Y4= Max [0, D1 + D2Vn(t) + D3Vn(t)² + D4An(t) + 
D5An(t)² + D6An(t).Vn(t)] 

j=5: BUSES 

Y5= Max[0, E1 +E2Vn(t) +E3Vn(t)² + E4An(t) + 
E5An(t)² + E6An(t).Vn(t)] 

j=6: CARGO TRUCKS 

Y6= Max[0, F1 + F2Vn(t) + F3Vn(t)² + F4An(t) + 
F5An(t)² + F6An(t).Vn(t)] 

  , where Vn(t) represents Instantaneous Speed 
(mile/hr); An(t) represents Instantaneous 
Acceleration (ft/s2). 

Table 2 Model Coefficient for 6 types of vehicles.  

i

= 

1 2 3 4 5 6 

A

i 

887.2

2 

-

34.97

9 

0.430

4 

4.87 2.86 2.0

8 

B

i 

522.4 -

20.59

6 

0.253

5 

4.09 2.99 1.2

7 

C

i 

928.1

5 

-

36.59

3 

0.450

3 

5.09 2.99 2.1

8 

D

i 

1061.

6 

-

41.85

4 

0.515

1 

5.82 3.42 2.4

9 

Ei 3342.

6 

-

131.7

8 

1.621

7 

23.2

9 

13.6

8 

9.9

7 

Fi 4240.

3 

-

167.1

8 

2.057

2 

23.2

8 

13.7

2 

9.9

3 

 

In Fig. 5, we plot the modeled vehicle emission as a 
function of velocity only (set acceleration to zero). In 
Fig. 6, we present the CO2 emission as a function 
acceleration only (set velocity to 65mph). 

 

Fig. 5 Modeled Emission vs Velocity plots. 
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Fig. 6 Emission vs Acceleration plot with velocity fixed at 
65mph. 

IV. RESULTS AND DISCUSSIONS 

A. Effect of Red Time Interval 

To study the effect of ramp meter’s red time interval, 
we first simulated a light traffic scenario, i.e. 20000 
vehicles/hour. The speed limit is set to 65 mph, which 
is the current speed limit on I-710. The ramp meter’s 
red time interval is then tuned to 0s, 5s, 10s, 15s, and 
20s, respectively, and the point data are collected. 

Each loop detector in the network will generate 4 
point data files, one for each lane. At each detector 
location, a vehicle specific emission rate is calculated 
by applying the vehicle specific formula described 
earlier. It is assumed that the vehicle maintains the 
same emission rate until it reaches the next detector, 
where the emission rate is calculated again. The 
emission rate is then multiplied by the distance 
between detectors (0.06214 mile in our case) and 
divided by total vehicle counts to give average emission 
per vehicle. Table 3 gives a snapshot of a cleaned point 
data file after sorted by vehicle types.  The program is 
set to collect point data every 2 seconds and the 
simulation time is set to 2 hours. CO2 emission is then 
calculated for each ramp meter timing scenario and the 
result is plotted in Fig. 7. 

Under light traffic senario, the average emission 
drops to a minimum if the red time interval of ramp 
meter is set to 5s. This indicates it is feasible to 
minimize the emission on highway by adjusting ramp 
meter timing. Further prolonging the red time interval 
results in increased average emission.  This probably 
because all vehicles are moving relatively smoothly in 
light traffic situation, therefore, the average speed 
becomes the dominant factor for overall emission. As 
we increase the red time interval, less vehicles get onto 
main freeway. This results in higher average speed 
since most of the drivers tends to drive at or beyond the 
speed limit (65mph). From the emission profile 
presented in Fig 1, one can observe the vehicle 

emission is larger than average at 65 mph. Therefore, 
the emission shows an increasing trend as we increase 
the red time interval. This result suggests the ramp 
meter timing should be adjusted to shorter red time 
interval during light traffic in order to minimized the 
average emission. 

Table 3 Snapshot of cleaned simulation data for 20000 
vehicle/hour, red time interval=0s.  

Time Type ID Flow Headway Gap Speed Acc

170.1 23 17 1475 2.441 2.18 70.71 -0.001

177.1 23 46 510 7.054 6.864 69.21 -0.011

180.7 23 28 1359 2.65 1.941 69.91 -0.025

184 23 26 1094 3.291 3.098 66.44 0

186.1 23 25 3121 1.153 0.917 66.64 0.596

191.8 23 49 3428 1.05 0.772 64.35 0

194.7 23 27 3626 0.993 0.749 64.67 1.071

195.8 23 60 3418 1.053 0.845 65.07 1.833

198.8 23 47 3631 0.991 0.751 65.15 -0.004

199.9 23 80 3431 1.049 0.843 65.15 -0.007

200.5 23 56 6053 0.595 0.389 65.07 -0.016  

 

Fig. 7 Emission vs. Red time interval of ramp meter for 20000 
vehicle/hour scenario. 

B. Effect of Traffic Density 

We then ran the simulation for a variety of traffic 
density using scales distribution of vehicle types. The 
results are summarized in Fig. 8. 

 

Fig. 8 Emission vs. Ramp meter red time for different traffic 
density.  
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Let’s first focus on the optimal red time interval. It 
can be observed that ramp meter red time interval have 
an impact on vehicle emission for all traffic density. 
However, the optimal red time interval varies 
significantly among different traffic densities.  For 
example, the optimal red time interval for 20000 
vehicle/hour senario is 5 seconds, but it is 15 seconds 
for 40000 vehile/hour senario; 20 seconds for 60000 
vehicle/hour senario and 10 seonds for 80000 
vehicles/hour senario. To further discuss the impact of 
traffic density on optimal red time interval, we plot the 
optimal red time interval vs. traffic density in Fig. 9.  

A typical jam-free traffic density is considered to be 
50-60 vehicles per mile per lane. On the other hand, 
200-250 vehicles per mile per lane can be considered 
jam. In our model, we are considering a 4 lane highway 
with a speed limit of 65mph. After a simple conversion, 
13000 to 15600 vehicle per hour can be considered 
light (or jam-free) traffic; and 52000 to 65000 vehicle 
per hour can be considered jam. In our simulations, 
20000 vehicle/hour senario could be considered as 
light traffic, 40000 vehicle/hour and 60000 vehicle/hour 
senarios could be considered as moderate traffic,  and 
80000 vehicle/hour senario is considered heavy 
(jammed) traffic.  

 

Fig. 9 Optimal Red time interval v. Traffic density. Speed limit 
is 65mph; green time interval is fixed at 5 seconds. 

From Fig. 9, we can see that in light or moderate 
traffic senarios, the optimal red time interval increases 
with traffic density. However, when the traffic becomes 
very heavy or jammed, the optimal red time actually 
decreases. In light traffic, as we mentioned in previous 
section, the speed is the dominant factor for average 
emission because there are very few stop-and-go 
situations. Over-adjust the red time interval results in 
higher average speed on main lanes, therefore, higher 
emission. In moderate traffic, it is observed that the 
overall trend of emission reduces with increase of red 
time interval. This is because the vehicle’s movement 
is no longer as smooth as in light traffic situation. Some 
stop-and-go can be observed during our simulation. 
Therefore, increasing red-time interval could ease this 
situation by allowing few vehicle get onto the main 
lanes. However, when traffic is already jammed on 
main lanes, i.e. the heavy traffic senario. Limiting the 
number of vehicles getting into the freeway could not 
effectively reduce the number of stop-and-gos. On the 

other hand, it may give chances for drivers to do more 
frequent accelarations, as they see more spaces in 
front of them. Therefore, prolonging the red-time 
interval beyond threshold will increase the emission. 

 
Fig. 10 Emission vs. Ramp meter red time interval for 20K/hr, 
40K/hr, 60K/hr and 80K/hr. 

In Fig. 10, we combine the emission data of all traffic 
density scenarios into one plot. As the traffic density 
increases, the average emission decreases. This 
indicates that the average speed dominates CO2 
emission more than the acceleration does. In heavier 
traffic, the overall speed of the vehicles is reduced, 
which explains the reduction in emission.  

 

Fig. 11 Effectiveness of ramp meter control vs. Traffic density. 
Effective is calculated using the ambient emission minus the 
optimized emission in gram. 

Another question we may ask here is: how effective 
is the ramp meter control when compared to ambient 
scenarios in terms of CO2 emission? Implementing 
ramp meter control is costly; therefore, we want to 
know how much we could benefit from that. Here, we 
use the difference between optimized emission and 
ambient emission (i.e. not ramp meter at all) to 
measure the effectiveness. For example, in 40000 
vehicle/hour scenario, ambient emission is 1374.66 
gram, while the optimized emission is 1257.7. The 
effectiveness of ramp meter control is 116.76 gram per 
vehicle in term of CO2 reduction. Fig. 11 plots the 
effectiveness as a function of traffic density. The 
effectiveness increases with traffic density. This result 
suggests implementing ramp meter control to heavy 
traffic density situations tend to achieve better return. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 8, August - 2016 

www.jmest.org 
JMESTN42351675 5355 

C. Effect of Speed Limit 

From the simulation of 65mph scenario, we 
observed that speed is the dominant factor controlling 
the CO2 emission. A direct speed control strategy is to 
regulate speed limit. We then conducted simulation for 
a series of hypothetical speed limits, i.e. 60mph and 
55mph. Fig. 12, Fig. 13 and Fig. 14 displays emission 
result for light traffic situation (20000 vehicle/hour), 
moderate traffic situation (40000 vehicle/hour) and 
heavy traffic situation (80000 vehicle/hour), 
respectively. 

 

Fig. 12 Light Traffic Scenario -- Average emission is plotted 
as a function of red time interval, for 65mph, 60mph and 55 
mph scenarios, respectively. 

 
Fig. 13 Moderate Traffic Scenario -- Average emission is 
plotted as a function of red time interval, for 65mph, 60mph 
and 55 mph scenarios, respectively. 

Overall, the average emission per vehicle 
decreases as we reduce the speed limit. This agrees 
with previous our previous findings, indicating speed is 
the dominant factor in terms of CO2 emission. 
Obviously, the speed control has more significant 
effects on light traffic. Our results show that reducing 
speed limit from 65mph to 55mph could reduce the 
overall emission by nearly 20% for light traffic situation; 
but only 8% emission reduction is observed for heavy 
traffic situation. This is kind of opposite to ramp meter 
control. In previous section, we demonstrated that 
implementing ramp meter control works better for 
heavy traffic than light traffic situations. 

 
Fig. 14 Heavy Traffic Scenario -- Average emission is plotted 
as a function of red time interval, for 65mph, 60mph and 55 
mph scenarios, respectively. 

V. CONCLUDING REMARKS 

We developed a microscopic model of CO2 
emission as a function instantaneous speed and 
acceleration. A Paramics model of a 1.5 mile 4-lane 
highway section containing one on-ramp (metered) and 
one off-ramp is developed and simulated under 
different traffic density scenarios and ramp meter 
control strategies. It is observed that in light or 
moderate traffic senarios, the optimal red time interval 
increases with traffic density. However, when the traffic 
becomes very heavy or jammed, the optimal red time 
actually decreases. Our simulation also shows the 
overall emission decreases with highway speed limit. 
The fact that the red time interval needs to be reduced 
under heavy traffic in order to reduce CO2 emission 
indicates a trade-off between improving highway 
throughput and reducing CO2 emission. Optimization 
plans solely targeting for higher throughput not 
necessarily leads to lower emission, on the contrary, it 
may increase the emission in some cases. It is also 
observed that implementing ramp meter control works 
better for heavy traffic than light traffic situations; while 
speed limit control works better for light traffic 
situations. This suggests implementing both active 
ramp meter control and active speed control could 
potentially minimize the average emission.  
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