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Abstract—This study proposes an algorithm for 
terrain-specific empirical model adaption, termed 
the Least Squares Approximation based 
Algorithm (LSAA). Using path loss data obtained 
from the rural area between the cities of Jos and 
Abuja, Nigeria, the proposed LSAA is statistically 
compared for adaptation accuracy with two 
existing techniques. The first technique has to do 
with the use of the Okumura GAREA (Gain due to 
type of environment) obtained from the Okumura 
Curves to adapt the Okumura model to a given 
terrain, while the second uses a computed Root 
Mean Squared Error (RMSE) as correction factor. 
Results of the Okumura empirical propagation 
model adaptation to the terrain in question using 
the three techniques show that the proposed 
LSAA gives the least adaption error of 2.18dB, 
compared with 8.95dB for the Okumura GAREA and 
9.41dB for the commonly used RMSE adaptation 
technique. Furthermore, tests for capacity to 
generalize using new data sets indicate that the 
LSAA adapted Okumura model with a geometric 
mean prediction error of 4.53dB, offers greater 
path loss prediction accuracy than its 
counterparts.  

Keywords—Least Squares Approximation; 
Okumura Model; Path Loss Predictin; Empirical 
Model Adaptation 

 

I. INTRODUCTION 

Adequate knowledge of radio propagation 
characteristics across a specific terrain is an essential 
requirement in the planning of a wireless 
telecommunications network. Since path loss serves 
as the dominant factor for the characterization of a 
radio link, there is need for accurate path loss 
prediction so that the radio path can be optimally 
engineered. Path loss varies from one environment to 
the other according to the physical nature, dimensions 
and geometries of the various obstacles that perturb 
radio propagation. Hence, it is of high necessity to 
create prediction models that are not only very 
accurate, but also computationally efficient.  

 Although empirical models are quite simple to 
implement, they are not universally applicable due to 
terrain diversity across the globe, in spite of the 

availability of correction factors. As a result, empirical 
model adaptation or optimization is one of the 
numerous methods used by researchers to develop 
terrain-specific radio propagation models. The most 
popular technique for adapting empirical models has 
to do with the introduction of a computed error as 
correction factor, into empirical model expressions, as 
demonstrated by [1,2,3,4]. However, these correction 
factors in most cases only modify the constant within 
an expression, disregarding the slope coefficient, 
which is a dominant factor in determining how well an 
empirical model fits (or is adapted to a given terrain). 
By implication, if the slope of the best fit curve through 
measured path loss points significantly differs from 
that of the empirical model expression, such a 
technique will be highly inaccurate. As a result, these 
techniques are limited in terms of ability to accurately 
adapt empirical models to terrains due to terrain 
diversities. Hence, it is necessary to develop a 
technique that does not only provide the best possible 
fit for the empirical model, but also ensures that the 
adapted empirical model is robust when tested with 
new data. 

In this study, a Least Squares Approximation 
based Algorithm (LSAA) for adapting empirical models 
is proposed. The LSAA provides the best possible fit 
for an empirical model by directly fitting the empirical 
model onto the best fit curve through measured path 
loss points, thereby ensuring greater correlation with 
the measured data. Using the Okumura empirical 
model, the new technique is statistically compared for 
adaptation accuracy with two existing techniques: i) 
the use of Okumura GAREA (Gain due to type of 
environment) obtained from the Okumura Curves to 
adapt the Okumura model to a given terrain, and ii) 
the use of a computed Root Mean Squared Error 
(RMSE) as correction factor. Furthermore, the LSAA 
adapted Okumura model is analytically compared for 
path loss prediction accuracy with those adapted 
using the mentioned existing techniques. As case 
study, at an operating frequency of 900MHz, the rural 
area between the Nigerian cities of Jos and Abuja is 
considered. This terrain matches Hata’s description of 
a suburban area. 

II. THE OKUMURA MODEL 

The Okumura model [5,6] was formulated based 
on empirical data collected in the city of Tokyo, Japan. 
It is one of the most widely used empirical propagation 
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models for path loss prediction across various terrain 
types, classified as urban, suburban, quasi-open and 
open areas. This model is applicable for frequencies 
in the range 150 MHz to 1920 MHz (although it is 
typically extrapolated up to 3000 MHz) and distances 
ranging from 1 km to 100 km. The Okumura model 
path loss equation is given by (1) 

𝐿 = 𝐿𝐹𝑆𝐿 − 𝐴𝑀𝑈 − 𝐻𝑀𝐺 − 𝐻𝐵𝐺 − 𝐺𝐴𝑅𝐸𝐴 (1)  

Where, 

- L = Median path loss in Decibels (dB) 

- LFSL = Free Space Loss in Decibels (dB) 

- AMU = Median attenuation in Decibels (dB) 

- HBG = Base station antenna height gain factor 
given by 20log(hb/200) for 30m<hb<100m 

- HMG = Mobile station antenna height gain 
factor given by 10log(hm/3) for hm<3m 

- GAREA=Gain due to type of environment  

The Gain due to type of environment and Median 
attenuation are obtained from the Okumura curves in 
shown in Fig. 1. 

  

Fig. 1. Okumura Curves for Correction Factor (GAREA) and Median Attenuation 

 

III.  DISCRETE LEAST SQUARES 
APPROXIMATION 

As described by [7], least square approximation 

involves fitting a polynomial function 𝑃(𝑥) to a set of 
data points (𝑥𝑖 , 𝑦𝑖)  having a theoretical solution 
depicted by (2).  

𝑦 = 𝑓(𝑥) (2) 

The procedure involves minimizing the squares of 
errors, taking into consideration a data set that 
satisfies the theoretical solution to equation (2) as 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) . (𝑥𝑛, 𝑦𝑛). If the polynomial to be fitted 
to these set of data points is denoted by 𝑃(𝑥), the 
curve or line represented by 𝑃(𝑥) is considered the 

best fit to 𝑓(𝑥) , if the difference between 𝑃(𝑥𝑖) and 
𝑓(𝑥𝑖), where i = 1, 2, . . . , n, is least. That is, the sum 

of the differences 𝑒𝑖 = 𝑓(𝑥𝑖) − 𝑃(𝑥𝑖), where i = 1, 2, . . 
. , n, should be the minimum. The sum of the 

differences 𝑒𝑖 may add up to zero, thereby given the 
wrong error for the approximating polynomial. As 

such, the square of these differences are preferable. 
In other words, the sum of the squares of the 
deviations to get the best fitted curve is considered. 
Thus the required equation for the sum of squared 
errors that requires minimization is then written as (3) 

𝑆 = ∑ [𝑓(𝑥𝑖) − 𝑃(𝑥𝑖]
2𝑛

𝑖=1  (3) 

Where, 

 𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +.+a𝑛𝑥

𝑛 (4) 

In order to derive the discrete function that best fits 
the given data points, equations (2) and (4) are 
substituted in (3) to give (5). 

𝑆 =∑[𝑦𝑖 − ( 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 +.+𝑎𝑘𝑥𝑖

𝑘)]2 (5)

𝑛

𝑖=1

 

To minimize 𝑆, (5) is differentiated with respect to 
𝑎𝑖  and equated to zero. Therefore, differentiating (5) 
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partially with respect to 𝒂𝟎 , 𝒂𝟏,. 𝒂𝒌 and equating each 
to zero, gives (6), which can be rewritten as (7).  

Solving (7) to determine 𝒂𝟎  ,  𝒂𝟏 ,.  𝒂𝒌 , and 
substituting into (4) gives the best fit curve to (2). The 
set of equations (7) are called the Normal Equations 
of the Least Squares Method.  

 

 

IV. REVIEW OF ADAPTATION TECHNIQUES 

A. The Okumura Adaption Technique using 
GAREA 

The Okumura adaption technique using GAREA 

(Gain due to type of area) is quite simple and straight 
forward. It has to do with subtracting the GAREA value 
obtained from the Okumura Correction Factor curves 
in figure 1, from the Okumura Model expression (1). 

B. Adaption by Computed Correction Factor 

A widely used technique for adapting an empirical 
propagation model to a given terrain involves the use 
of a computed correction factor to compensate for 
differences between measurements and the empirical 
propagation model prediction. For example, as stated 
earlier, the use computed Root Mean Squared Error 
(RMSE) as correction factor was demonstrated by 
[1,2,3,8]. The RMSE error is given by  

𝑅𝑀𝑆𝐸 = √∑
(𝑀− 𝑃)2

𝑁−1
𝑁
𝑖=1  (8)  

Where, M is Measured Path Loss, P is Predicted 
Path Loss and N is Number of paired values. 

Adaptation is achieved by subtracting the RMSE 
from the model expression if the model overestimates 
the path loss; else it is added to the model expression 
if the reverse is the case. 

 

V. MATERIALS AND METHODS 

A. Received Power Measurement and Path 
Loss Computation 

Received power measurements were obtained at 
an operating frequency of 900MHz from ten MTN 
(Mobile Telecommunications Network) Base Stations 
situated within the rural area between the cities of Jos 
and Abuja, Nigeria. The instrument used was a 
Cellular Mobile Network Analyser (SAGEM OT 290) 
capable of measuring signal strength in decibel 
milliwatts (dBm), held at an average height of 
1.5meters. Mobile network parameters obtained from 
MTN include the following: Mean Base Station height 
is 33meters, Mean Effective Isotropic Radiated Power 
(EIRP) is 46dBm.Received power (PR) readings were 
recorded at intervals of 0.3km away from the Base 
Station, after an initial separation of 0.1kilometer. 
Corresponding path loss values (LP), were computed 
using (3), 

 𝐿𝑃 = 𝐸𝐼𝑅𝑃 − 𝑃𝑅 (9)  

The EIRP was determined from the expression 

𝐸𝐼𝑅𝑃 = 𝑃𝑇 − 𝐿𝐹 + 𝐺𝑇 (10) 

Where, 𝑃𝑇 is Transmitted power, 𝐿𝐹 is Feeder Loss 
and 𝐺𝑇 is Transmitter gain. 

B. The Least Squares Approximation based 
Algorithm 

The proposed Least Squares Approximation based 
Algorithm (LSAA) provides the best possible fit for an 
empirical model by fitting the model curve onto the 
best fit least squares curve derived from the 
polynomial representing measured path loss data 
points. The technique has to do with the use of a 
quotients function as a multiplication factor to adapt 
an empirical model to a given terrain. It involves 
multiplying the empirical model expression by the 
quotients function, which is dependent on transmitter 
– receiver separation in kilometres. This distance 
dependent function represents the best fit least 
squares polynomial representing the quotient points, 
which are obtained by dividing the best fit Least 
Squares polynomial representing measured path loss 
points, by the empirical model expression at various 
transmitter-receiver separations. The algorithm is as 
follows: 

Step1: Obtain the best fit Least Squares quadratic 
function for representing measured path loss points by 

solving (11), derived from (7), while replacing 𝑦𝑖 with 
measured path loss 𝐿𝑖, and 𝑥𝑖with transmitter-receiver 

separation (in kilometres) 𝑑𝑖, where N is the number 
of path loss data points. 

http://www.jmest.org/
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 (11) 

Solving the (11), the coefficients 𝒂𝟎 , 𝒂𝟏 ,. , 𝒂𝟐  are 
obtained and used to formulate the best fit Least 
Squares function (12), representing the path loss data 
points. 

𝐿(𝑑) = 𝑎0 + 𝑎1𝑑 + 𝑎2𝑑
2 (12)  

Step2: Using (13), the quotients 𝑄1 ,  𝑄2 ,.  𝑄𝑁  are 
obtained at intervals 𝑑1 ,  𝑑2 ,.  , 𝑑𝑁  respectively, by 
dividing the Least Squares function value L(di), by the 

empirical model predicted path loss value 𝐿𝑃(𝑑𝑖)  

𝑄(𝑑𝑖) =
𝐿(𝑑𝑖)

𝐿𝑃(𝑑𝑖)
 (13)  

Step3: Obtain the optimal Least Squares function 
𝑄(𝑑) = 𝑎0 + 𝑎1𝑑  representing the quotient points 

𝑄1, 𝑄2,. 𝑄𝑁 using (14)  
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𝑁
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 (14) 

The function 𝑄(𝑑), is the adaptation factor. 

Step4: Multiply the empirical model expression by 

the adaptation factor 𝑄(𝑑)  to obtain the adapted 
model expression. 

V. RESULTS AND DISCUSSION 

The Okumura model is adapted to the terrain 
under investigation as follows: The measured path 
loss data obtained from the ten Base Stations is split 
into two sets: Base Stations 1 to 5 - adaptation set, 
and Base Stations 6 to 10 – generalization set. The 
geometric mean (GM) of the adaptation set values at 
each receiver-transmitter separation is obtained using 
(15).  

GM=√𝑋1. 𝑋2. 𝑋3,. , 𝑋𝑛
𝑛  (15)  

In performance evaluation, the geometric mean is 
preferred to the arithmetic mean because it is less 
sensitive to extreme values [9]. The Okumura model 
is then adapted to the computed GM using the earlier 
mentioned three techniques, i.e., the use of the 
Okumura GAREA as Correction Factor, the use of a 
Computed RMSE as Correction Factor, and the 
proposed LSAA technique. Subsequently, the adapted 
Okumura models are tested for path loss prediction 
accuracy, (i.e., capacity to generalize) through 
comparisons with path loss data from the 
generalization set. The statistical bases for 

comparison are the Root Mean Squared error (RMSE) 
and the Coefficient of Determination (R

2
) given by 

 (16)  

where 𝑦𝑖  is the measured path loss, �̂�𝑖  is the 
predicted path loss and �̅�𝑖  is the mean of the 
measured path loss.  

  

A. Comparison of Adaptation Techniques 

From the Okumura Median Attenuation curves the 
median attenuation AMU(f,d) for this terrain within the 
range 1 to 4.3km at 900MHz is 20dB. Likewise, the 
GAREA for suburban areas at 900MHz is 9dB according 
to the GAREA curves. Hence, from (1), the GAREA 
adapted Okumura model path loss equation for this 
terrain is given by:  

  

 𝐿𝑂𝐾𝑀 = 𝐿𝐹𝑆𝐿 + 20 − 𝐻𝑀𝐺 − 𝐻𝐵𝐺 − 9 

 = 𝐿𝐹𝑆𝐿 + 11 − 𝐻𝑀𝐺 − 𝐻𝐵𝐺 (17)  

Where,  

- 𝐿𝐹𝑆𝐿 = 32.45 + 20𝑙𝑜𝑔900 + 20𝑙𝑜𝑔𝑑 

- 𝐻𝑀𝐺 = 10log (
1.5

3
) 

- 𝐻𝐵𝐺 = 20log (
33

200
) 

Fig. 2 shows that the GAREA adapted Okumura 
model (17) underestimates the path loss while Table 1 
shows that the model does so by an RMSE of value of 
8.95dB. Hence, computed correction factor is 8.95dB. 
Therefore, the RMSE-adapted Okumura model 
expression from (17) is given by  

𝐿𝑅𝑀𝑆𝐸_𝑎𝑑𝑎𝑝𝑡𝑒𝑑 = 𝐿𝐹𝑆𝐿 + 11 − 𝐻𝑀𝐺 −𝐻𝐵𝐺 + 8.95 

 = 𝐿𝐹𝑆𝐿 + 19.95 − 𝐻𝑀𝐺 − 𝐻𝐵𝐺 (18)  

  

Fig. 2 shows that the RMSE adapted Okumura 
model (18) overestimates the path loss while Table 1 
shows that the model does so by an RMSE value of 
9.41 dB. 
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Fig. 2. Comparison of Adaptation Techniques 

 

Table 1: Adaptation Accuracy Comparison 

PERFORMANCE 
INDICES 

Okumura 
GAREA  

Adaptation 

 RMSE 
Correction 

Factor 
Adaptation 

LSAA 
Adaptation 

RMSE(dB) 8.95 9.41 2.18 

R
2
 0.69 0.66 0.97 

 

 According to the proposed LSAA, the Okumura 
model is adapted to the terrain as follows: 

Step1: The coefficients of the best fit Least 
Squares function representing the geometric mean of 
path loss points are obtained by solving (11). The 

coefficients obtained are as follows: 𝑎0 = 94.33 , 
𝑎1 = 23.13 , 𝑎2 = −2.55𝑑 . Hence the best fit least 
squares equation for measured path loss is 

 𝐿𝐿𝑆 = 94.33 + 23.13𝑑 − 2.55𝑑
2 (19)  

 

Step2: Quotients computed at various intervals 
using (20) are shown in Table 2. 

 𝑄𝑖 =
𝐿𝐿𝑆(𝑑𝑖)

𝐿𝑂𝐾𝑀(𝑑𝑖)
 (20)  

Step3: Coefficients obtained for best fit curve 
through quotients are 𝑎0 = 0.9238 and 𝑎1 = 0.0475. 

Therefore, the adaptation function is given by 

𝑄(𝑑) = 0.9238 + 0.0475𝑑 (21)  

Step 4: The LSAA-adapted Okumura Model for 
this terrain is obtained by multiplying the Okumura 

model expression (1) by the adaptation function 𝑄(𝑑) 
as follows: 

𝐿𝐿𝑆𝐴𝐴−𝑂𝐾𝑀 = (0.9238 + 0.0475𝑑) . 𝐿𝑂𝐾𝑀 (22)  

As shown in Fig. 2, the convergence of the LSAA-
adapted Okumura Model (21) with measurements is 
an indication of the effectiveness of the technique. 
Results in Table 1 buttress this fact with the LSAA 
technique having the lowest adaptation error of 
2.18dB and the best fit indicator of 0.97.  

  

B. Generalization Test for Adapted Okumura 
Models 

Each of the three adapted Okumura models is 
tested for path loss prediction accuracy using data 
from the generalization set (Base Stations 6 to 10). 
Figs. 3 to 7 graphically show the performance of each 
of the three adapted Okumura models on each of the 
Base Stations. Results in Table 3 clearly show that 
the LSAA-adapted Okumura model gives the most 
accurate predictions across all the Base Stations with 
the least prediction errors. On the average, the LSAA-
adapted Okumura model outperforms its counterparts 
in prediction accuracy by a margin greater than 
3.62dB in RMSE. Furthermore, the impressive fit of 
value 0.9 is a testimony to the high correlation 
between the LSAA- adapted model with the test data. 

Table 2: Quotients obtained at various intervals between Base and Mobile Stations 

Intervals (km) 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 

Quotients 0.96 0.98 0.93 0.95 0.98 1 1.02 1.04 1.06 1.08 1.09 1.09 1.1 1.1 1.1 
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  Fig.3. Base Station 6 Comparison    Fig. 4. Base Station 7 Comparison 

   

Fig.5. Base Station 8 Comparison    Fig.6. Base Station 9 Comparison 

 

Fig.7. Base Station 10 Comparison 
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Table 3: Performance Comparison of Adapted Okumura Models 

MODEL STATS. BST6 BST7 BST8 BST9 BST10 GEOM. MEAN 

GAREA Adapted Okumura 
RMSE(dB) 7.39 7.36 8.48 9.05 8.65 8.16 

R
2
 0.76 0.76 0.71 0.64 0.68 0.71 

RMSE Adapted Okumura 
RMSE(dB) 10.71 10.97 9.48 8.16 9.11 9.44 

R
2
 0.49 0.45 0.63 0.71 0.65 0.59 

LSAA Adapted Okumura 
 

RMSE(dB) 4.04 6.36 3.18 5.10 4.58 4.53 

R
2
 0.93 0.82 0.96 0.89 0.91 0.90 

VI.  CONCLUSION 

A Least Squares Approximation based Algorithm 
for adapting an empirical model to a given terrain was 
formulated and compared for adaptation accuracy 
with two exiting techniques: i) the Okumura model 
adaptation using Okumura GAREA (Gain due to type of 
environment) obtained from the Okumura Curves, and 
ii) the use of a computed Root Mean Squared Error 
(RMSE) as correction factor. It was discovered that 
the proposed technique gave the highest adaptation 
accuracy based on data obtained from the rural area 
between the cities of Jos and Abuja, Nigeria. The 
LSAA technique gave the lowest adaptation error of 
2.18dB, compared with 8.95dB for the Okumura GAREA 
and 9.41dB for the commonly used RMSE adaptation 
technique. Furthermore, tests for generalization of 
adapted Okumura models based on the three 
adaptation techniques indicated that the LSAA-
adapted model is more robust than its counterparts 
with a mean prediction error of about 4.53dB, 
compared with 8.16dB for the GAREA Adapted 
Okumura model, and 9.44dB for the RMSE adapted 
Okumura model.  
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