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Abstract—Artificial Neural Networks have a 
tremendous ability to adapt to any environment 
given sufficient data and hence are quite useful 
in prediction. However, they differ in their 
capabilities due to their distinguishing 
characteristic features and training procedures. 
In this study the Multilayer Perceptron Neural 
Network (MLP-NN), the Radial Basis Function 
Neural Network (RBF-NN) and the Generalized 
Regression Neural Network (GR-NN) were created 
and analysed for field strength prediction using 
received power readings obtained at 1800MHz 
from Base Transceiver Stations (BTS) situated 
within the metropolis of Jos, Nigeria. Results 
indicate that the GR-NN gave the most accurate 
prediction with an RMSE value of 5.13dB. 
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I. INTRODUCTION 
Radio wave propagation from transmitter to 

receiver is usually accompanied by attenuation, 
which refers a drop or reduction in signal strength. 
This stems from the fact that the various obstacles 
along radio path cause wave diffraction, reflection, 
scattering, refraction and absorption.  In addition to 
that, radio waves also undergo free space 
attenuation depending on atmospheric conditions. 
Attenuation is also dependent on signal frequency: 
the higher the frequency the higher the attenuation. 
As a result, the reach of a transmitter is dependent 
on transmitting power, terrain nature, antenna height, 
etc. Hence, determination of radio propagation 
characteristics of a given terrain is of paramount 
importance in network coverage prediction.  
 

Deterministic models are widely used in signal 
strength prediction.  As described by [1], 
deterministic models make use of the laws governing 

electromagnetic wave propagation to determine the 
received signal power at a particular location. The 
field strength is calculated using the Geometrical 
Theory of Diffraction (GTD) as a component 
comprising of direct, reflected and diffracted rays at 
the required position. Deterministic models often 
require a complete 3-D map of the propagation 
environment. The ray tracing model used by [2] in 
radio propagation modeling, is a typical example of 
deterministic models.  
 

Artificial Neural Networks (ANNs) have 
successfully been implemented in field strength 
prediction due to their efficiency in handling complex 
function approximation problems and flexibility to 
adapt to any environment. For example, [3] 
developed a model for field strength prediction in 
indoor environments with neural networks. The 
predictor was an ANN based model for the prediction 
of electric field strength for mobile communication 
networks in indoor environment.  
 

In this study, three types of ANN, namely the 
Multilayer Perceptron Neural Network (MLP-NN),  the 
Radial Basis Function Neural Network (RBF-NN) and 
the Generalized Regression Neural Network 
(GRNN), are developed and compared for field 
strength prediction accuracy within the metropolis of 
Jos, the Plateau State capital, Nigeria. 
 
II. THE MULTI-LAYER PERCEPTRON NEURAL 
NETWORK 

As described in [4] the Multilayer Perceptron 
Neural Network (MLP-NN) is a feed forward neural 
network trained with the standard back propagation 
algorithm. As the name implies, a MLP-NN is a 
network that comprises of an input layer, one or more 
hidden layers and an output layer. Fig. 1 shows that 
each neuron of the input layer is connected to each 
neuron of the hidden layer, and in turn, each neuron 
of the hidden layer is connected to the single neuron 
of the output layer.  As a feed forward network, signal 
transmission across the entire network is in the 
forward direction, i.e, from the input layer, through 
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the hidden layer and eventually to the output layer. 
Error signals propagate in the opposite direction from 
the output neuron across the network. 
 
With one or two hidden layers a MLP-NN can 
approximate virtually any input to the desired output 
map. According to [6], a neural network with only one 
hidden layer can approximate any function with 
finitely many discontinuities to an arbitrary precision, 
provided the activation functions of the hidden units 
are non-linear. Problems that require two or more 
hidden layers are rarely encountered in practice. 
Even for problems requiring more than one hidden 
layer theoretically, most of the time, using one hidden 
layer performs much better than using two hidden 
layers in practice [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Multilayer Perceptron Neural Network with one 

hidden layer [5]  
 
 
As described in [5], the output of the MLP-NN is 
given by the expression 

 

𝑦 = 𝐹0 (∑ 𝑊0𝑗
𝑀
𝑗=0 (𝐹ℎ(∑ 𝑊𝑗𝑖𝑋𝑖𝑗

𝑁
𝑖=0 )))                     (1)            

 
where: 

- 𝑊0𝑗 represents the synaptic weights from 

neuron j in the hidden layer to the single 
output neuron, 

- 𝑋𝑖 is the 𝑖-th element of the input vector,   
- 𝐹ℎ and 𝐹0 are the activation function of the 

neurons from the hidden layer and output 
layer, respectively,  

- 𝑊𝑗𝑖 are the connection weights between the 

neurons of the hidden layer and the inputs. 
 
The learning phase of the network proceeds by 
adaptively adjusting the free parameters of the 
system based on the mean squared error E, 
described by (2) between predicted and measured 
path loss for a set of appropriately selected training 
examples: 
 

                            (2) 

where, 

- 𝑦𝑖 is the output value calculated by the 
network   

-  𝑑𝑖 is the expected output.  
 
When the error between network output and the 
desired output is minimized, the learning process is 
terminated and the network can be used in a testing 
phase with test vectors. At this stage, the neural 
network is described by the optimal weight 
configuration, which means that theoretically, it 
ensures output error minimization. 

 
 
III. THE RADIAL BASIS FUNCTION NEURAL   
NETWORK 
The Radial Basis Function Neural Network (RBF-NN) 
can be used to solve any function approximation 
problems. As described by [8], the Radial Basis 
Function Neural Network (RBF-NN) is a type of feed-
forward artificial neural network with three layers as 
shown in Fig. 2: an input layer, a hidden layer and an 
output layer. One neuron in the input layer 
corresponds to each predictor variable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The Generalized Radial Basis Function Neural 

Network [9]  
 
The hidden layer has a variable number of neurons. 
Each neuron consists of a radial basis function 
centered on a point with the same dimensions as the 
predictor variables. The output layer has a weighted 
sum of outputs from the hidden layer to form the 
network outputs. As described by [9], the output of 
hidden-nodes are not calculated using the weighted-
sum activation function; rather the output of each 
hidden-node, φk is obtained by the closeness of input 
vector X to an M-dimensional parameter vector µk 

associated with the k
th
 hidden node. The most 

popular choice for the function  is a multivariate 
Gaussian function with an appropriate mean and 
auto covariance matrix. The output of a Radial Basis 
Function Neural Network is given by  
 

                                         (3)                                       
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where, 

- 𝑋 is the input vector 
- 𝑊𝑖𝑘 is the connection weight in the second 

layer (from hidden to output layer) 
- k is the number of hidden nodes 

- 𝑖 denotes the 𝑖-th hidden node 
- 𝜑𝑘 is the radial basis activation function. 

 
As described in [10], the radial basis function is a 
multi-dimensional function that describes the 
distance between a given input vector and a pre-
defined centre vector. The Gaussian function is a 
type of radial basis function given by  
 

              (4) 
 

where, 𝜇𝑘 denotes the centre vector and 𝜎𝑘 denotes 
the spread (width) of the function. 
 
The training of a RBF-NN is in two stages: 

1. Determination of radial basis function 
parameters, i.e., Gaussian centre and spread 
width 

2. Determination of output weight by supervised 
learning. 

 
IV. THE GENERALIZED REGRESSION NEURAL 
NETWORK (GR-NN) 

The Generalized Regression Neural Network 
(GR-NN) is a type of Radial Basis Function Neural 
Network (RBF-NN), classified under Probabilistic 
Neural Networks (PNN). Given sufficient input data, 
the GR-NN can approximate virtually any function.  In 
contrast to back-propagation neural networks, which 
may require a large number iterations to converge to 
the desired output, the GR-NN does not require 
iterative training, and usually requires a fraction of 
the training samples a back-propagation neural 
network would need [11]. As shown in Fig.3, the GR-
NN comprises of four layers: an input layer, a hidden 
layer (pattern layer), a summation layer, and an 
output layer. 

According to [11], the GR-NN can 
approximate any arbitrary function between input 
vector and output vector directly from the training 
data. The general regression as described by [11] is 
as follows: given a vector random variable, x, and a 
scalar random variable, y. Assuming X is a particular 
measured value of the random variable y, the 
regression of y on X is given by  
 

                    (5) 

 
 
Fig. 3: Generalized Regression Neural Network 

Architecture [12]  

If the probability density function 𝑓(𝑥, 𝑦) is unknown, 
it is estimated from a sample of observations of x and 

y. The probability estimator𝑓(𝑋, 𝑌), given by (6) is 

based upon sample values Xi and Yi of the random 
variables x and y, where n is the number of sample 
observations and p is the dimension of the vector 
variable x. 
 

 

A physical interpretation of the probability 

estimate𝑓(𝑋, 𝑌), is that it assigns a sample probability 
of width 𝜎 (called the spread constant or smoothing 

factor) for each sample Xi and  Yi , and the probability 
estimate is the sum of those sample probabilities.  
 

The scalar function Di
2 is given by 

 

𝐷𝑖
2 = (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖)                                      (7) 

Combining (5) and (6) and interchanging the order of 

integration and summation yields the desired 

conditional mean 𝑌́(𝑋), given by 

                           (8)                    

As further stated in [11], when the smoothing 

parameter 𝜎 is made large, the estimated density is 
forced to be smooth and in the limit becomes a 

multivariate Gaussian with covariance σ2 . On the 
other hand, a smaller value of 𝜎 allows the estimated 
density to assume non-Gaussian shapes, but with 
the hazard that wild points may have too great an 
effect on the estimate. 
 
V. MATERIALS AND METHODS 

Received power measurements were 
recorded from Base Transceiver Stations (BTS) of 
the mobile network service provider MTN (Mobile 
Telecommunications Network), Nigeria, situated 
within the metropolis of the city under investigation. 
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The instrument used was a Cellular Mobile Network 
Analyzer (SAGEM OT 290) capable of measuring 
signal strength in decibel milliwatts (dBm). Received 
power (PR) readings were recorded within the 
radiating far field (propagation region) defined by the  

Fraunhofer far field radius (𝑅𝑓𝑓), given by 𝑅𝑓𝑓 >
2𝐷2

𝜆
 , 

where D is the transmitting antenna length in meters 
and λ the wavelength of the transmitted signal 

derived from λ =
𝑐

𝑓
 ,  where c is the velocity of light 

and f, the propagation frequency. For an antenna 
length of 2 meters, 𝑅𝑓𝑓 at 1800MHz was found to be 

greater than 48 meters. Hence, measurements were 
taken at an average mobile height of 1.5 meters 
within the 1800MHz frequency band at intervals of 
0.05km away from the BTS, starting with a reference 
distance of 0.05kilometer. Mobile Network 
Parameters obtained from the Network Provider 
(MTN) include the following: Mean Transmitter 
Height, HT= 34 meters, Mean Effective Isotropic 
Radiated Power, EIRP = 46dBm. 

Field strength prediction was conducted 
using two basic approaches: the first involves 
separately analyzing each base station data by 
splitting the data into 60% training, 10% validation 
and 30% testing. This is to ensure that the neural 
networks are trained for optimum performance. The 
second approach involves training the GRNN with a 
data set obtained from one Base Station and then 

testing with a set from another Base Station [13]. By 
implication, a given data set can both be used for 
training and testing.  

The statistical performance indices used in 
this study are based on the Root Mean Squared 
Error (RMSE) and the coefficient of determination 
(R

2
). The RMSE is given by  

                                  (9)                                                      
   
where,  M is the Measured Path Loss, P is the 
Predicted Path Loss  and N the Number of paired 
values.  
 
The coefficient of determination (R

2
) is given by [13]  

                                  (10)                                                                                          

where 𝑦𝑖 is the measured path loss, 𝑦̂𝑖 is the 
predicted path loss and 𝑦̅𝑖 is the mean of the 
measured path loss. R

2
 ranges from 0 to 1, but if 

negative for models without a constant, the model is 
not appropriate for the data. A value closer to 1 
indicates that a greater proportion of variance is 
accounted for by the model. 

VI. RESULTS AND DISCUSSION 
This study takes into consideration a MLP-

NN with 3 hidden layer neurons, an error goal of 
0.001 and the Levenberg-Marquardt back 
propagation as training algorithm; an RBF-NN with a 
spread of 0.8 and error goal of 0.1; and a GR-NN 
with 0.6 as spread. Based on the first comparative 
approach, Fig.4 graphically shows field strength 
prediction performance of each of the ANN based 
models for BTS1. It can be observed that the RBF-
NN and the GR-NN plots are convergent. This stems 
from the fact that the GR-NN is a type of RBF-NN. 
However, the basic distinction between the two is 
that the GRNN assigns target values directly to the 
weights, from the training set associated with the 

input training vector and a component of its 
corresponding output vector, instead of training 
weights [14].  For BTS2 a similar trend can be 
observed from Fig.5. However, Table 1 shows that 
the GR-NN gave the most accurate predictions for 
BTS1 and BTS2. The prediction results of each of the 
ANN based models for the entire BTSs based on the 
first comparative technique are all presented Table 1. 
Considering the geometric mean, it can be observed 
that the GR-NN gave the least prediction error of 
4.83dB and the best fit 0.84. In performance 
evaluation, the geometric mean is preferred to the 
arithmetic mean because it is less sensitive to 
extreme values [10] (Nicholas, 2002). 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 3 Issue 6, June - 2016 

www.jmest.org 

JMESTN42351659 5093 

       

     Fig. 4. Analysis of Base Transceiver Station 1                              Fig. 5. Analysis of Base Transceiver Station 2 
 
 

Table 1: Splitting data into 60% training, 10% validation and 30% testing 

MODEL STATS. 
BTS 

1 
BTS 

2 
BTS   

3 
BTS   

4 
BTS   

5 
BTS   

6 
BTS 

7 
BTS 

8 
GEOM. 
MEAN 

MLP-NN 
 

RMSE(dB) 6.32 9.82 7.11 7.69 4.45 3.13 9.23 1.90 5.49 

R
2
 0.81 0.42 0.50 0.69 0.88 0.94 0.56 0.99 0.69 

RBF-NN RMSE(dB) 5.00 6.95 4.88 6.47 5.64 3.15 6.92 2.70 4.96 

R
2
 0.88 0.71 0.76 0.78 0.81 0.94 0.75 0.97 0.82 

GR-NN  
RMSE(dB) 4.30 5.92 4.89 6.62 3.62 4.06 6.93 3.57 4.83 

R
2
 0.91 0.79 0.76 0.77 0.92 0.90 0.75 0.95 0.84 

 
 
 
Sample prediction plots based on the second 
comparative technique are presented in Figs.6 and 7. 
Fig. 6 shows the plots resulting from training the ANN 
based models with data from BTS 8 and testing with 
data from BTS4. It can be observed that MLP-NN 
does not give a close prediction especially at 
distances close to the BTS. The plots in Fig. 7 
derived from a BTS1/BTS6 pairing exhibit a similar 
trend. Prediction results in Table 2 show that for the 
BTS8/BTS4 pairing there is a slight convergence in 
performance between the RBF-NN and GR-NN while 
the MLP-NN is the least accurate. For the 
BTS1/BTS6 pairing the RBF-NN is most accurate. 

Prediction results for all the random pairings are 
presented in Table 2. On the geometric mean, the 
GR-NN gave the most accurate prediction with an 
RMSE value of 5.45dB and the best fit as far as the 
second comparative technique is concerned. A 
combination of the two comparative techniques 
shows that on the geometric mean the GR-NN is the 
most accurate with an RMSE value of 5.13dB and R

2
 

value of 0.86. This is closely followed by the RBF-NN 
with 5.43dB and R

2
 value of 0.84. The MLP-NN gave 

the least accurate prediction with an RMSE value of 
5.73dB and R

2
 value of 0.77.  
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  Fig. 6: Training with BTS8, Testing with BTS4                           Fig.7: Training with BTS1, Testing with BTS6 
 

 
Table 2: Random Training with data from one BST and Testing with data from another 

MODEL STAT. 
BTS 
8/4 

BTS 
1/6 

BTS   
3/2 

BTS   
7/5 

BTS   
6/3 

BTS 
4/1 

BTS 
2/8 

GEOM. 
MEAN 

MLP-NN 
 

RMSE(dB) 7.80 6.62 6.04 6.51 5.79 5.05 4.64 5.99 

R
2
 0.78 0.84 0.88 0.87 0.83 0.93 0.94 0.86 

RBF-NN RMSE(dB) 6.67 5.08 5.41 7.90 5.89 5.88 5.24 5.95 

R
2
 0.84 0.91 0.90 0.80 0.83 0.90 0.92 0.87 

GR-NN  
RMSE(dB) 6.36 5.33 4.79 6.40 5.53 5.31 4.67 5.45 

R
2
 0.85 0.90 0.92 0.87 0.85 0.92 0.94 0.89 

 
 
VII. CONCLUSION 
          Three types of feed-forward Artificial Neural 
Network based models namely the Multilayer 
Perceptron Neural Network (MLP-NN), the Radial 
Basis Function Neural Network (RBF-NN) and the 
Generalized Regression Neural Network (GR-NN) 
were created and analyzed for field strength 
prediction using received power readings obtained at 
1800MHz from Base Transceiver Stations (BTS)  
situated within the metropolis of Jos. This was carried 
out with a view to determining the most accurate in 
field strength prediction across the city. Results 
indicate that the GR-NN with an RMSE value of 
5.13dB and R

2
 value of 0.86 gave the most accurate 

prediction. This is closely followed by the RBF-NN 
with 5.43dB and R

2
 value of 0.84.   
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