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Abstract—Consider the Neumman boundary value
problem of the stable Cahn-Hilliard
equation.Under an additional condition,we prove
the problem has at least one solution.
Moreover,the problem has at most finite number
of solutions .
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1. INTRODUCTION
We consider the following problem :
—AK(u)=g,in Q (11
ou O(Au
—:M:O,on o (12
ov ov
m(u) =« (1.3)
Where « € R' is a constant,
K(u)=-Au+ f(u) (1.4)
1
m(u)=—1| udx (1.5)
©=15 [

Q< R"(n<3) is a bounded open domain with

sufficiently regular boundary 6Q, f e C*(R') isa
real function which will be specified further below, V

stands for the outward normal vector on 0€2. The
problem (1.1)-(1.3) is related to the stationary state of
the well-known Cahn-Hilliard equation which has been
extensively studued more recently by [1-6].

In this present work we prove some general
properties for this problem. These properties are
helpful for us to understand the long-time dynamics of
the Cahn-Hilliard equation (of coure, our results are
also of mathematical interests). First, we prove the
existence result. Then we show a generic property of
(1.1)-(1.3) ,i.e.,for every fixed & € R*,we prove that
there exists a dense open set G in the functional
space described by g, such that for ever g € G ,(1.1)-
(1.3) has only finite solutions . The reason why we are
interested in the latter problem is that ,once we know
that a system has at most finite stationary states, we
can then give a precise description of the maximal
global attractor of the system (see [5,Ch.VI].(For the
Cahn-Hilliard equation which may possess a fast
growing nonlinear term f as considered here ,the

existence of the maximal global attractor has juxt
been prover recently by Li and Zhong [6].))

Throughout this paper we assume that f satisfies
the following structure conditions:

F,) f e C*(R"), moreover, there exists a positive
constant K; such that
f(s)s>-k VseR';
F,) There exists a positive constant K, such that
f'(s)>—k,.
The Cahn-Hilliard equation arises as a model of

plase transitions, Note that the typical function f

arising in applications is a polynomial ,
2p-1

f(s)=> a5 a,,,>0, (1.6)

j=1
and that this satisfies both F,) and F,). However,our
f need not to be a polynomial function as those are
considered in [1-4] and other references.

Throughout this paper, C denotes a general constant
depending upon the constants that appear in

F,) —F,) .the upper bounds of |a| (see (1.3) for the

parameter « ) and other quantities such as the
Sobolev embedding constants etc.

2. SOME A PRIORO ESTIMATES

In this section we establish some a priori
estimates for solutions of (1.1)-(1.3). Let (*,%*)and

|*| denote , respectively , the inner product and norm

of L*(QY), we define the linear operator A=—A with
domain of definition
D(A) ={ueH?*(Q),ou/ov=0,0n 0Q},

By spectral theory we can define the spaces
S

S
V= D[Azj with seminorms |u|s =|A2U| and

1
norms ||u||s = (|u|: + m(u)z)2 for real S. (see [5,6],
etc.) It is well known that when s >0,V is a

subspace of H*(Q) and that ||>l<||S is equivalent to the

Www.jmest.org

JMESTN42351582

4807


http://www.jmest.org/
mailto:zangzl@lzcu.edu.cn

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 3 Issue 5, May - 2016

usual norm of H*(€2) . Also, V_( is the dual of V,

Moreover, for Vs,s’ € R',s < s’ we have the
following Poincare-type inequality
~(s'-5)/2
uj, <4 luj, . Yu eV, 2.)
We also denote by H the space L*(Q),by H and
V, the spaces of definitions
H={ueH =1*(Q),mu)=0}, (2
V, ={ueV,,m(u) =0}, (2.3)
Lemma 2.1 Assume that f satifies F,),F,),
g € H then there exists a positive constant C such
that for every solution U of (1.1)-(1.3),
Jul, <C@+09) (2.4)
Proof The estimate (2.4) is obtained by
multiplying (1.1) with A™'u and integrating over Q
.The argument in detail is similar to those in Lemma 1
of [3] and Lemma 3.1 of [5].we omit it.

Lemma 2.2 The assumptions are those in
Lemma 2.1 ,Let U be a solution of (1.1)-(1.3),then

Jul, <C@+g) (2.5)
Proof We multiply (1.1) with —K(u) and obtain

(note that % K(u) = % A7'g=00n 0Q)

K@)|, =—(K(u),9)=—(K(u), AA™g)
<K@ +21of, <Gy
<K@ +Clof

Hence |K(u)|1 < |g|2 (2.6)
Now we multiply K(u) by Au and integrate over Q
by F,) we have

(K(u), Au) = |u|§ +.[Q f '(u)|Vu|2 dx> |u|§ —k, |u|12 |u|§

<(K(u), Au)+k, |u|f
= [ VK@)-Vudx-+k,uff <C (KW +uf)

By (2.6) and Lemma 2.1 ,we conclude that

||u||2 <C@+9) 2.7)
By (1.1) ,we have
A*u=Af (u)+g (2.8)

Thanks to the Sobolev embedding H? () < L™ () (
N < 3),and the estimate (2.7) ,we get
|u <C (2.9)

()

Since f and its derivatives f’, f” are locally

bounded,we deduce easily from (2.7)-(2.9) that the
estimate (2.5) holds.
Remark 2.1 When f (S) is a polynomial ,
2p-1 .
f(s)= Z a;s’(a,,, >0and g =0 similar
j=0
estimates for U are also obtained by Dlotko [3](see
[3,Lemma 1])). However the author require that p =2

when the space dimension n =3 ,Moreover ,our
methods here also differ signicantly from those used
in [3].

Lemma 2.3 We assume that f satifies F,) and
F,).Let G Hand | = R' be compact ,then the set
U={ueV,,3(9,2)eGxIl such that (u,g,a)
satisfies (1.1)-(1.3)} is compactin V,.

Proof Since H*(Q) = C?(Q) (n < 3),we infer
from Lemma 2.2 that any sequence {uk} cU has a
subsequence (still denoted by {uk} ) coverging in

Cz(ﬁ) ,Assume that
A’u, = Af (U, )+9, (2.10)
Where ¢, € G .By the compactness of G, {gk} has a

subsequence {gkj }which coverges in H .Therefore
we deduce from (2.10) that {ukj } coverging in V, . Itis

easily seen that the limit function of {Uk } belonge to
J

U . The proof is completed.

3. NON EMPTY AND GENERIC PROPERTIES FOR THE
SOLUTION SET

For given (g, ) € H xR" we denote by
S(g, @) the solution set of (1.1)~1.3). Our aim in this
part is two-fold. First,we prove that for every given
(g,a) € HxR', S(g, @) is nonempty,i.e. the

existence for (1.1)~(1.3);then we give a generic
property for (1.1)~1.3),move precisely,for every given

a € R' we show that there exists a dense open set
G < H such that for every g € G, S(g, a)is finite.

Theorem 3.1 Assume that f satisfies F,)and

F,) then S(g,a) # D for V(g,a) e HxR".

Proof Note that (1.1)-(1.3) is equivalent to the
following equation:

A(Au+f(u+a))=q,ueV, (1)

Let U €V, . Since Mz f'(u+a)a—u=00n
ov ov

0Q ,we find that Af(U+a)eH .
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From the general theory for elliptic boundary-value
problems,we deduce that there exists a unique V e\/'4
satisfying
Av=-Af(U+a)+g (32
Thus we can define a mapping T :\/'2 —)\/'2 ,as
follows:
Tu=v,VueV, (3.3)
Where V is the solution of (3.2) with respect to U .Itis
easily seen that T is compact.
Suppose that U e\/'2 satisfies: U=oTu (

o €[0,1]),then U €V, and satisfies

A(Au+ f(u+a))=g (3.4
Where f =of .Obviously f satisfies F;)andF,)
therefore by Lemma 2.2 ,there exists a conC >0
(independent upon o) such that ||u||4 is bounded by
C(1+|g|). In virtue of the classical Leray-Schauder

fixed point theorem , we deduce that T has at least
one ficed point which solves (1.1)-(1.3) .The proof is
therefore complete.

Theorem 3.2 We assume that f satisfies F,)
and F,). Then for every a € R" there exists a dense
open set G = H = L(€2) such that

1) for every g € G, S(g, «)is finite;

2) for evefy connected compontent Gﬁ of G the
number of points of S(g,&)for g € G, is constant.

Proof We will employ some technics used by

Fioas and Temam [7]. Denote by S(g, @) the set of
solutions of (3.1). It is clear that

S(9,@)=S(g,a@)—a ={u-aluesS(g,a)}
To prove Theorem 3.2 it is sufficient and
convenient for us to consider the set S(g, ).

i) Let F:V, — L(Q) as follows
F(u)=A’u—Af (U+a) forueV,.

Then F € C* and

F'(u)U =AU —A(f'(u+a)U), VU eV,
It is easily seen that the linear operator
K :V, — () defined by

KU =-A(f'(u+a)U),vU eV,

is compact . Since A?is an isomorphism from \/4 to
L2(€2), we coclude that F'(u) is a Fred-holm

operator of index 0. We infer from the infinite
dimensional version of Sard’s therorem (see Th. Ain
[7]) that the set G of regular values g of F is dence

in L*(Q),and S(g,a)is discrete in V, forall g € G (

a is given fixed). Since S(g, &)is compactin V,,

this set is finite.
i) The second step of the proof consists in showing

that G is open.

Let g, € () —G(i =12, ) be a sequence
converging in \/4 to some limit g .We will prove that
g € L*(Q) -G .Let U, € S(g,, @) we assume that
F'(u,) is not surjective .

Since
dimker F'(u.) =dimcoker F'(u.) >0 (3.5)

there exists V, eV4,||Vi||4 =1,suchthat F'(u,)v, =0
ie.,

AV —A(f'(u +a)v,) =0 (3.6)
Since {gi} is bounded in L*(€Q) ,in virtue of the a
priri estmate obtained in Section 2 , we know that
{ui} is bounded in V4 :

The above properties of {ui} and {Vi} enables
us to extract subsequences (still denoted by {ui} and
{vi} ) such that

U, —U,V, =V weakly in V, (3.7)
Since H*(Q) < C2(£_)) ,we deduce by (3.7) that
U, —>U,v, =V in C2(C2) Now we can pass to the
limit in (3.6) and AU, —Af (U, + &) = g; ,we have
ANu—-Af(U+a)=g;: AV-A(f'(U+a)v)=0
i.e., Ue S(g,a) and v e ker F'(u). Since

||Vi ||4 =1,v#0. Recalling that F'(u) is a Fredholm

operater of index 0,we conclude that U is a critical
point of F . Therefore

gel?(Q)-G
iy Let G,,G,, --,G

components of G (G;is open), and let g,, 0, be two

jo- be the connected

points in G; for same j . Let

u, e F(g,) =S(g,, @) .Since G, is
connected,There  exists a continuous curve
g(t):[0,1] - G; such that g(0) = g,,9(1) =g, and
the implicit function theorem implies that there exists a
unique curve U(t) which satisfies

F(u(t))=9g(t),u(0) =u,.
Since g(t) is a regular value for every t €[0,1],u(t)
is defined on the whole interval [0,1] ,therefore

Www.jmest.org

JMESTN42351582

4809


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 3 Issue 5, May - 2016

u() e F*(g,) = S(g,, @) ,Such a curve can be
constructed from any point U, € S(g,, ). Also two
different curves cannot reach the same point U. of
S(9,, @) ,Otherwise this would be contradicts to the
implicit funmction theorem around U...

Hence there are at least as many points in S(g,, @)
asin S(g,,a) .By symmetry the number of the points

in S(g,, ) .and that of the pointin S(g,,«) are the
same.

Let S(G;)= U S(g,) then we infer frome

geG;

the above analysis that S(G;) can be divided into
several parts and each part is a connected component

of S(G)).
Let S, be such apartof S(G;) thenitis easily seen

that the restriction of F on S, isa C' differential

isomorphism from S, to G;.
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