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Abstract—In this work, we utilized two types of 
Hamiltonian model to study the behaviour of two 
interacting electrons on a two dimensional (2D) N 
X N square lattice. The Hamiltonian is the single 
band Hubbard model and the gradient 
Hamiltonian model. The single band Hubbard 
model is only linearly dependent on lattice 
separations. However, it does not consider the 
lattice gradient encountered by interacting 
electrons as they hop from one lattice point to 
another. Consequently, we have in this study 
developed a gradient Hamiltonian model to solve 
the associated defects pose by the limitations of 
the single band Hubbard model.  The results of 
the ground-state energies produced by the 
gradient Hamiltonian model are more favourable 
when compared to those of the Hubbard model. 
We have shown in this study, that the repulsive 
Coulomb interaction which in part leads to the 
strong electronic correlations, would indicate that 
the two electron system prefer not to condense 
into s-wave superconducting singlet state (s = 0), 
at high positive values of the interaction strength. 
This study reveals that when the Coulomb 
interaction is zero, that is, for free electron 
system, the variational parameters which 
describe the probability distribution of lattice 
electron system is the same.  

Keywords—Hubbard model, correlation 
time, ground state energy, interacting electrons, v
ariational parameters and gradient Hamiltonian  
model. 

I.  Introduction. 
 
There has been dramatic progress in the 
development of electron correlation techniques for 
the accurate treatment of the structures and energies 
of molecules. A particle like an electron, that has 
charge and spin always feels the presence of a 
similar particle nearby because of the Coulomb and 
spin interactions between them. So long as these 
interactions are taken into account in a realistic 
model, the motion of each electron is said to be 
correlated. The physical properties of several 
materials cannot be described in terms of any simple 
independent electron picture; rather the electrons 
behave cooperatively in a correlated manner [1]. The 

interaction between these particles depends then in 
some way on their relative positions and velocities. 
We assume for the sake of simplicity that their 
interaction does not depend on their spins.  
  
The single band Hubbard model [2] is the simplest 
Hamiltonian containing the essence of strong 
correlation. Notwithstanding its apparent simplicity, 
our understanding of the physics of the Hubbard 
model is still limited. In fact, although its 
thermodynamics was clarified by many authors [3] 
various important quantities such as momentum 
distribution and correlation functions, which require 
an explicit form of the wave function, have not been 
properly explored [4].  
 
The single band Hubbard model (HM) is linearly 
dependent only on lattice separations. However, it 
does not consider the lattice gradient encountered by 
interacting electrons as they hop from one lattice 
point to another. The linear dependence of the 
Hubbard model only on the lattice separations would 
certainly not provide a true comprehensive quantum 
picture of the interplay between the two interacting 
electrons. It is clear that one of the major 
consequences of the HM is to redistribute the 
electrons along the lattice sites when agitated. 
However, we have in this study, extended the 
Hubbard model by including gradient parameters in 
order to solve the associated defects pose by the 
limitations of the single band HM.  
 
Electron correlation plays an important role in 
describing the electronic structure and properties of 
molecular systems.  Dispersion forces are also due to 
electron correlation. The theoretical description of 
strongly interacting electrons poses a difficult 
problem. Exact solutions of specific models usually 
are impossible, except for certain one-dimensional 
models. Fortunately, such exact solutions are rarely 
required when comparing with experiment [5].  
  
Most measurements, only probe correlations on 
energy scales small compared to the Fermi energy 
so that only the low – energy sector of a given model 
is of importance. Moreover, only at low energies can 
we hope to excite only a few degrees of freedom, for 
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which a meaningful comparison to theoretical 
predictions can be attempted [6].   
 
One of the first steps in most theoretical approaches 
to the electronic structure of molecules is the use of 
mean – field models or orbital models. Typically, an 
orbital model such as Hartree – Fock self – 
consistent – field theory provides an excellent starting 
point which accounts for the bulk ( 99 %) of the total 

energy of the molecule [7].  
 
However, the component of the energy left out in 
such a model, which results from the neglect of 
instantaneous interactions (correlations) between 
electrons, is crucial for the description of chemical 
bond formation. The term “electron correlation energy 
“ is usually defined as the difference between the 
exact non-relativistic energy of the system and the 
Hartree – Fock (HF) energy. Electron correlation is 
critical for the accurate and quantitative evaluation of 
molecular energies [8].    
 
Electron correlation effects, as defined above, are 
clearly not directly observable. Correlation is not a 
perturbation that can be turned on or off to have any 
physical consequences. Rather, it is a measure of the 
errors that are inherent in HF theory or orbital 
models. This may lead to some ambiguities. While 
HF is well – defined and unique for closed – shell 
molecules, several versions of HF theory are used for 
open-shell molecules [9].     
 
In probability theory and statistics, correlation, also 
called correlation coefficient, indicates the strength 

and direction of a linear relationship between two 
random variables. In general statistical usage, 
correlation or co-relation refers to the departure of 
two variables from independence, although 
correlation does not imply causation [10]. 
 
Interacting electrons are key ingredients for 
understanding the properties of various classes of 
materials, ranging from the energetically most 
favourable shape of small molecules to the magnetic 
and superconductivity instabilities of lattice electron 
systems, such as high-Tc superconductors and heavy 
fermions compounds [11]. 
 
The organization of this paper is as follows. In section 
2 we provide the method of this study by giving a 
brief description of the single - band Hubbard 
Hamiltonian and the trial wave function to be utilized. 
We also present in this section an analytical solution 
for the two particles interaction in a 5X5 cluster of the 
square lattice. In section 3 we present numerical 
results. The result emanating from this study is 
discussed in section 4. This paper is finally brought to 
an end with concluding remarks in section 5 and this 
is immediately followed by list of references.  
 
A. Research Methodology. 
In this study, we applied the gradient Hamiltonian 
model on the correlated trial wave-function. The 
correlation time and ground-state energies of the two 
interacting electrons which is the result of the action 
of the gradient Hamiltonian model on the correlated 
trial wave-function is thus studied by means of 
variational technique.  

II. Mathematical Theory. 
 
A The single-band Hubbard Hamiltonian (HM).  
The single-band Hubbard Hamiltonian (HM) [2] reads;

 

                           

 


  
i

i
i

ij

ji nnUchCCtH


 ..                                              (2.1) 

where ji,  denotes nearest-neighbour (NN) sites, 

  ji CC
 is the creation (annihilation) operator with 

spin   or   at site i , and  iii CCn   is usually 

known to be the occupation number operator, ..ch (

 ij CC


) is the hermitian conjugate . The transfer 

integral 
ijt  is written as ttij  , which means that all 

hopping processes have the same probability. The 
parameter U is the on-site Coulomb interaction. It is 

worth mentioning that in principle, the parameter U is 

positive because it is a direct Coulomb integral. 
 
B. The gradient Hamiltonian model   (GHM).  
 

The single band Hubbard model (HM) has some 
limitations as it is linearly dependent only on lattice 
separations. It does not consider the lattice gradient 
encountered by interacting electrons as they hop 
from one lattice point to another. The linear 
dependence of the Hubbard model only on lattice 
separations would certainly not provide a thorough 
understanding of the interplay between interacting 
electrons. Consequently, we have in this work, 
extended the single band Hubbard model by 
introducing gradient displacement parameters. We 
hope that the inclusion of the gradient displacement 
parameters will help to resolve the associated defects 
pose by the limitations of the single HM when applied 
in the determination of some quantum quantities. The 
gradient Hamiltonian model read as follows: 
 

              

 


  
i

i
i

ij

ji nnUchCCtH


 ..   
 ji

l

dt tan                                (2.                                         
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Now, 
d

ijt =
dt is the diagonal kinetic hopping term or 

transfer integral between two lattice sites, ltan is the 

angle between any diagonal lattice and l represent 

the diagonal lattice separations while the other 
symbols retain their usual meaning. 

 
C. The correlated variational approach   

(CVA) or trial wave function. 
The correlated variational approach established by 
[12] is of the form

                  

                        
  iiX i

i

,  





ji
ji

jijiX ,,

     

                           (2.3) 

where  ,...,2,1,0iX i  are variational parameters 

and  ji ,  is the eigen state of a given electronic 

state, l  is the lattice separation. However, because 

of the symmetry property of (2.3) we can recast it as 
follows. 

 
llX

l

 
                               

(2.4) 

In this current study the complete details of the basis 
set of the two dimensional (2D) N X N lattices can be 
found in [13] and [14]. However, because of the 
complexity of the lattice basis set we are only going 
to enumerate the relevant information that are 
suitable to our present study in the tables below. 
 
D. Method of determining the lattice 
separations for various 2D N X N square lattices. 

Let us consider the coordinates of a 2D N X N square 

lattice which is represented as ),(
11

yx and ),(
22

yx . 

Suppose one electron is located at the first 
coordinate while the other electron is located at the 
second coordinate. Then we can write that the 
diagonal lattice separation is given by the expression

   221

2

21 aa yyxx   , also for linear lattice 

separation it is either aaxx 2,121  and

021  yy  or ,2,121 aayy  and 01  xx ), 

while for the on-site lattice separation we have that

02121  yyxx , then the corresponding lattice 

separation angle is given by 












12

12
tan

xx

yy

l . 
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Table 2.1: Relevant information derived from the basis set of the geometry of 2D N X N square   lattice. 

Lattice separation 

length l and ld  

Total number of pair electronic states for different 2D N x N square 
lattices 


2211

, yxyx  

l  
l

  
l

d  11 x 11 9 x 9 7 x 7 5 x 5 3 x 3 

0 
0  0   11,11   11,11   11,11   11,11   11,11  

1 
1  a   12,11   12,11   12,11   12,11   12,11  

2 
2

 a2  
 22,11

 
 22,11

 
 22,11

 
 22,11

 
 22,11

 
3 

3  a2   13,11   13,11   13,11   13,11  -- 

4 4
 

a5
 

 23,11
 

 23,11
 

 23,11
 

 23,11
 

-- 

 32,11   32,11
 

 32,11
 

 32,11
 

-- 

5 
 5

  
a8   33,11   33,11   33,11   33,11  -- 

6 
6  a3

  14,11   14,11   14,11  -- -- 

7 
7  a10

 
 24,11   24,11   24,11  -- -- 

8 
8  a13

 
 34,11   34,11   34,11  -- -- 

9 
9  a18

 
 44,11   44,11   44,11  -- -- 

10 
10  a4   15,11   15,11  -- -- -- 

11 
11  a17

 
 25,11   25,11  -- -- -- 

12 
12  a20

 
 35,11   35,11  -- -- -- 

13 
13  a25   45,11   45,11  -- -- -- 

14 
14

 
a32

 
 55,11   55,11  -- -- -- 

15 
15

 
a5

  16,11
 

-- -- -- -- 

16 
16

 
a26

 
 26,11

 
-- -- -- -- 

17 
17

 
a29

 
 36,11

 
-- -- -- -- 

18 
18

 
a34

 
 46,11

 
-- -- -- -- 

19 
19

 
a41

 
 56,11

 
-- -- -- -- 

20 
20

 
a50

 
 66,11

 
-- -- -- -- 
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Table 2.2: Relevant information derived from the basis set of the geometry of 2D N X N square lattice. 

The table gives the Lattice Separation l and actual lattice separation distance
l

d . 

Lattice separation 

length l and ld  

11 x 11 

ll


 

9 x 9 

ll


 

7 x 7 

ll


 

5 x 5 

ll


 
 

3 x 3 

ll


 

l  l
 l

d
 )(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 

0 0  0  1211211   81811   49491   25521   991   

1 1  a              
4841214   

324814   196494   100524   3694   

2 2
 a2  

4841214   324814   196494   100524   3694   

3 3  a2  4841214   324814   196494   100524   -- 

4 4
 

a5  
4841214   324814   196494   100524   -- 

4841214   324814   196494   100524 
 -- 

5 
 5

  
a8  4841214 

 
324814   196494   100524   -- 

6 6  a3
 4841214   324814   196494   -- -- 

7 7  a10
 

9681218   648818   392498   -- -- 

8 8
 

a13
 

9681218   648818   392498   -- -- 

9 9  a18
 

4841214   324814   196494   -- -- 

10 10  a4  4841214   324814   -- -- -- 

11 11  a17
 

9681218   648818   -- -- -- 

12 12  a20
 

9681218   648818   -- -- -- 

13 13  a25  9681218   648818   -- -- -- 

14 14
 

a32
 

4841214   324814   -- -- -- 

15 15
 

a5
 4841214   -- -- -- -- 

16 16
 

a26
 

9681218   -- -- -- -- 

17 17
 

a29
 

9681218   -- -- -- -- 

18 18
 

a34
 

9681218   -- -- -- -- 

19 19
 

a41
 

9681218   -- -- -- -- 

20 20
 

a50
 

4841214   -- -- -- -- 

2
)( NXN  14641 6561  2401 625

 
81
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Table 2.3: Relevant information derived from the basis set of the geometry of 2D N X N square lattice. 

Lattice separation 

length l and ld  

Total number of pair electronic states for different 2D N x N square lattices 

ll
  

l  l
  

ld  
2211

, yxyx  

Number of 
NN 

l


 

11 X 
11 
 

9 X 9 
 

7 X 7 
 

5 X 5 
 

3 X 3 
 

0 0  0   11,11  1 (on-site) 121 81  49  25  9  

1 
1  a   12,11  4 (linear) 484 324 196 100 36  

2 
2

 a2  
 22,11

 4(diagonal) 484 324 196 100 36  

3 
3  a2   13,11  4 (linear) 484 

324 196 100 -- 

4 4
 

a5
 

 23,11
 

4(diagonal) 484 324 196 100 -- 

 32,11  4(diagonal) 484 324 196 100
 

-- 

5 
 5

  
a8   33,11  4(diagonal)    484 484

 
324 196 100 -- 

6 
6  a3

  14,11  4 (linear) 484 
324 196 -- -- 

7 
7  a10

 
 24,11  8 (diagonal) 968 

648 392 -- -- 

8 
8  a13

 
 34,11  8 (diagonal) 968 

648 392 -- -- 

9 
9  a18  

 44,11  4(diagonal) 484 324 196 -- -- 

1
0 10  a4   15,11  4 (linear) 484 

324 -- 
-- -- 

1
1 11  a17

 
 25,11  8 (diagonal) 968 

648 -- -- -- 

1
2 12  a20

 
 35,11  8 (diagonal) 968 

648 
-- 

-- -- 

1
3 13  a25   45,11  8 (diagonal) 968 

648 
-- 

-- -- 

1
4 

14
 a32

 
 55,11  4(diagonal) 484 

324 -- 
-- -- 

1
5 

15
 a5

 
 16,11

 4 (linear) 484 -- -- 
-- -- 

1
6 

16
 a26

 
 26,11

 8 (diagonal) 968 
-- -- -- -- 

1
7 

17
 a29

 
 36,11

 8 (diagonal) 968 -- -- 
-- -- 

1
8 

18
 a34

 
 46,11

 8 (diagonal) 968 -- -- 
-- -- 

1
9 

19
 a41

 
 56,11

 8 (diagonal) 968 -- -- 
-- -- 

2
0 

20
 a50

 
 66,11

 4(diagonal) 484 -- -- 
-- -- 

2
)( NXN  

14641 6561 2401 625 81 

          Note that NN is the nearest neighbour. 
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Table 2.4: Relevant information on the angular displacement derived from the basis set of the geometry of 
2D N x N square lattice for only diagonal lattice sites. 

Lattice 
separation 

length l  

 

11 x 11 

ll
  

9 x 9 

ll
  

7 x 7 

ll
  

5 x 5 

ll
  

3 x 3 

ll
  

l  
 

l

 
l

D  
l

tan  
l

D  
l

tan  
l

D  
l

tan
 l

D  
l

tan
 l

D  
l

tan  

2 a2  
0.0331 1.00 0.0494 1.0 0.0816 1.00 0.1600 1.00 0.0124 1.00 

4 a5  

0.0331 
2.00 

0.0494 
2.0 

0.0816 
2.00 

0.1600 
2.00 -- -- 

0.0331 0.50 0.0494 0.5 0.0816 0.50 0.1600
 0.50 -- -- 

5 a8  0.0331
 1.00 0.0494 1.0 0.0816 1.00 0.1600 1.00 -- -- 

7 a10
 

0.0661 
3.00 

0.098
8 

3.0 
0.163
3 

3.00 -- -- -- -- 

8 a13
 

0.0661 
1.50 

0.098
8 

1.5 
0.163
3 

1.50 -- -- -- -- 

9 a18
 

0.0331 1.00 0.0494 1.0 0.0816 1.00 -- -- -- -- 

11 a17
 

0.0661 
4.00 

0.098
8 

4.00 -- -- -- -- -- -- 

12 a20
 

0.0661 
2.00 

0.098
8 

2.00 -- -- -- -- -- -- 

13 a25  
0.0661 

1.33 
0.098
8 

1.33 -- -- -- -- -- -- 

14 a32
 

0.0331 1.00 0.0494 1.00 -- -- -- -- -- -- 

16 a26
 

0.0661 5.00 -- -- -- -- -- -- -- -- 

17 a29
 

0.0661 2.50 -- -- -- -- -- -- -- -- 

18 a34
 

0.0661 1.66 -- -- -- -- -- -- -- -- 

19 a41
 

0.0661 1.25 -- -- -- -- -- -- -- -- 

20 a50
 

0.0331 1.00 -- -- -- -- -- -- -- -- 

The ratio l
D  is found from the division of the pair 

electronic states in each separation by the total 

number of electronic states. For example, 

0494.06561/3242 D . 

 
Table 2.5: Electronic states available to the two interacting electrons in a 2D N X N even square lattice 

 

Lattice 
Dimensio

n 

 
Dimension of 

matrix 
 
 

Central lattice site 
 

Even 

Number of 

separation length l  

 
Even 

Number of 
electronic 

state 

Number of 
on-site 

electrons 

2D 

)( NN   
N x N 










2
,

2

NN
 







 

8

)2)(4( NN
 

2
)( NN   

)( NN   

4 X 4 6 x 6 (2 , 2) 6 256 16 

6 X 6 10 x 10 (3 , 3) 10 1296 36 

8 X 8 15 x 15 (4 , 4) 15 4096 64 

10 X 10 21 x 21 (5 , 5) 21 10000 100 

12 X 12 28 x 28 (6 , 6) 28 20736 144 
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Table 2.6: Electronic states available to the two interacting electrons in a 2D N X N odd square lattice. 

Lattice 
Dimension 

Dimension 
of matrix 

 
 

Central lattice site 
 

Odd 

Number of 

separation length l  

Odd 

Number 
of 

electronic 
state 

Number of 
on-site 

electrons 

2D 

)( NN   
N x N 








 

2

1
,

2

1 NN
 







 

8

)1()3( NN
 

2
)( NN   

)( NN   

3 X 3 3 x 3 (2 , 2) 3 81 9 

5 X 5 6 x 6 (3 , 3) 6 625 25 

7 X 7 10 x 10 (4 , 4) 10 2407 49 

9 X 9 15 x 15 (5 , 5) 15 6561 81 

11 X 11 21 x 21 (6 , 6 ) 21 14641 121 

 

E. Evaluation of the quantum state functions 

 and  H  of the two interacting 

electrons. 

We shall in this work show clearly the operation of 
the gradient Hamiltonian given by (2.2) on (2.4) only 
for the case of 2D 7 X 7 square lattice and assume 
the same procedure for the other 2D N X N square 
lattices. 

There are two basic quantum constraints or gauge 
which must be duly followed in this aspect of the 
work. The constraints are that: 
 
(i) the field strength tensor  

     








jiiff

jiiff
ji ji

0

1


              

 (2.5) 

(ii)  the  Marshal rule for non-conservation of 
parity [15].                         

 ijji ,,
                    

 (2.6)     

Hence with these two basic constraints we can solve 

for the inner product   of the variational trial 

wave function and the activation of the Gradient 
Hamiltonian model on the trial wave function

 H . 

 

F.  Determination of  and  H for 

2D 7 X 7 square lattices. 
Now when the correlated variational trial wave-
function given by (2.4) is written out in full on account 
of the information enumerated in Tables 2.1 - 2.2 we 
get 

 = 00 X + 11 X + 22 X + 3X 3 + 4X 4 + 5X 5 + 6X 6 + 7X 7 + 

                                                                            8X 8 + 9X 9                                    (2.7)                                                                                 

                                                                                                                  

 = 00
2

0 X + 11
2

1 X + 22
2

2 X + 33
2

3 X + 44
2

4 X + 55
2

5 X +                                    

77
2

7 X + 88
2

8 X + 99
2

9 X                    (2.8)
 
                                                                =  2

0
49 X

+
2

14X +
2

24X +
2

34X +
2

48X +
2

54X +
2

64X +
2

78X +
2

88X + 2

9
4X                                  (2.9)                                 

           
 When we carefully use equation (2.2) to act on 
equation (2.7), with the proper application of the 

information provided in Tables 2.1 and 2.3 we get as 
follows. 

 
 

  124231210110 422482  XXXXXXtH 132 X 432 X 632 X

 3424 44  XX  7454 24  XX 452 X 852 X 6636 22  XX  + 762 X 472 X

 877767 224  XXX 584 X 782 X
  882 X +

 
984 X 9989 42  XX  00 XU

 

 222 tan Xt
d

 + 4X ( 4

1

4tan  + 4

2

4tan  )+ 555 tan X + 777 tan X +        

                                             888 tan X + 999 tan X                                                 (2.10) 

   3331222100011110 2482  XXXXXXXXH t  44422 XX

11124 XX 11132 XX 44432 XX 66632 XX  33342224 44  XX XX

 77745554 24  XX XX 44452 XX 88852 XX 33362 XX + 77762 XX
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 44472 XX  88876667 24  XX XX 55584 XX  99987778 42  XX XX
    

88892 XX  666102 XX 777112 XX  888122 XX 999134 XX 0000 XXU  

 222
2
2 tan Xt

d
 +

2

4X (
44

1

4tan  +
44

2

4tan  )+     

              555

2

5 tan X + 777

2

7 tan X + 888

8

8 tan X + 999

2

9 tan X            (2.11) 

 

  54634342312110 32163232163216)(49 XXXXXXXXXXXXXXtH  

7432 XX  98877685 32323232 XXXXXXXX 
2

8

2

7

2

6 16168 XXX 2
0

2
9 )4/(416 XtUX 

 

2
0

2
14

2
13

2
12

2
11

2
10 )4/(4161616168 XtUXXXXX     2

2

2
tan4)(49 Xt

d 4
2

4X  (
1

4tan  +
2

4tan  ) +     

                           5

2

5 tan4 X + 8 7

2

7 tan X + 8 8

2

8 tan X + 4
2

9X  9tan                                   (2.12) 

Again we should understand that the values of 
ll

  is clearly stated in Tables 2.2 - 2.3.  

G.   Results of the  and  H for the 

other 2D N X N square lattices. 

We can now tactically follow the same procedure that 
led to the realization of equations (2.9) and (2.12) for 
the rest of the 2D N X N square lattices whose results 
are also clearly stated below. 

            
  (i)        2D 3 X 3 square lattice. 

                            
 2

2
2
1

2
0 449 XXX 

                                                                           
(2.13) 

    
  2110 32169 XXXXH 

2

0

2

2

2

1 )4/(4168 XtUXX 9  2
2
2 tan4 Xt

d
               (2.14)                           

              (ii)       2D 5 X 5 square lattice. 

                           
 2

5
2
4

2
3

2
2

2
1

2
0 4844425 XXXXXX 

                        
                 (2.15) 

                                                          544342312110 888484)4)(25( XXXXXXXXXXXXtH

2

4

2

3 42 XX  +
2

54X   

 
2

0)4/( XtU
 

 
 555

2
5

2
444

2
4

1
444

2
4222

2
2 tantantantan   XXXXt

d


                    
(2.16)      

   544342312110 323232163216)(25 XXXXXXXXXXXXtH 
2

4

2

3 168 XX
     

 

 
2

0
2
5 )4/(416 XtUX    5

2
5

2
4

1
4

2
42

2
2 tan4)tan(tan4tan4)(25  XXXt

d
                       (2.17)                      

               (iii)       2D 9 X 9 square lattice. 

 =  2

0
81 X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X +    

                                 2

14
4X                                                                                                  (2.18)                    

  54634342312110 32163232163216))(81( XXXXXXXXXXXXXXtH 7432 XX

 13912898117871067685 3232323232163232 XXXXXXXXXXXXXXXX  12111110 3232 XXXX

 14131312 3232 XXXX 2
0

2
14

2
13

2
12

2
11

2
10 )4/(4161616168 XtUXXXXX     2

2
2 tan4)()81( Xt

d
4

2

4X  (
1

4tan  +

2

4tan  ) + 5

2

5 tan4 X + 8 7

2

7 tan X + 8 8

2

8 tan X + 4
2

9X  9tan  + 8 11

2

11 tan X + 8 12

2

12 tan X + 8 13

2

13 tan X + 4
2

14X

14tan                                                             (2.19) 

                                                                     
                    (iv)       2D 11 X 11 square lattice. 

 =  2

0
121 X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X +    
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                          48 8 8 8 4 4 2
20

2
19

2
18

2
17

2
16

2
15

2
14 XXXXXXX                                                     (2.20)               

 H   74546343422 3232163232163216121
31110 XXXXXXXXXXXXXXXXt  

 111013912898117871067685 323232323232163232 XXXXXXXXXXXXXXXXXX  

 17121312161112111510 3232323216 XXXXXXXXXX 191418131413 323232 XXXXXX   
 

161532 XX

171632 XX 
2

18

2

17

2

16

2

15201919181817 1616168323232 XXXXXXXXXX 
2

1916X












 2

0
2

20
4

416 X
t

U
X

  2
2
2 tan4)()81( Xt

d
4

2

4X  (
1

4tan  +
2

4tan  ) + 5

2

5 tan4 X + 8 7

2

7 tan X + 8 8

2

8 tan X + 4
2

9X  9tan  + 8 11

2

11 tan X + 8

12

2

12 tan X + 8 13

2

13 tan X +4
2

14X 14tan  + 8 16

2

16 tan X +  

8 17

2

17 tan X 8 18

2

18 tan X + 8 19

2

19 tan X + 4 20

2

20 tan X                                                      (2.21)                         

H. The variational theory of the two 
interacting electrons. 
 
Configuration interaction is based on the variational 
principle in which the trial wave-function being 
expressed as a linear combination of Slater 
determinants. The expansion coefficients are 
determined by imposing that the energy should be a 
minimum. The variational method consists in 
evaluating the integral 

 
 HEg

 dtut HHH
  
(2.22)

                                                      
 

Where 
gE is the correlated ground-state energy while

 is the guessed trial wave function. We can now 

differentially minimize (2.9) and (2.12) using the 
below equations.  















 H

XX
E

X

E

ii
g

i

g

 

(2.23)

      

 

Subject to the condition that the correlated ground 
state energy of the two interacting electrons is a 
constant of the motion, that is 

      
0





i

g

X

E
   ;    3,2,1,0 i

             
 (2.24) 

Now in this work we are only going to evaluate that of 
2D 7 X 7 lattices and assume the same procedure for 
the rest ones. Hence upon the substitution of (2.9) 
and (2.12) into (2.23) and also dividing all through the 
resulting equation by t81 we get the following 

equation. 
 

E  2

0
X +

2

14X +
2

24X +
2

34X +
2

48X +
2

54X +
2

64X +
2

78X +
2

88X + 2

9
4X =    2110 3216 XXXX 3116 XX

 54634342 32163232 XXXXXXXX 7432 XX  877685 323232 XXXXXX 9832 XX 
2

68X
 


2

8

2

7 1616 XX 2
0

2
9 )4/(416 XtUX    22

2
2 tan4 DX 4

2

4X (
1

4

1

4 tan D +
2

4

2

4 tan D )+ 55

2

5 tan4 DX + 

                           8 77

2

7 tan DX + 8 88

2

8 tan DX + 4
2

9X  99 tan D                                       (2.25) 

Where utU 4/ is the interaction strength between 

the two interacting electrons and tEE g / is the 

total energy possess by the two interacting electrons 
as they hop from one lattice site to another.  Also 

ttD
d

l /
 

 ( l =2, 4, 5, 7, 8, 9) are the ratios of the individual 

diagonal kinetic hopping to the total number of lattice 
separations or total kinetic hopping sites respectively 
as stated in Table 2.4.  

010 )4/(8162 XtUXXE                 (2.26)                                                      

3201 1632168 XXXXE                 (2.27)                                                            

22
tan832328 2412 XDXXXE 

  
(2.28) 

  6413 1632168 XXXXE 
            

 (2.29) 

  
)tantan(83232323216

2211

4444475324  DDXXXXXXE 
                                                                 

(2.30) 

  55
tan832328 5845 XDXXXE 

 
(2.31) 

  6736 1632168 XXXXE 
             

(2.32)  

77778647 tan163232323216 XDXXXXXE 
                                                           

(2.33)      

88898758 tan163232323216 XDXXXXXE 
                               

(2.34) 

99
tan832328 9989 XDXXXE 

   
(2.35) 

However, we can carefully transform the equations 
given by (2.26) – (2.35) into a homogeneous eigen 
value problem of the form 

       
  0 ll XIA                                 (2.36) 

Where A is an N X N matrix which takes the 

dimension of the number of separations, 
l is the 

eigen value or the total energy
lE  to be determined, 

I is the identity matrix which is also of the same 
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order as A , 
iX  are the various eigen vectors or 

simply the variational parameters corresponding to 

each eigen value. The values of 
lD and 

ltan are 

clearly indicated in Table 2.4.  
 
 

 

After careful simplifications we get a 10 x 10 matrix 
from (2.36) which is shown in equation (2.37) below. 
From the resulting matrix we can now determine the 
total energies or the ground-state energies, and the 
corresponding variational parameters for various 
arbitrary values of the interaction strength u . 

  

   









































































































0

0

0

0

0

0

0

0

0

0

0816.4400000000

22449.200200000

024899.22020000

0042002000

04000816.040000

00202102.02200

000204020

00000400816.040

000000242

0000000084

9

8

7

6

5

4

3

2

1

0

X

X

X

X

X

X

X

X

X

X

E

E

E

E

E

E

E

E

E

uE

        (2.37) 

           
  We used Matlab 7.5 version in the computation of 
the total energies and variational parameters 
corresponding to various arbitrary values of the 
interaction strengthu . The result emerging from this 

is shown in the next session. 

III.        Presentation of Results. 

The results emerging from the matrix given by (2.37) 
are shown in Tables 3.1 and 3.2. The  

 

 

result of the single-band HM with respect to the 
interaction strength by [12] is denoted as previous 
study, while that of our study emerging from the 
application of the gradient Hamiltonian model is 
denoted as the present study. In this section we also 
compared our work with the ones emerging from the 
exact calculation using Guzwiller variational approach 
(GVA) [16] and the correlated variational approach 
(CVA) [12]. We also simulate the possible equation 
for exact calculation and also compared the result 
with our present study. 
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Table3.1. shows the calculated values of the total energies 
lE and the variational parameters lX  as a function of 

some arbitrary values of the interaction strength tu 4/ for lX  ( l 0, 1, 2, 3, 4) 

Interaction 
strength 

tu 4/  

Present and 
*Previous 

study 
 

Total 
Energy 

lE  

Variational  Parameters (2D 7 X 7 square lattice) 

lX  ( l 0, 1, 2, 3, 4) 

0X  
1X  2X  3X  

4X  

50.00 
Present -8.0758 0.0080 0.2091 0.2682 0.3000 0.3269 

Previous -7.8929 0.0086 0.2245 0.2820 0.3135 0.3319 

40.00 
Present -8.0763 0.0100 0.2098 0.2686 0.3002 0.3269 

Previous -7.8936 0.0107 0.2253 0.2823 0.3137 0.3319 

30.00 Present -8.0773 0.0132 0.2109 0.2691 0.3004 0.3270 

 Previous -7.8947 0.0142 0.2265 0.2829 0.3139 0.3319 

20.00 
Present -8.0791 0.0193 0.2130 0.2701 0.3008 0.3271 

Previous -7.8968 0.0208 0.2288 0.2841 0.3144 0.3320 

10.00 
Present -8.0841 0.0364 0.2187 0.2729 0.3020 0.3273 

Previous -7.9028 0.0393 0.2351 0.2871 0.3156 0.3321 

5.00 
Present -8.0926 0.0650 0.2282 0.2773 0.3036 0.3273 

Previous -7.9129 0.0704 0.2456 0.2920 0.3173 0.3320 

 
0.00 

Present -8.1635 0.2868 0.2926 0.3012 0.3054 0.3158 

Previous -8.0000 0.3162 0.3162 0.3162 0.3162 0.3162 

-1.00 
Present -8.3544 0.6537 0.3558 0.2888 0.2550 0.2414 

Previous -8.2439 0.6971 0.3698 0.2890 0.2491 0.2259 

-1.50 
Present -8.9001 0.8888 0.3222 0.1995 0.1461 0.1175 

Previous -8.8660 0.8973 0.3214 0.1938 0.1400 0.1082 

-2.00 
Present -10.1060 0.9548 0.2514 0.1200 0.0754 0.0493 

Previous -10.0987 0.9557 0.2507 0.1180 0.0742 0.0473 

-2.50 
Present -11.6571 0.9747 0.2019 0.0783 0.0454 0.0248 

Previous -11.6547 0.9749 0.2016 0.0775 0.0451 0.0242 

-5.00 
Present -20.8078 0.9942 0.1004 0.0200 0.0104 0.0030 

Previous -20.8077 0.9947 0.1004 0.0199 0.0103 0.0030 

-10.00 
Present -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 

Previous -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 

-15.00 
Present -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 

Previous -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 
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Table 3.2. Shows the calculated values of the total energies 
lE and the variational parameters lX  as a   function of 

some arbitrary values of the interaction strength tu 4/ for 
lX  ( l 5, 6, 7, 8, 9) 

Interaction 
strength 

tu 4/  

Present 
and 

*Previou
s study 

 

Total 
Energy 

lE  

Variational  Parameters (2D 7 X 7 square lattice) 

lX  ( l 5, 6, 7, 8, 9) 

5X  6X  7X  8X  9X  

50.00 
Present -8.0758 0.3557 0.3485 0.3793 0.3841 0.3848 

Previous -7.8929 0.3568 0.3490 0.3574 0.3722 0.3824 

40.00 
Present -8.0763 0.3556 0.3484 0.3792 0.3839 0.3844 

Previous -7.8936 0.3567 0.3489 0.3572 0.3719 0.3821 

30.00 Present -8.0773 0.3554 0.3483 0.3790 0.3835 0.3839 

 Previous -7.8947 0.3564 0.3488 0.3570 0.3715 0.3816 

20.00 
Present -8.0791 0.3551 0.3481 0.3786 0.3828 0.3830 

Previous -7.8968 0.3560 0.3485 0.3565 0.3707 0.3805 

10.00 
Present -8.0841 0.3539 0.3473 0.3773 0.3808 0.3805 

Previous -7.9028 0.3546 0.3476 0.3551 0.3684 0.3776 

5.00 
Present -8.0926 0.3517 0.3458 0.3749 0.3771 0.3761 

Previous -7.9129 0.3519 0.3457 0.3524 0.3641 0.3722 

 
0.00 

Present -8.1635 0.3230 0.3221 0.3436 0.3368 0.3300 

Previous -8.0000 0.3162 0.3162 0.3162 0.3162 0.3162 

-1.00 
Present -8.3544 0.2200 0.2266 0.2324 0.2136 0.1999 

Previous -8.2439 0.1971 0.2053 0.1959 0.1803 0.1699 

-1.50 
Present -8.9001 0.0845 0.0928 0.0871 0.0687 0.0570 

Previous -8.8660 0.0740 0.0827 0.0719 0.0559 0.0459 

-2.00 
Present -10.1060 0.0259 0.0310 0.0252 0.0156 0.0104 

Previous -10.0987 0.0241 0.0293 0.0223 0.0137 0.0090 

-2.50 
Present -11.6571 0.0102 0.0133 0.0093 0.0047 0.0035 

Previous -11.6547 0.0098 0.0129 0.0086 0.0043 0.0022 

-5.00 
Present -20.8078 0.0006 0.0012 0.0005 0.0001 0.0000 

Previous -20.8077 0.0006 0.0012 0.0005 0.0001 0.0000 

-10.00 
Present -40.4010 0.0000 0.0001 0.0000 0.0000 0.0000 

Previous -40.4010 0.0000 0.0001 0.0000 0.0000 0.0000 

-15.00 
Present -60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 

Previous -60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 3.3: Results of the ground-state energy obtained in present study compared with previous study. 

Interaction 
strength 

tu 4/  

Present 
and 

*Previous 
study 

 

Total Energy  lE   

2D N X N Square lattices 

3 X 3 5 X 5 7 X 7 9 X 9 11 X 11 

50.00 
Present -7.2140 -8.3103 -8.0758 -8.0925 -8.0811 

Previous -7.1525 -7.7585 -7.8929 -7.9411 -7.9633 

40.00 
Present -7.2210 -8.3117 -8.0763 -8.0928 -8.0813 

Previous -7.1596 -7.7602 -7.8936 -7.9414 -7.9635 

30.00 Present -7.2324 -8.3139 -8.0773 -8.0932 -8.0816 

 Previous -7.1712 -7.7630 -7.8947 -7.9420 -7.9638 

20.00 
Present -7.2544 -8.3183 -8.0791 -8.0942 -8.0821 

Previous -7.1936 -7.7684 -7.8968 -7.9431 -7.9644 

10.00 
Present -7.3144 -8.3300 -8.0841 -8.0968 -8.0837 

Previous -7.2546 -7.7834 -7.9028 -7.9461 -7.9662 

5.00 
Present -7.4126 -8.3494 -8.0926 -8.1012 -8.0863 

Previous -7.3546 -7.8084 -7.9129 -7.9513 -7.9693 

 
0.00 

Present -8.0445 -8.4877 -8.1635 -8.1409 -8.1115 

Previous -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 

-1.00 
Present -8.7740 -8.7328 -8.3544 -8.2829 -8.2297 

Previous -8.7446 -8.3668 -8.2439 -8.1878 -8.1580 

-1.50 
Present -9.5119 -9.1847 -8.9001 -8.8564 -8.8397 

Previous -9.4931 -8.9871 -8.8660 -8.8348 -8.8268 

-2.00 
Present -10.6040 -10.2160 -10.1060 -10.0974 -10.0949 

Previous -10.5941 -10.1506 -10.0987 -10.0926 -10.0919 

-2.50 
Present -12.0048 -11.7464 -11.6571 -11.6550 -11.6543 

Previous -12.0000 -11.7218 -11.6547 -11.6533 -11.6532 

-5.00 
Present -20.8919 -20.8097 -20.8078 -20.8078 -20.8077 

Previous -20.8916 -20.8086 -20.8077 -20.8077 -20.8077 

-10.00 
Present -40.4213 -40.4011 -40.4010 -40.4010 -40.4010 

Previous -40.4213 -40.4010 -40.4010 -40.4010 -40.4010 

-15.00 
Present -60.2759 -60.2670 -60.2670 -60.2670 -60.2670 

Previous -60.2759 -60.2670 -60.2670 -60.2670 -60.2670 

 

 
 

Table 3.4: comparison of the large limit of the interaction strength ( 50u ) of the ground-state energy. 

2D N X N 
Square 
Lattice 

GVA 

)/11(8
2

NEN   

CVA 

)/1(8
2

NEN   

 = 0.6250 

Present study 
(Exact) 

)/1(8
2

NEN   

 = 0.8843 

Present 
study 

Variational 
calculation 

 

3 X 3 -7.1111 -7.4444  -7.2140 -7.2140 

5 X 5 -7.6800 -7.8000  -7.7170 -8.3103 

7 X 7 -7.8367 -7.8980  -7.8556 -8.0758 

9 X 9 -7.9012 -7.9382  -7.9127 -8.0925 

11 X 11 -7.9339 -7.9587  -7.9415 -8.0811 
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IV. Discussion of Results. 

The total energies and the variational parameters for 
the 2D 7 X 7 square lattice obtained from the matrix 
(2.37) is shown in Tables 3.1 and 3.2. The tables 
shows that (i) the total energy possess by the two 
electrons is non-degenerate and it decreases as the 

interaction strength is decreased, (ii) 0X  increases 

as the interaction strength is decreased. The other 
variational parameters first increase before they start 
to decrease as the interaction strength is made more 
negatively large.  
  
We infer from this result that when the interaction 
strength is made more negatively large, then the 
electrons now prefer to remain close together 
(Cooper pairing). This is represented by the greater 

value of 0X  (double occupancy). Generally, it is this 

coming together or correlation of electrons that is 
responsible for the many physical properties of 
condensed matter physics, e.g. superconductivity, 
magnetism, super fluidity. However, in the positive 
regime of the interaction strength, the two electrons 
prefer to stay far apart as possible and the event is 
synonymous with ferromagnetism. 
 
One remarkable result of the CVA as shown in Table 

3.1 is the values of the variational parameters 

obtained when the interaction strength between the 

two electrons is zero ( 0u ). In this case, the 

variational parameters produced by the single-band 

HM have the same values. This implies that the 

probability of double occupancy is the same as single 

occupancy. When 0u  we observe a free electron 

system (non-interacting); the two electrons are not 

under the influence of any given potential they are 

free to hop to any preferable lattice site.  

However, the variational parameters produced by the 

gradient Hamiltonian model when 0u  are not 

equal. The interpretation of this is that even in the 

absence of interaction strength or potential function 

0u  there is still an existing residual potential field 

between the two interacting electrons hence the 

unequal probability of being found on any of the 

lattice separations.  It can also be assumed that the 

linear dependence of the electrons on the uniform 

lattice separations and the gradient could be the 

reason for the unequal variational parameters.  

The difference in values of the total energies for 

some 2D N X N square lattices is shown in Table 3.3. 

In a particular lattice dimension the values of the 

ground-state energies obtained in our present study 

consistently decreases negatively as the interaction 

strength is decreased. The values of the total 

energies are also smaller than those of the previous 

study carried out by Chen and Mei.  In the regime  

when the interaction strength 0.1u , the result of 

the total energies of the previous study consistently 

increases negatively in value as we move from a 

lower dimensional lattice to higher ones, and the 

result of our present study is also consistent with this 

trend.  

The result of the total energies for some 2D N X N 
square lattices is shown in Table 3.4. It is clear from 
the table that as the interaction strength is made 
positively large the difference in values of the total 
energies is very small, as a result we assume that u = 

50 is large enough to typify the large limit of the 
interaction strength. It is evident from the table that

varies with N, the number of lattice sites. For large N, 
  approaches the value of 0.8843 in this present 

study, while  is 0.6250 in the work of Chen and Mei. 

The result of the ground- state energies for various 
2D N x N square lattices obtained in this present 
study agrees suitably enough with the results of GVA 
and CVA. 
 

V. Conclusion. 

In this work, we utilized two types of Hamiltonian 

model to study the behaviour of two interacting 

electrons on a two dimensional (2D) N X N square 

lattice. The Hamiltonian are the single-band HM and 

the gradient Hamiltonian model. Obviously, the total 

energies of the two interacting electrons as a function 

of the interaction strength are consistently lower than 

those of the original single-band HM. Thus the 

inclusion of the gradient parameters in the single 

band-HM yielded better results of the ground-state 

energies. Hence the lower ground-state energy 

results of our new model are quite more compactable 

with quantum variational requirements; that the 

ground-state energy should be a minimum. Also our 

study revealed that both the single-band HM and the 

gradient Hamiltonian model converge to the same 

values of total energies and variational parameters in 

the large negative values of the interaction strength. 
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