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Abstract—Exponential time differencing-
Runge-Kutta schemes with spectral 
approximations are extended to deal with the 
generalized Burgers-Korteweg-de Vries equation. 
The problem is reduced to a stiff system of 
ordinary differential equations that is solved by 
combinations of exponential time differencing and 
Runge-Kutta schemes. The stability properties of 
the exponential time differencing methods and the 
exponential time differencing Runge-Kutta 
schemes up to fourth-order are discussed. Then it 
is shown that it is convenient to solve the 
generalized Burgers-Korteweg-de Vries equation 
by third- or fourth-order exponential time 
differencing Runge-Kutta schemes. The numerical 
results seem to be in good agreement with the 
exact solutions. 
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I.  INTRODUCTION 

Some physical problems can be described by 
Korteweg-de Vries (KdV) equation. It is well known 
that solitons and solitary waves are the class of special 
solutions of the KdV equation. Non-linear shallow-
water waves and wave motion in plasmas can be 
described as in [3] by KdV. In order to study the 
problems of liquid flow containing gas bubbles [4], fluid 
flow in elastic tubes [5], the propagation of waves in an 
elastic tube filled with a viscous fluid [11], weakly 
nonlinear plasma waves with certain dissipative effects 
[12], [13] — to name a few, the basic corresponding 
governing equation can be reduced to the so-called 
Burgers-Korteweg-de-Vries (B-KdV) equation  

           (1) 

The B-Kdv equation is a combination of the Burgers 
equation and KdV equation. It arises from many 
physical contexts and it is one of the simplest evolution 
equations that features nonlinearity uux, dissipation uxx 
and dispersion uxxx. Physical considerations require 
that the dissipative parameter b must always be 
positive, while the dispersive parameter c may be 
either positive or negative. The B-Kdv equation has 
been studied in many literatures (see e.x. [7,8,9]). 
Recently there has been a considerable interest in the 

numerical solution of the B-KdV equation. Some well 
known methods, such as finite difference and finite 
element schemes, Fourier spectral methods and 
exponential finite difference method are employed to 
solve the Burgers equation and KdV equation. 
However, numerical treatment for the B-KdV equation 
is rarely reported. A numerical investigation of the B-
KdV equation was carried out by Canosa and Gazdag 
[6]. Darvishi and others have used in [10] a Numerical 
Solution of the B-KdV equation by Spectral Collocation 
Method and Darvishis Preconditionings. 

This paper deals with the numerical solution of the 
B-KdV equation using exponential time differencing 
Runge-Kutta schemes with spectral approximations. 
In the next section the fourth order Runge-Kutta 
exponential time differencing scheme (ETDRK4) is 
introduced. The motivation for this selection and for 
the involvement of exponential time differencing 
Runge-Kutta schemes (ETDRK) in this study are 
described. As an unavoidable matter, the stability of 
the various exponential time differencing methods 
(ETD) and (ETDRK) is discussed in Section 3. 
Numerical results for the solution of B-KdV are 
reported in section 4. The efficiency and accuracy of 
the proposed numerical schemes are shown by 
considering a numerical example. Finally in section 5 
some concluding remarks are done.  

II. EXPONENTIAL TIME DIFFERENCING FOURTH-
ORDER RUNGE-KUTTA SCHEME 

Many physical problems are described by the 
general partial differential equation (PDE)  

 (2) 

where L is a linear eliptic operator and N is an 
nonlinear operator. In many practical cases one can 
ignore the influence of boundaries on (2) and therefore 
impose periodic boundary conditions. For problems 
with spatially periodic boundary conditions, the Fourier 
spectral methods can be used to discretize the spatial 
derivatives of (2), and therefore a stiff of coupled 
ODEs in time t would be obtained. 

 (3) 

Stiffness is a challenging property of differential 
equations that prevents conventional explicit numerical 
integrators from handling a problem efficiently. The 
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ETD integrator is one of the successful methods 
developed to solve stiff semi-linear problems. The 
linear term in (3) contains the stiffest part of the 
dynamics of the problem, and the nonlinear term 
varies more slowly than the linear one. The ETD 
methods solve the linear term exactly, and then 
explicitly approximate the remaining part by polynomial 
approximations. 

Multiplying (3) by the integrating factor  and 
integrating over a single time step of length l, gives  

 

(4) 

If un denotes the numerical approximation to u(tn), 
the first order exponential time differencing scheme 
(ETD1) would be given by 

                              (5) 

The ETD schemes obtained when ) is 

approximated through interpolation polynomials. Cox 
and Matthews in [1] give ETD scheme using Runge-
Kutta schemes, denoted ETDRK. Expecially the 
ETDRK4 scheme is of particular interest. A third-order 
and a second-order Runge-Kutta exponential time 
differencing scheme can be found in [1]. The ETDRK4 
scheme applied to the prototype problem in equation 
(3) can be written in the form: 

 

 

 

 

  

 

             

   (6) 

The experience in solving problems by ETDRK 
shows that equation (6) suffers from serious 
cancellation if it is implemented directly in this format. 
So, to efficiently implement the ETDRK4 scheme in 
general, Kassam and Trefethen in [2] explore the 
numerical instability, and propose a modification of the 
ETD schemes that solves these numerical problems. 
The key idea is to make use of complex analysis and 
evaluate certain coefficient matrices or scalars via 
contour integrals in the complex plane. 

III. STABILITY REGION 

The stability properties of the ETD and ETDRK 
methods up to fourth-order will be discussed in this 
section. Stability is related to the accuracy of the 
schemes and refers to errors not growing in 
subsequent steps. The stability region is the subset of 

the complex plane consisting of those with 

time step  for which the numerical approximation 

produces bounded solutions when applied to the 

scalar linear model problem  The stability of 

the ETDRK4 can be analyzed by plotting its stability 
regions. Consider the nonlinear ODE 

ut = pu + f(u), (7) 

with f(u) nonlinear part. It is supposed that there exists 
a fixed point u0 such that pu0 + f(u0) = 0. Linearizing 
about this fixed point, if u is peturbation of u0 and q is 
f´(u0), the following result is received  

ut = pu + qu. (8) 

The fixed point is stable if Re(p+q)<0. The stability 
regions are discussed below for schemes ETDRK4 
and RK4 against ETD1, ETD2, ETDRK2 and ETDRK3, 
in the complex planes of x=qt for different values of 
y=pt. In general, the parameters p and q may be both 
complex-valued so the resulting stability region is four-
dimensional. By assuming that q is complex and that p 
is fixed, negative and real, we can plot the resulting 
stability regions in the complex plane. In Fig.1 they are 
plotted the stability region of the classical Runge-Kutta 
method (RK4) and those of ETDRK4 for some different 
negative values of y. These last are properly selected 
for good-looking performance. As it is shown in Fig.1a, 
the region of stability for the ETDRK4 schemes grows 
larger as y decreases. Meantime, the inner red curve 
at the Fig.1b — the RK4 region — corresponds to the 
case y=0 for ETDRK4. It can be generalized: the 
stability regions of the ETDRK schemes for y=0 
coincide with the those of the corresponding order RK 

schemes. This is expected since in the limit as , 

ETDRK schemes reduce to the corresponding order 
explicit RK scheme. Of course, the regions plotted in 
Fig.1 give only an indication of the stability of the 
methods.  

If the eigenvalue of the linear operator is pure 
imaginary then the stability regions are quite different. 
In Fig. 2, the boundary stability regions of ETDRK2, 
ETDRK3 and ETDRK4, for y=—18i and y=18i are 
drawn. It can be observed from this figure that the 
stability regions include an interval of the imaginary 
axis, till exactly the value –imag(y). It is found that the 
above statement holds for each imaginary value of y.  

The stability regions of ETDRK2, ETDRK3 and 
ETDRK4, for y=—4 and y=—9 are given in Fig. 3. 
From this figure it can be seen that for both the two 
values selected for y, the stability region increases as 
the order of the ETDRK schemes increases, i.e, the 
ETDRK2 scheme has the smallest stability region 
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while the ETDRK4 scheme has the largest one. By 
other experiments it is observed that the statement 
holds for each real negative value of y. 

The stability regions of ETDRK2, ETDRK3, 
ETDRK4, ETD1and ETD2 are compared in Fig. 4 for 
the values of y=—9 and y=—15. It can be observed 

from this figure that for both the two values of  the 

stability region the ETDRK4 scheme contains those of 
the ETDRK3 and the ETDRK2 schemes, while it is 
contained by that of the ETD2 scheme. A small part of 
the stability region of the ETDRK4 scheme is not 
contained by that of the ETD1 scheme, however the 
first region is considerably smaller than the last one. 
Meantime the all stability regions for y=—9 are 
considerably smaller and contained by the 
corresponding ones for y=—15. From other 
experiments and observation done it is concluded that 
the above statements hold as . 

From the observation done in this section it can be 
concluded that against the evident fact of the stability 
region reduced as the order of a RK method is 
increased, the stability of an ETDRK scheme is 
improved when its order is increased. Instead of the 
balance between the stability of a method and its 
order to be achieved by a RK method, the only  
problem faced in implementing an ETDRK scheme is 
the computational effort increased progressively to its 
order. But the higher the order of the ETDRK used, 
the larger integration step (without risking the stability 
of the scheme) can be adopted. So, the compromise 
between the integration stepsize and the order of the 
ETDRK scheme used is the key factor to optimizing 
the computational effort.  

In the next section some numerical experiments 
done with ETDRK2, ETDRK3 and ETDRK4 methods, 
in solving B-KdV equations, are motivated and 
supported by the above analysis. 

  

Fig. 1. Stability regions for RK4 and ETDRK4 schemes in the complex plane of x=qt for several negative y=pt 

 

 

  

Fig. 2. Boundary of stability regions :ETDRK2, ETDRK3, ETDRK4 (a) y=—18i, (b) y=18i  
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Fig. 3. Stability regions: ETDRK2, ETDRK3, ETDRK4 (a) y=—4 (b) y=—9 

 

 

 
 

Fig. 4. Stability regions: ETDRK2, ETDRK3, ETDRK4, ETD1, ETD2 (a) y =—9 (b) y=—15 

IV. NUMERICAL EXPERIMENTS 

Consider now the B-KdV equation in [—π, π] for 
t>0, rewritten as 

                   (9) 

The Cauchy problem for the B-KdV (9) was 
investigated by Bona and Schonbek [15]. They proved 
the existence and uniqueness of bounded traveling 
wave solutions which tend to constant states at plus 
and minus infinity. Equation (9) can be written in 
integral form  

                 (10) 

 

As it contains both second and third order 
derivatives (dissipation uxx, and dispersion uxxx), the B-
KdV equation produces complex behavior. We can 
write the B-KdV equation (10) with 2L periodic 
boundary conditions in Fourier space as it follows 

 

where F denotes the discrete Fourier transform. For 
the numerical experiments, in the example below, a 
reference solution is calculated on a grid with 2

7
 x 2

7
 

points on the region [—π, π] with periodic boundary 
conditions. Matlab code ode15s, the best one in 
Matlab family for the accuracy provided for stiff 
problems, is used to generate some proper reference 
solutions. Let take the values of constants a=1, b=1.5, 
c=3 and take the following initial condition for the B-
KdV (10)  
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                                                                            (11) 

Following [16], the explicit solution for B-KdV (10)-
(11) is given by the travelling wave  

 

 

A bounded traveling solitary wave solution to the B-
KdV equation can be expressed as a composition of a 
bell-profile solitary wave and a kink-profile solitary 
wave. To get some insight, time evolution and solitary 
wave solution traveling to the right for B-KdV (10)-(11) 
are presented in Fig. 5.  

 

(a) 

 

 

(b) 

Fig.5. (a) Time evolution for B-KdV (10)-(11). The x axis 
runs from x=—4 to x=4 and the t-axis runs from t=0 to t=20. 
(b) Solitary wave solution traveling to the right. 

The errors and the local errors versus time step h in 
solving the B-KdV (10)-(11) with ETDRK2, ETDRK3 
and ETDRK4 schemes are presented in Fig. 6. From 
both the two parts of this figure, it can be seen that for 
h ≤ 0.06, within the same level of accuracy, ETDRK4 
can use a larger step size than ETDRK3, while 
ETDRK2 fails to solve the problem for the range of 
time step h described. The differences between  
ETDRK3 and ETDRK2 are reinforced as h is 
decreased. 

Accuracy vs. time used for solving the B-KdV (10)-
(11) with ETDRK3 and ETDRK4 schemes is presented 
in Fig. 7 below. From this figure, it can be seen that the 
error for ETDRK4 and the corresponding time used are 
linearly related in a stable manner. The same 
relationship for the ETDRK3 is less stable. However 
the graph describes clearly the differences in 
computational costs of the two methods.  

In Fig. 8 the comparison between exact solution of 
B-KdV (10)-(11) and the simulated one by ETDRK4, is 
presented for t=10

—3
.  

 

 

 

Fig. 6. Accuracy vs. time step for solving the B-KdV (10)-
(11) with ETDRK2, ETDRK3 and ETDRK4 schemes. 
Reference solver: ode15s 
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Fig. 7. Accuracy vs. time used for solving the B-KdV (10)-
(11) with ETDRK3 and ETDRK4. Reference solver: ode15s 

 

Fig. 8. Comparison between the exact solution of B-KdV 
(10)-(11) and the simulated one by ETDRK4, h=10

—4
, 

calculated at t=10
—3

. 

Regarding the accuracy in the solving process, it 
can be concluded that the ETDRK4 scheme is clearly 
favored than the ETDRK3. It must be mentioned here 
that all the classical techniques used for stiff systems 
are implicit multistep or implicit RK methods of low 
orders. It can be concluded also that it is entirely 
practical to solve the difficult nonlinear partial 
differential equation (1) to high accuracy by ETDRK3 
or ETDRK4 schemes. 

V. CONCLUDING REMARKS 

In this paper the Exponential time differencing-
Runge-Kutta (ETDRK) schemes with spectral 
approximations are extended to obtain numerical 
solutions for the generalized Burgers-Korteweg-de 
Vries equation. The problem is reduced to a stiff 
system of ODEs in time t that is solved by exponential 

time differencing Runge-Kutta methods. A stability 
analysis is done for these schemes and numerical 
results for the generalized Burgers-Korteweg-de Vries 
(10)-(11) equation are obtained. In a series of 
numerical experiments Matlab codes are built and 
used. Matlab code ode15s is used to generate some 
proper reference solutions. The numerical solutions 
obtained are in good agreement with the known exact 
solutions. It is shown that it is entirely practical to solve 
this difficult nonlinear partial differential equation to 
high accuracy by third and more efficiently by fourth-
order exponential time differencing Runge-Kutta 
scheme. 
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