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Abstract—The present article is a brief 
description of history of the development of 
Extended Poisson Theory (EPT) for preliminary 
analysis of primary problems of plates in 
bending, torsion, and extension. It is intended to 
rectify deficiencies in the classical plate theories 
like Kirchhoff theory within small deformation 
theory of elasticity.   
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I. INTRODUCTION 

 
It is with great pleasure and satisfaction to 

close the work on development of plate theories 
within small deformation theory of elasticity, originally 
intended to overcome lacuna in Kirchhoff’s theory [1].   
 

This phase of work was resumed by the 
author (after a gap of more than 12 years since 
retirement in the year 1995) mainly due to 
inducement from his Grand-children with their 
expertise in using lap-top. With their assistance and 
the graceful support from the associate Editor in-
charge of publication, initial article entitled, “New 
Look at Kirchhoff's Theory of Plates”, was published 
in the form of a Technical Note [2] in AIAA Journal.  
 

A beginning towards the development of a 
plate theory was made years ago. It was, in fact, due 
to the attention drawn (by dearest colleague, K P 
Rao) to the Reissner’s article [3]. Work at that time 
was confined only to the derivation of Reissner’s 

expected sixth order equation of the form D
2 2

w 

C 
2 2 2

w = q [4]. It was felt superfluous to dwell in 

detail about other aspects mentioned in the 
Reissner’s article due to several investigators 
including scientists of great authority involved in the 
development of plate theories. 
 

Basic interest is to find means of proper 
rectification of deficiencies in Kirchhoff’s theory of 
bending of plates. Initially, auxiliary function φ(x, y) 
introduced by Reissner as a ‘stress function’ is used 
in displacements to formulate a sixth order theory [2]. 
It could not resolve the Poisson-Kirchhoff boundary 
condition paradox in a satisfactory way. In this 
connection, it was noted from Lewinski’s article [5] 
that estimated values of maximum vertical deflection 
from widely used First Order Shear Deformation 
Theory (FSDT) based on Hencky’s work [6] are 

(rather unusually) higher than those from higher 
order shear deformation theories and other 
sophisticated theories.  

 
 II. SUCCESSIVE STAGES TOWARDS 
DEVELOPMENT OF EXTENDED POISSON 
THEORY 

 
In a brief description of successive stages of 

author’s development of recent plate theories, it is 
convenient, for simplicity in presentation, to consider 

a square plate bounded by 0 ≤ X, Y ≤ a, Z = ± h  

planes with reference to Cartesian coordinate 
system. Material of the plate is homogeneous and 
isotropic with elastic constants E (Young's modulus), 
ν (Poisson's ratio) and G (Shear modulus) that are 
related to one other by E = 2(1+ν) G. It is more than 
justified in view of the observation by Ghugal and 
Shimpi [7] in their review article that the development 
of refined structural theories for laminated plates 
(made up from advanced fiber reinforced composite 
materials) has their origins in the refined theories of 
isotropic plates. Moreover, illustrative example is 
confined to simply-supported square plate due to the 
data presented in [5]. In fact, analysis of plates with 
different geometries and material properties under 
different kinematic and loading conditions does not 
provide much scope for development of new theories 
other than those with the analysis of primary 
problems of a square plate. Here, it is more 
convenient to use coordinates X, Y, Z, and 
displacements (U, V, W) in non-dimensional form x = 
X/a, y = Y/a, z = Z/h, (u, v, w) = (U, V, W)/h and half- 
thickness ratio α = (h/a).   
 

With reference to the displacements [w, u, v] 
= [w0(x, y), z u1(x, y), z v1(x, y)] in the primary 
bending problems, displacements u1(x, y) and v1(x, y) 
are treated as two independent variables   instead of 
gradients of a single variable w0(x, y) [2]. 
Displacement w0(x, y) is expressed from strain-
displacement relations in the form  
 

α w0(x, y) = −∫ [u1 dx + v1 dy]               (1) 
 
so that one equation governing [u1, v1] is ωz = α(v1,x – 
u1,y) = 0 from integrability condition. 
 

In Kirchhoff’s theory, statically equivalent 
(reactive) transverse stresses [τ*xz, τ*yz, σ*z] from z-
integration of equilibrium equations are given by  
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[τ*xz, τ*yz,] = f2 (z) E' [e1,x, e1,y]              (2)    
  σ*z = − f3(z) E' α

2
 ∆e1                          (3) 

 
in which f2(z) = ½(1 – z

2
), f3(z) = ½(z – z

3
/3), E' = E/(1 

– ν
2
), e1 = α (u1,x + v1,y) and ∆ = (∂

2
/∂x

2
 + ∂

2
/∂y

2
). 

Face load condition gives the second equation 
governing [u1, v1] in the form E'α

2
 ∆e1 + 3q0/2 = 0.  

 
First order equation from integrability 

condition and second order equation from 
satisfaction of face load condition are not convenient 
to satisfy the following three conditions along x = 
constant edges (and analogous conditions along y = 
constant edges) 
 

(і)    u = 0   or   σx = zTx(y)                 (4a)  
(іі)   v = 0   or   τxy = zTxy(y)               (4b) 
(ііі)  w = 0   or   τxz = Txz(y)                   (5) 

 
Here, [u1, v1] are expressed in terms of gradients of 
w0(x, y) and an auxiliary function φ(x, y) in the form 
 

[u1, v1] = − [(w0,x − φ,y) , (w0,y + φ,x)]    (6) 
 
so that the equations governing u1 and v1 become 
with D = (2/3) α

4
 E' 

 
∆φ = 0, ∆∆w0 = q/D                           (7) 

 
The functions φ and w0 in the above sixth order 
system are coupled through edge conditions (i) and 
(ii) only. It provides the facility of satisfying prescribed 
τxy unlike in the Kirchhoff’s theory. It is to be noted 
that τxy is associated with transverse shear in St. 
Venant’s torsion problem and warping function u or v 
is harmonic. Here, none of the displacements are 
harmonic showing that bending and St. Venant’s 
torsion problems are mutually exclusive to each 
other. Hence, it is not proper to use St. Venant’s 
torsion problem to demonstrate the validity of any 
sixth order bending theory. Kirchhoff’s theory is, in 
fact, a 0

th
 order shear deformation theory of 

associated torsion problem (in which normal strains 
are not zero) due to coupling of τxy with prescribed or 
reactive transverse shear along the edges of the 
plate. 

If w0 is zero all along the wall of the plate, φ ≡ 
0 and the solution to w0(x, y) is from Kirchhoff’s 
theory only. As such, resolution of Poisson-Kirchhoff 
boundary conditions paradox from the present 
Modified Kirchhoff Theory (MKT) is not satisfactory. 
In FSDT, face shear conditions are not satisfied and 
shear correction factor k

2 
(=5/6) is introduced to 

account for shear energy due to parabolic z-
distribution of reactive transverse shear stresses 
from Kirchhoff’s theory. It is extensively used due to 
its simplicity in the application of numerical methods 
such as finite element methods. A novel concept of 
distribution correction factor β0 (=5/2) is introduced to 
derive k

2 
(=5/6) in the subsequent publication [8]. It is 

used in a later publication to derive exact solutions of 

equations in FSDT (but not equations of 3-D 
problem) by expanding k

2
 in series form.   

 
Next significant publication [9] is the one 

dedicated to Eric Reissner. Here, coordinate 
functions fn(z), n = 0, 1, 2, 3,... are generated for 
analysis of thick plates through recurrence relations 
with f0 = 1, f2n+1,z = f2n, f2n+2,z = − f2n+1 such that f2n+2 
(±1) = 0. They are up to n = 6 given below which are 
used throughout the present phase of work 
 

[f0, f1, f2] = [1, z, ½(1 – z
2
)]                 (8a) 

       [f3, f4] = [½(z – z
3
/3), (5−6z

2
+z

4
)/24]        (8b) 

f5 = z (25−10z
2
+z

4
)/120                     (8c) 

 
It is observed that plate element equilibrium 

equations from using polynomials in z (for example: 
power series, Taylor series, orthogonal polynomials, 
above mentioned fn (z) functions) in higher order 
theories other than one term representation of 
displacements in Kirchhoff’s theory and FSDT 
become equivalent to one other with appropriate 
change of 2-D variables. Earlier proposed Iterative 
procedure [10] is used in satisfying point-wise 
equilibrium equations of 3-D infinitesimal element. It 
is observed that reactive σz is zero through thickness 
of the plate at locations of zeros of prescribed σz 
along faces of the plate. To overcome this limitation, 
σz2n+3 (n ≥ 1) is kept as a free variable by modifying 
f2n+3 in the form 
 

f*2n+3(z) = f2n+3(z) – β2n+1 f2n+1(z)           (9) 

 

in which β2n+1= [f2n+3(1) / f2n+1(1)] so that f*2n+3 (±1) = 
0.   In order to distinguish between vertical deflections 
of neutral and face planes, solution of a 
supplementary problem implied in Levy’s work [11] is 
used. Corrective vertical displacement terms are from 
integration of ϵz obtained from constitutive relation 
using normal stresses determined from the analysis.  
In the illustrative example with ν = 0.3 and thickness 
ratio 2α = 1/3, maximum neutral and face deflections 
after first stage of iteration are 
 

(E/2q) w (1/2, 1/2, 0) = 4.46                  (10a)  
(E/2q) w (1/2, 1/2, 1) = 3.80                  (10b) 

 
Exact solutions of 3-D equations in terms of 
displacements in which w(x, y, z) is a domain 
variable are also presented and the reported 
maximum neutral and face deflections are 
 

(E/2q) w (1/2, 1/2, 0) = 4.487                (11a) 
(E/2q) w (1/2, 1/2, 0) = 4.166                (11b) 

  
It was presumed that the numerical results in eq. (11) 
correspond to the above mentioned exact solutions. 
It is, however, shown later that they correspond to 
the exact solutions with vertical deflection w as face 
variable.  
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The procedure presented in [9] is initially 
extended to the analysis of symmetric laminated 
plates with isotropic plies [12]. The coordinate fn(z) 
functions are modified to ply-wise functions such that 
the analysis of each ply is independent of lamination. 
Continuity of displacements and transverse stresses 
across interfaces are ensured through of solution of 
supplementary problem in the face ply and 
recurrence relations.  
 

A theory [13] designated as “Poisson’s 
theory of plates in bending” is presented for a proper 
resolution of sixteen-decade-old problem of Poisson-
Kirchhoff boundary conditions paradox in the case of 
homogeneous isotropic plate. It is based on 
“assuming” zero transverse shear stresses instead of 
strains. Reactive (statically equivalent) transverse 
shear stresses are gradients of a function (in place of 
in-plane displacements as gradients of vertical 
deflection) so that reactive transverse stresses are 
independent of material constants in the preliminary 
solution. Equations governing in-plane displacements 
are independent of the vertical deflection 𝑤0 (𝑥, 𝑦). 

Coupling of these equations with 𝑤0 is the root cause 
for the boundary conditions paradox. Edge support 

condition on 𝑤0 does not play any role in obtaining in-
plane displacements. Normally, solutions to the 
displacements are obtained from governing 
equations based on the stationary property of 
relevant total potential and reactive transverse shear 
stresses are expressed in terms of these 
displacements. In the present study, a reverse 
process in obtaining preliminary solution is adapted 
in which reactive transverse stresses are determined 
first and displacements are obtained in terms of 
these stresses. Equations governing second-order 
corrections to preliminary solutions of bending of 
anisotropic plates are derived through application of 
an iterative method.   
 

Several articles submitted later have not 
been considered even for reviewing process saying 
that the contribution of each of them is either modest 
or out of the scope of the journal. In view of the 
difficulty in publishing the work mainly due to lack of 
detailed numerical study of any illustrative problem, 
the author sought suitable advice from Professor 
Satya N Atluri, UCI Distinguished professor. He was 
kind enough to advise the author to prepare a 
detailed paper on the analysis of laminated plates. 
With his highly appreciative encouragement and lot 
of patience shown with several revisions, the article, 
‘On uniform approximate solutions in bending of 
symmetric laminated plates’, was published in “CMC: 
Computers, Materials, & Continua [14].  
 

A layer-wise theory with the analysis of face 
ply independent of lamination is used in the bending 
of symmetric laminates with anisotropic plies [14]. 
Due to the presence of [τxz0, τyz0] in each ply in a 
layer-wise theory, more realistic and practical edge 
conditions are considered. The necessity of a 

solution of an auxiliary problem in the interior plies is 
explained and used in the generation of proper 
sequence of two dimensional problems. 
Displacements are expanded in terms of polynomials 
in thickness coordinate such that continuity of 
transverse stresses across interfaces is assured. 
Solution of a fourth order system of a supplementary 
problem in the face ply is necessary to ensure the 
continuity of in-plane displacements across interfaces 
and to rectify inadequacies of these polynomial 
expansions in the interior distribution of approximate 
solutions. Vertical deflection does not play any role in 
obtaining all six stress components and two in-plane 
displacements.  
 

Solution from Kirchhoff’s theory in a simple 
text book problem of bending of simply supported 
square plate under doubly sinusoidal vertical load is 
re-examined concerning exact solution of the three 
dimensional problem [15]. A sixth order system 
consisting of three second order equations is initially 
formulated with the aid of normal strain ignored in 
FSDT. These second order equations, uncoupled 
from transverse deflection in Kirchhoff’s theory, 
govern in-plane displacements and transverse 
stresses.  A supplementary problem consisting of a 
fourth order system of equations is included to rectify 
inadequacies of polynomial expansions in the 
thickness-wise distribution of approximate solutions. 
More realistic and practical edge conditions are 
considered. Solution of auxiliary problem for 
transverse stresses independent of material 
constants is used in the generation of proper 
sequence of two dimensional problems. (At the time 
of uploading the accepted manuscript, it was realized 
that the exact solution of 3-D problem with w(x, y, z) 
as domain variable corresponds to that of associated 
torsion problem. Moreover, estimated face deflection 
2.37 in the example is not correct due to error in 
using β, unwittingly, in degrees instead of radians in 
evaluating hyperbolic terms.)         
 

During the correspondence with Professor 
Lewinski, the author came to know about Jemielita’s 
review   article, ‘On the winding paths of the theory of 
plates’ [16]. In this article, he referred to an earlier 
article stating that the progress in the formulation of 
theories of plates made in 1789-1988 has been 
carefully reviewed in a 217 page  survey [17] 
encompassing more than 3000 items, about 1500 of 
them being discussed. An attempt was made to 
answer the general question, ‘To study or to create’. 
The present author’s recent investigations on plate 
theories formed the basis to review the development 
of plate theories [18]. It is shown that methods of 
analysis based on vertical displacement as domain 
variable deal with solution of associated torsion 
problem in bending of plates. It is essential to use 
vertical displacement as face variable instead of 
domain variable in the proper analysis of bending 
problems. Kirchhoff’s theory is a 0

th
 order shear 

deformation theory. FSDT and higher order shear 
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deformation theories with shear correction factors 
deal with artificial torsion problems. Poisson’s theory 
and Extended Poisson’s theory are based on 
satisfaction of both static and integrated equilibrium 
equations. Thickness-wise distribution of 
displacements in terms of polynomials fn(z) is not 
adequate for finding interior solutions of these 
displacements. Solutions of auxiliary and 
supplementary problems are necessary to rectify 
lacuna in Kirchhoff’s theory. 
 

Nature of solutions from different methods of 
analysis is re-examined with reference to exact 
solution of text book problem of bending of a simply 
supported square plate under bi-sinusoidal load [19]. 
The concept of shear correction factor in FSDT is 
extended to higher order terms. Higher order 
transverse shear terms with f2k+2(z) are expressed in 
terms of preceding shear terms with f2k(z) through 
distribution correction factors β2k so that [τxz, τyz] = Σ 
f2k [τxz, τyz]2k (using Strain-Displacement relations), 
and [τxz, τyz] = Σ β2k f2k+2 [τxz, τyz]2k (based on shear 
correction factors). In such a case, solutions of plate 
element equations give shear strains [u1 + αw0,x , v1 + 
αw0,y] tending to [0, 0] in the limit k → ∞ due to [τxz, 
τyz] in the first set but not zero due to stresses in the 
second set. Obviously, shear energy due to β2k does 
not belong to the physical problem. It shows that the 
methods based on plate element equilibrium 
equations deal with solution of associated torsion 
problem instead of bending problem. Solution of 
bending problem is only through methods based on 
vertical displacement as a face variable. 
 

Extended Poisson’s theory presented in the 
earlier publications gives the wrong impression about 
systems of equations. It consists of a fourth order 
system to find [u1, v1] c due to [τxz0, τyz0, z σz1] and 

another one to find [u1, v1]b due to prescribed in-

plane bending load edge conditions ignoring their 
influence on transverse stresses. This impression is 
corrected in the article [20]. With priory known 
transverse stresses independent of material 
constants  from auxiliary problem, this theory is, in 
fact, a sixth order theory in which [u1, v1] and 

transverse shear stresses satisfy both static and 
integrated equilibrium equations and form the initial 
solutions in the iterative procedure adapted earlier in 
the CMC Journal. This theory is based on [u, v] = z 
[u1, v1] like in FSDT but gives far superior solutions 

than even those from two term representation of 
displacements. In extension problems, however, two 
term representation of [u, v] is required to determine 
transverse stresses though their influence on primary 
variables [u0, v0] is secondary but important in the 
analysis of laminates. Extended Poisson’s theory is 
based on satisfaction of both static and integrated 
equilibrium equations. Solutions of auxiliary and 
supplementary problems are necessary to rectify 
lacuna in the classical theories. The functions fk(z) 
are chosen such that ply analysis is independent of 
lamination. A novel procedure is proposed for 

analysis of unsymmetrical laminates. More or less 
uniform accuracy of primary displacement variables 
[u, v, w]0 along each normal of face parallel planes is 
achieved through the solution of a secondary 
problem. EPT is also extended in formulating a new 
smeared laminate theory [21]. By considering 
uncoupled 2-D equations through Fourier analysis of 
z-distributions, it was shown that the theories other 
than EPT give only the neglected primary σz ( = σz0/2, 
zσz1/2 satisfying face load conditions in extension 
and bending problems, respectfully) in the 
constitutive relations. 
 

Disadvantage in the application of EPT is in 
the development of software for generation of fk(z) 
functions of thickness coordinate z necessary for 
analysis of plates with thickness ratio varying up to 
unit value. It is shown in [22] that the initial solutions 
of primary problems are from EPT. Errors in 
transverse shear stress-strain relations are nullified 
through solutions of uncoupled 2-D problems from 
Fourier series expansion of z-distribution of these 
strains in appropriate sine and cosine functions. 
Earlier, such expansion was considered in Touratier’s 
work [23] in rectifying lacuna in Kirchhoff’s theory but 
used it in plate element equilibrium equations. 
 

III.  CONCLUDING REMARKS 
 
Extended Poisson Theory (EPT) is a proper 

replacement of classical theories, viz., Kirchhoff 
Theory and First Order Shear Deformation Theory 
(FSDT) for obtaining initial solutions of primary 
bending and associated torsion problems of plates. It 
is used for proper second order corrections in the 
classical theory of extension problems.   
 

Theories presented in [20], [21], and [22] are 
quite adequate and simple for analysis of 
homogeneous and laminated plates within the small 
deformation theory of elasticity with thickness ratio 
varying up to unit value. 
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