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Abstract—This work deals with the modification of 
mechanically polished platinum surface in 
aqueous dilute potassium hydroxide solutions as 
an alkaline media. Modification was accomplished 
by the repetitive cyclic polarization. The 
electrolytic formation of surface hydrated 
platinum oxide is shown to be a highly irreversible 
reaction. This hydrated oxide film catalyze the 
electro-oxidation of methanol in potassium 
hydroxide solutions. The electro-oxidation 
properties of methanol which is promising 
candidates for direct alcohol fuel cells were 
studied on this electro-catalyst. Testing was 
undertaken by tracing the cyclic voltammograms 
under different experimental conditions. The 
mechanism of the oxidation process was 
reported. Kinetic equations representing the 
electro-oxidation of methanol are given. 

Keywords—methanol electro-oxidation; 
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 1. INTRODUCTION 

Fuel cells show promise to provide environmentally 
friendly energy converters at high efficiency and 
power density. Direct alkaline alcohol fuel cells 
(DAAFCs) have attracted increasing interest over the 
past decade because of their favorable reaction 
kinetics, higher energy densities achievement and the 
easy handling of the liquid fuels. A lot of work has 
been done to study the electro-oxidation of methanol 
and ethanol with various catalysts. Platinum and 
platinum-based are commonly used catalysts in acid 
medium [1,2]. Under alkaline conditions, the reaction 
mechanism and kinetics of alcohol oxidation are 
significantly improved [3−6]. A problem with alkaline 
fuel cells is the carbonation of the solution due to CO2 
production of the fuel oxidation and from air. This can 
cause solid precipitation of carbonate salts on the 
porous electrode and a pH decrease in the alkaline 
electrolyte solution [7]. Consequently, it leads to a 
reduction in reactivity for fuel oxidation in the system 
[8].  

The oxygen reduction reaction (ORR) overpotential 
causes a loss in efficiency in alkaline fuel cells (AFCs) 
and in alkaline membrane fuel cells (AMFCs). It is 

very similar to that occurring in (polymer electrolyte 
membrane fuel cells) PEMFCs, i.e., the cathode 
overpotential loss remains the major factor limiting the 
overall energy conversion efficiency and performance 
of AFCs [9] and AMFCs [10]. The ambiguity in the 
measurement of the hydrogen oxidation reaction 
(HOR)/hydrogen evolution reaction (HER) kinetics in 
acid can be related to the fact that it is experimentally 
very challenging to eliminate hydrogen mass-transport 
resistances in rotating desk electrode measurements. 
Most often, the quantification of kinetic constants for 
the HOR/HER is not an easy task. Hence in this study 
we use stationary electrode with three dimensions 
surface film; a common feature of hydrated surface 
oxide films. 

2. EXPERIMENTAL 

As working electrode, pure platinum (0.4 cm2 as a 
sheet, Aldrich, thermocouple quality) was used. This 
working electrode was polished with decreasing 
grades of fine emery papers, degreased with acetone 
and washed with running distilled water, before its 
immersion in the test solution. A three compartment 
cell with a saturated calomel reference electrode 
(SCE) and a platinum foil auxiliary electrode were 
used. The electrode potential was controlled by a 
voltage scan generator, an automatically-controlled 
electronic Wenking Laboratory Poteniostat (LB 75). D 
C voltammograms were recorded using Allen, Model 
1000 X-Y recorder.  

Each experiment was carried out in a freshly 
prepared solution and with a newly polished electrode 
surface. After cyclization for a definite time (number of 
cycles), the electrolyte was replaced by pure 0.05 M 
or 0.1 M KOH free or containing methanol. 

3. RESULTS AND DISCUSSION 

3.1. Platinum modification process 

It is of interest that the excellent synergistic effect 
of Oad layer generates some novel catalytic properties 
different from those of monometallic platinum 
catalysts. It can significantly enhance electro-catalytic 
activity of platinum as anode in the alcohol 
electrooxidation. In alkaline media and because of the 
presence of oxide, OHads (adsorbed OH species) can 
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