
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3639 

A Proposed Hybrid Component Complexity 
Metrics For Component Based Software  

Development
 

Akwukwuma Veronica Viola
1

 

Computer Science Department 
University of Benin, Benin City 

Edo State. 
Nigeria 

vvakwukwuma@yahoo.com 
 

Okene David Ese
3 

Electrical & Electronics Engineering Dept. 
Federal University of Petroleum Resources, Effurun 

Delta State. 
Nigeria.                                                         

ese4all2002@yahoo.com 
 
 

 
Sogbaike Oluwasegun Charles 

Computer Engineering Department 
Delta State Polytechnic, Otefe-Oghara, Delta State. 

Nigeria. 
ssogbaike@yahoo.co.nz 

+2348166799456 
 
 
 
 
 
 

 
 
 

 

Abstract—Component-based software develop-
ment has become a highly widespread approach 
for application development instead of develop-
ing software from scratch every time; it involves 
developing software system from existing soft-
ware components. Software component are 
black-box in nature where their source codes are 
not available to the users. Measuring software 
complexity is an important aspect during soft-
ware development. Component complexity is also 
an important issue in component based software 
development. Component complexity is the effort 
required to understand and compose a software 
component to form a software system. From lit-
erature, component complexity of black box 
component is defined by four factors. Software 
metrics is a system of meas-urement that repre-
sents software quality characteristics quantita-
tively. Conventional complexity metrics cannot 
measure complexity that exists in software com-
ponents that are black box. Numerous complexity 
metrics exits in literature that measure black box 
component complexity but none of these com-
plexity metrics considered all the four factors that 
define component complexity. The objective of 
the work therefore is to propose a hybrid compo-
nent complexity metrics that considers all the 
four factors (parameters) that define black box 
component complexity and apply the proposed 
complexity metrics to measure component com-
plexity of a university student information sys-
tem.  

Keywords—Complexity Metrics, Coupling, 
Cohesion, Component-based Software Develop-
ment, Software Components 

I. INTRODUCTION  

An increasing number of software projects miss 
schedules, exceed budgets, and deliver defective 
products, and this has turned industry experts to 
component-based solutions to overcome this soft-
ware crisis (Vitharana et.al 2003). Component based 
software development (CBSD) involves composing 
software system from existing software rather than 
building from the scratch (Jasmine & Vasantha 2008; 
Vitharana et.al 2003).  This principle embodies an 
element of “buy, don’t build” that shifts the emphasis 
from programming software to composing software 
systems (Pressman 2001). CBSD provides many 
advantages like reduced development time, effort, 
and increased quality. The advantages of component 
based development lead to its numerous usages. A 
standard survey conducted on component based 
software development from 118 companies around 
the world indicated that around 53% of the organiza-
tions are using component-based approach in its 
software development (Sharma et.al 2008). CBSD 
involves understanding the design and implementa-
tion of components that is been used to compose the 
software system. An incomplete understanding of 
software components has a ripple effect on the entire 
software system therefore increasing the complexity 
of the software system (Chhillar & Kajla 2012). 

Components are black-box entities that encapsulate 
services behind well-defined interfaces (Sharma et.al 
2007).  A software component is a unit of composi-
tion with contractually specified interfaces and explicit 
context dependencies only. Software component can 
be deployed independently and is subject to compo-
sition by third parties (Chaudhary & Chhillar 2013; 
Khimta et.al 2008). A generally accepted view of a 

mailto:vvakwukwuma@yahoo.com
mailto:ese4all2002@yahoo.com
mailto:ssogbaike@yahoo.co.nz


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3640 

software component is that it is a software unit with 
provided services and required services (Lua & Wang 
2007). The provided services are operations per-
formed by the component. The required services are 
the services needed by the component to produce 
the provided services. The interface of a component 
consists of the specifications of its provided and re-
quired services 

In component based software development, qualify-
ing a software component for composition is a foun-
dation for software system development. In compo-
nent based software engineering (CBSE) activities, 
issues related to component integration play a more 
pivotal role than others, and the process of selecting 
an ideal component for composition is the challenge 
of component integrators (Somerville 2011). A com-
ponent assembler starts with application require-
ments, searches component repositories for selecting 
appropriate components, and assembles them by 
providing the required glue. From a component as-
sembler perspective, being able to assess the com-
plexity of candidate alternative component assem-
blies is crucial (Kaur and Singh 2013b). 

Software complexity means measurement of the re-
sources expended in developing, testing, debugging, 
maintenance, user training, operation and correction 
of software products (Latika & Rathore 2011). Com-
plexity in component based software engineering is a 
measure of the resources expended by a system 
while integrating with a piece of software to perform a 
given task and determining the level of component 
complexity requires the application of software met-
rics.  

Software metrics seek to represent software charac-
teristics and qualities quantitatively and can be used 
to guide decision as to whether a component can be 
selected for composition or not. Several metrics has 
been deployed to measure and qualify software com-
ponent for composition but theses metrics cannot 
effectively represent complexity quality characteris-
tics of a software component.  

For the selection of less complex components for 
component based system (CBS), there is a need for a 
complexity metric that can measure the component 
complexity without going into internal details of com-
ponents. 

From literature, four parameters are used to define 
software component complexity (Narasimhan and 
Hendradjaya 2004, Salman 2006, Sharma et.al 2007, 
Chen et.al 2011, Latika & Rathore 2011, Kaur & Singh 
2013a and Kaur & Singh 2013b) and they are: 

 Software Component constituent and interaction: 
A software component is constituted with several 
methods, variables, interfaces. Software compo-
nent complexity metrics should consider these 
parameters as inputs to the metrics. 

 Data type of component’s value returned or 
passed and incompatibility: Software component 
can receive a data type that is passed different 
from the data type it can handle this result to da-
ta-type incompatibility. Data type incompatibility 
is a factor that causes component complexity 

 
 Coupling: Two objects are coupled if and only if 

at least one of them acts upon the other. Com-
posing a software system requires some meas-
ure of coupling but the degree of coupling trans-
lates into the level of dependency of one soft-
ware component on the other. Coupling is an im-
portant parameter when composing software sys-
tem so as to determine the level dependence of 
one component on another. This determines the 
level of complexity of the software component. 

 
 Cohesion: Software component that are viewed 

as architectural units consist of methods. Cohe-
sion of methods in the software component is 
important when determining a component com-
plexity 

Various types of complexity metrics have been pro-
posed such as Lines of Code (LOC), McCabe’s Cy-
clomatic Complexity Metric, Halstead’s Complexity 
Metric, and Henry’s and Kafura’s Metric (Kaur and 
Singh 2013b). These conventional metrics are suita-
ble for software component with available source 
code; they cannot be applied to black box component 
where the source codes are not available to the us-
ers. It is difficult to use conventional metrics in Com-
ponent-based Development as these metrics require 
analysis of source codes. 

There are several black box metrics that measure 
complexity of a black box component proposed in 
literature such as: 

 Complexity metrics for software component 
(Narasimhan and Hendradjaya 2004) 

 Software Component Complexity metrics (Sal-
man 2006) 

 Component Complexity (CC) (Sharma et.al 
2007),  

Complexity metrics for component based software 
system (Chen et.al 2011) 
 Component complexity metrics through integra-

tion metrics (Latika & Rathore 2011) 
 Component Complexity metrics for black box 

component (CCMBB) (Kaur and Singh 2013a),  
 Interface complexity metrics (Kaur and Singh 

2013b)  
None of the aforementioned black box software com-
ponent complexity metrics considered all the four 
parameters that define software component complex-
ity. Hence there is the need for a hybrid software 
component complexity metric that takes into cogni-
zance all the four complexity parameters. This is the 
focus of this research paper. Table 1 gives a sum-
mary of the existing complexity metrics and the com-
plexity parameters considered. 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3641 

Table 1. Complexity Metrics and the Complexity Parameters Considered 

 Component  Complexity Parameters  
 
 
System 
level 
metrics  

 
 
 
 
Component 
level metrics 

 
 
 
 
Metrics 

Component con-
stituent and in-
teractions(links) 

Data type of re-
turn value, ar-
gument  and no 
of incompatibility 

Coupling Cohesion  

Software 
Component 
Complexity 
metrics (Sal-
man 2006) 

Yes  No  No  No  Yes No  

Component 
Complexity 
(CC)   (Shar-
ma et.al 2007) 

Yes Yes but incom-
patibility was not 
considered 

No  No  No  Yes 

Complexity 
metrics for 
software 
component 
(Narasimhan 
and Hendrad-
jaya 2004) 

Yes No  No  No  Yes No  

Complexity 
metrics for 
component 
based soft-
ware system   
(Chen et.al 
2011) 

Yes No  Yes Yes No  Yes 

Component 
complexity 
metrics 
through inte-
gration met-
rics (Latika & 
Rathore 2011) 

Yes No  No  No  Yes  No  

Interface 
complexity 
metrics   
(Kaur and 
Singh 2013) b  

Yes Yes No  No  No  Yes 

Component 
Complexity 
metrics for 
black box 
component 
(CCMBB) 
(Kaur and 
Singh 2013) a 

Yes Yes Yes  No  No  Yes 

      

 

II. METHODOLOGY FOR THE PROPOSED 
HYBRID COMPONENT COMPLEXITY METRICS  

The hybrid component complexity metrics for soft-
ware component is a combination of existing compo-



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3642 

nent complexity metrics. Sharma et.al (2007) com-
plexity metrics considered component complexity 
parameters which are number of component constit-
uent and interactions, Data type of return value, and 
parameter but did not consider the incompatibility that 
exist when component of different data types configu-
ration interact. In composing the proposed hybrid 
component complexity metrics, the Interface com-
plexity metrics (Kaur and Singh 2013b) (eq, 1) was 
considered for the first two complexity parameters in 
table 1, this is because it took cognizance of the in-
compatibility factor in addition to Data type of return 
value, the number of component constituent and in-
teractions. For the last two component complexity 
parameter (Coupling and cohesion) of table 1, Com-
plexity metrics for component based software system 
(Chen et.al 2011) (eq. 6&7) was considered, although 
Component Complexity metrics for black box compo-
nent (CCMBB) (Kaur and Singh 2013a) measured 
coupling also but did not consider cohesion and 
combined coupling with number of incompatibility that 
exist when components of different data types inter-
act. 
  

Mathematical Illustration of component complexity 
metrics of Kaur and Singh (2013b) and Chen et.al 
(2011)  

The interface complexity metrics (Kaur and Singh 
2013b) 

IC =       ……………. (1) 

Interface Method Complexity Metric (IMCM) 
IMCM = Wr + PCM (M) + Number of parameter in-
compatibilities ….. (2), Where Wr is the weight as-
signed to return type, PCM (M) is the Parameter 
Complexity Metric for method. 

PCM (M) =     ………. (3) 

Where Wp(Pi)  is the weight assigned to the  ith parame-
ter of the method on the basis of its data type , n repre-
sents the number of parameters in a method in table 2. 
The methods having no return value and no parameters 
have been considered as simple methods and their 
weight value has been assumed .025.  

 
 
Table 2 : Represents weight values assigned to different categories of data types for parameters and return 
values (Kaur and Singh 2013) 

Parameters/ 
Return values   

 

Very Simple     Simple      Medium       Complex   Very Complex   

Weight as-
signed  

 

0.10 0.20 0.30 0.40 0.50 

 Source: Component Complexity Metrics   (Chen et.al, 2011)

 

Sole component complexity metric (SCCM) is combi-
nation of the above three component metrics with 
different weights for each metric. 

   
……… (4) 

Actual Interactions Metric (AIM) 

AIMj =       ……… (5) 

IIjmax and OIjmax are maximum numbers of input and 
output interactions in a component j. (OI) and (II) are 
the  

 

available number of incoming and outgoing interac-
tions  

Coupling Metrics   

MVj=           ………  (6)             + 

 

where   and    is the sets of methods and in-

stance variables of component Cj. MVj,i is the set of 
methods and instance variables in component  Ci 
invoked by component  Cj. MVj, the set of all methods 
and instance variables in other components, 1 ≤ i ≤ m 
and i ≠ j, that are invoked by component Cj 

 
Cohesion Metrics 

COMj (C) =         ………… (7) 

Set of method members Mj(C) ≡ { mj1, mj2,…mjm} and 
a set of instance variables Vj (C) ≡{vj1, vj2, …. vjn}.  Ej 
(C) is the set of pairs (vj,mj) for each instance variable 
v in V(C) that is used by method m in Mj (C) 
 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3643 

The hybrid component complexity metrics is defined 
as follows  

HCCM=  ......... (8)  

Where IC is the interface complexity metrics of (Kaur 
and Singh 2013b), MVj the coupling metrics (Chen 
et.al 2011); COMj is the Cohesion Metrics (Chen et.al 
2011). Where j is the component being measured 
  
III. IMPLEMENTATION 

 
 The proposed hybrid complexity metrics was imple-
mented by applying to a component based system 
which is a university student information system. The 
university student information system is a software 
system from which the students of different depart-
ments can receive information about their marks de-
tails, fee details and course details. This system has 
been developed by integrating the components.  Fig-
ure 1 and figure 2 are the class diagram and activity 
diagram respectively of the university student infor-
mation system.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
Figure 1 Class Diagram of University Student Information System 

TOTAL NO OF LINKS = 10 
TOTAL NO OF INTERFACE= 20 
TOTAL NO OF COMPONENT = 8 
TOTAL NO OF METHODS = 21  
 

Login 

check_password (): int 

 

Student_Info_System 

Student_info_System (int) 

Information_Branch_Info (int) 

Select_field (int): char 

 

 
 

Course_Details_Branch 

Confirm_Course_Field (int) 

Select_Cdepartment (): int 

 

Marks_Details_Branch 

Confirm_Marks_Field (int) 

Select_Mdepartment (): int 

 

Fee_Details_Branch 

Confirm_Fee_Field (int) 

Select_Fdepartment (): int 

View_Course_Details 

CSE_Marks_Details (int) 

ECE_ Marks _Details (int) 

MEC_ Marks _Details (int 

 

View_Mark_Details 

CSE_Marks_Details (int) 

ECE_ Marks _Details (int) 

MEC_ Marks _Details (int) 

Marks_Details_Notice  

 

 

 

View_Fee_Details 

CSE_Fee_Details (int) 

ECE_Fee_Details (int) 

MEC_Fee_Details (int) 

Fee_Details_Notice 

 

 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3644 

 
 

 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 Activity Diagram of University Student Information System 

 

The system is composed of eight (8) components as 
shown in the class diagram fig 1; and the operations 
of each of the components are as follow: 

Login Component: This component checks the pass-
word entered by the user in order to authenticate the 
user. If the password is correct then it will return val-
ue 1 otherwise it will return value 0. The return value 
will be passed to the second and third method of 
component named Student_Info_System 

Student_Info_System Component: This component 
provides the information about the system’s working, 
information about the various information branches 
.The third method of this component provides the 
options to the user to select the branch from which 
the user want to get information. The second and 
third method will perform their actions only if the 
password is correct. This component passes F, M, C 
if user wants to get information about fee details, 
marks details and course details respectively, for the 
confirmation of the selected branch.              But the 
components Fee_Details_Branch,                  
Marks_Details_Branch and Course_Details               

 

and Course_Details_Branch accept the integer value 
for the confirmation of the selected branch. Thus 
when this component is used three parameter in-
compatibilities are caused which will make it difficult 
to use the method. It will also reduce the compos-
ability 

Fee_Details_Branch Component: The first method of 
this component confirms the selected branch from 
which the users want to get information. If user has 
selected fee details branch to get information then it 
will return 1 other wise 0. Second method of this 

component displays list of departments from which 
the user can select any department for which the us-
er want to check fee_details. This component will 
pass 1, 2, 3, for CSE, ECE, and MEC departments 
respectively, to the View_Fee_Details Component. 
When this component is used it will create one pa-
rameter incompatibility because component Stu-
dent_Info_ System passes the char parameter but 
the Fee_Details_Branch component takes the integer 
parameter to confirm the selected branch.   

Mark_Details_Branch Component: The first method 
of this component confirms the selected branch from 
which the users want to get information. If user has 
selected mark details branch to get information then it 
will return 1 other wise 0. Second method of this 
component displays list of departments from which 
the user can select any department for which the us-
er want to check mark_details. This component will 
pass 1, 2, 3, for CSE, ECE, and MEC departments 
respectively, to the View_Mark_Details Component. 
When this component is used it will create one pa-
rameter incompatibility because component Stu-
dent_Info_ System passes the char parameter but 
the Mark_Details_Branch component takes the inte-
ger parameter to confirm the selected branch.   

Course_Details_Branch Component: The first meth-
od of this component confirms the selected branch 
from which the users want to get information. If user 
has selected course details branch to get information 
then it will return 1 other wise 0. Second method of 
this component displays list of departments from 
which the user can select any department for which 
the user want to check course_details. This compo-
nent will pass 1, 2, 3, for CSE, ECE, and MEC de-
partments respectively, to the View_Course_Details 
Component. When this component is used it will cre-
ate one parameter incompatibility because compo-
nent Student_Info_System passes the char parame-

COMPONENT 1 

1 Method 
COMPONENT 2 

3 Methods 

COMPONENT 3 

2 Methods 

 

COMPONENT 4 

2 Methods 

 

 
COMPONENT 7 

4 Methods 

 

 

COMPONENT 8 

3 Methods 

 

 

COMPONENT 6 

4 Methods 

 

COMPONENT 5 

2 Methods 

 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3645 

ter but the Course_Details_Branch component takes 
the integer parameter to confirm the selected branch.   

View_Fee_Details Component: 1, 2, 3 values are 
passed to this component when the user want to view 
fee details of CSE, ECE and MEC departments re-
spectively. The Fee_Details_Branch component 
passes the integer value for the selected department 
to the View_Fee_Details component and this compo-
nent also accept the integer value to confirm the se-
lected department. Because the passed parameter 
and received parameter data types are same so this 
component does not create any incompatibility prob-
lem. 

View_Mark _Details Component: 1, 2, 3 values are 
passed to this component when the user want to view 
mark details of CSE, ECE and MEC departments 
respectively. The Mark_Details_Branch component 
passes the integer value for the selected department 
to the View_Mark_Details component and this com-
ponent also accept the integer value to confirm the 
selected department. Because the passed parameter 
and received parameter data types are same so this 

component does not create any incompatibility prob-
lem. 

View_Course_Details Component: 1, 2, 3 values are 
passed to this component when the user want to view 
course details of CSE, ECE and MEC departments 
respectively. The Course_Details_Branch component 
passes the integer value for the selected department 
to the View_Course_Details component and this 
component also accept the integer value to confirm 
the selected department. Because the passed pa-
rameter and received parameter data types are same 
so this component does not create any incompatibility 
problem. 

Table 3 is summary of the operations of the students’ 
information system from the class diagram of figure 
1. 

 

 

 

Table 3 Activity Diagram of University Student Information System 

Component    J 1 2 3 4 5 6 7 8 IIMAX OIMAX EJ(C) 

I Mj Vj MVji MVji  MVji MVji MVji MVji MVji MVji  

1 1 1  0,0       - 1 1 

2 3 3 1,1  2,2 2,2 2,2    4 3 2 

3 2 2  2,2    1,1   1 2 2 

4 2 2  2,2     1,1  1 2 2 

5 2 2  2,2      1,1 1 2 2 

6 4 3   1,1      1 - 3 

7 4 3    1,1     1 - 3 

8 3 3     1,1    1 - 3 

 

Equation 1, 2, and 3 was used to compute complexity parameters one and two in table 1 which in the hybrid met-
rics is represented as IC and Table 3 was used as input parameters to compute the coupling (MVj) and cohesion 
(COMj (C)) aspects of the proposed hybrid metrics and the obtained component complexity result for the student 
university information system is as shown in table 4.  



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3646 

Table 4 Complexity Result of Hybrid Complexity Metrics for Black Box Component 

Component  IC COMj (C) MVj HCCM 

1 0.6 1 0 1.6 

2 3.925 0.33 2.33 6.585 

3 1.70 0.50 1.50 3.70 

4 1.70 0.50 1.50 3.70 

5 1.70 0.50 1.50 3.70 

6 0.325 0.25 0.28 0.855 

7 0.325 0.25 0.28 0.855 

8 0.30 0.35 0.33 0.98 

 

IV. VALIDATION OF HYBRID COMPONENT 
COMPLEXITY METRICS (HCCM)  

Another important aspect in software metrics is the 
validation of a metrics. A software complexity metric 
is valid if it succeeds in satisfying defined properties. 
Several researchers have tried to describe a set of 
properties that a good software complexity metric 
must satisfy but none has been totally accepted or 
totally rejected by the software development commu-
nity (Salman 2006; Sharma et.al 2007). On this prem-
ise, six validation properties were proposed in Sal-
man (2006) and these properties can be applied to all 
types of complexity metrics.  

Property 1: Non-negativity: A complexity metric val-
ue cannot be a negative number. From table 4, the 
(HCCM) all the metric values are non-negative this 
satisfies the property of non-negativity however the 
zero in component one coupling result (MVj) mean 
the component requires a low coupling effort. 

Property 2: A software complexity metric must pro-
vide a scale of values.  Comparison between different 
alternatives must be possible.  For any two software 
artefacts (component) it must be possible to compare 
and then make managerial decisions according to the 
metrics values. Our proposed metrics result in table 4 
provided  a scale of value indicating that component 
two is of the highest complexity based on the value 
and thus managerial decision will require more time, 
effort and cost to compose the component. 

Property 3: The complexity of a single software unit 
S composed of two software components cannot be 
less than the sum of the complexities of the individual 
components. Complexity(S) >= Complexity (C1) + 
Complexity (C2). 

 The complexity of a component based software sys-
tem is a function of the complexities of individual 
components that make it up, and an added complexi-
ty will appear as a result of new interactions that may 
exist between the components.  In the best case, 
when a system is composed of two components and 
no new added interactions between the components 
are available, the system’s complexity will be equal to 
the sum of the individual component complexities. 

We use our proposed metrics to obtain the complexi-
ty of the entire software system by adding all the 
component complexity value of each individual com-
ponent. The sum of all the complexity value of each 
component equals the complexity value of the com-
ponent.  

Property 4: If a component C is decomposed into 
two or more components C1, C2... Cn then the sum of 
complexities of the resulting components is no more 
than the overall complexity of the original component.  

Complexity (C1) + Complexity (C2) + … + Complexity 
(Cn) <= Complexity(C)    

There is usually an added complexity whenever two 
components are composed.  The new complexity 
usually results from the interactions between these 
components.   So, when the component is decom-
posed these links will disappear and only the compo-
nent’s intrinsic complexity will remain. 

The hybrid component complexity metrics (HCCM) 
result in table 4 is a metric result for components of 
the software system and summing these results 
yields the complexity of the entire system and the 
complexity value of Student University information 
system cannot be less than the sum of the entire in-
dividual component it is composed of. This satisfies 
the fourth property.  



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 3 Issue 1, January - 2016 

www.jmest.org 

JMESTN42351295 3647 

Property 5: The complexity value of one component 
does not have a direct relationship to its methods, i.e. 
for any two components C1 and C2, if Complexity 
(C1) > Complexity (C2) then it is not necessary that 
C1 has more methods than C2.   

From table 4, Complexity value of component 8 
(0.98) is considerably lower than that of component 
one (1.6) but component eight contains more meth-

ods compared with component one which has only 
one see figure 2. This satisfies the fifth property.  

Property 6: The complexity value is directly influ-
enced by a component structure or organisation.   

From the university student information system com-
plexity result, component two has the highest com-
plexity value because of its organisation satisfying 
the sixth property.  

V. CONCLUSION  

To produce a software system with minimal devel-
opment cost, effort and within the shortest possible 
time, component based software development is 
needed. With component based software engineer-
ing, software systems are developed by composing 
existing software components.  

Qualifying a software component for composition re-
quires the use of software metrics and the most im-
portant software quality is complexity which is defined 
by four parameters. Several metrics have been pro-
posed to measure black box component complexity 
but these metrics did not consider all the four param-
eters that define complexity.  

We then proposed a hybrid complexity metrics that 
considered all the four parameters that defines com-
ponent complexity and implemented the metrics on a 
university student information system. We also vali-
dated the hybrid complexity metrics by verifying that 
the metrics satisfies some six properties.  

To effectively measure component complexity, the 
hybrid complexity metrics is ideal to represent the 
level complexity of black box software component. 

 

VI. REFERENCES  

[1] Chen J, Wang H, Zhou Y, and Bruda S (2011): 
Complexity Metrics for Component-based Soft-
ware Systems. International Journal of Digital 
Content Technology and its Applications, Vol-
ume 5.number 3 pp 235 - 244 

[7] Chhillar R.S and Kajla P. (2012): New component 
composition metrics for component based soft-
ware development international journal of com-
puter applications volume 60 no 15.pp 17-20  

[2] Jasmine K.S, and Vasantha. R. (2008) Cost Es-
timation Model for Reuse Based Software Prod-
ucts   Proceedings of the International Multi-
Conference of Engineers and Computer Scien-
tists (IMECS) Hong Kong Vol. I    

[3] Kaur N. and Singh A. (2013b): Component Com-
plexity Metrics: A Survey. International Journal of 
Advanced Research in Computer Science and 
Software Engineering Volume 3, Issue 6 pp 1056 
-1061 

[4] Kaur N. and Singh A. (2013a) : A Metric for Ac-
cessing Black Box Component Reusability. Inter-
national Journal of Scientific & Engineering Re-
search, Volume 4, Issue 7, pp 1114 – 1121 

[5] Khimta S, Sandhu P. S, and Brar A. S (2008):  
A Complexity Measure for JavaBean based 
Software Components: World Academy of Sci-
ence, Engineering and Technology pp 449-452 

[6] Latika M. and Rathore V.S (2011): Software 
Component Complexity Measurement through 
Proposed Integration Metrics: Journal of Global 
Research in Computer Science vol 2 no. 6 pp 13 
- 15  

[8] Lau K. and Wang Z. (2007): Software Compo-
nent Models; IEEE Transactions on Software En-
gineering, Vol 33, no 10 pp 709 – 724 

[9] Narasimhan, V. L., & Hendradjaya, B. (2004): A 
new suite of metrics for the integration of soft-

ware components. In Proceedings of the First In-
ternational Workshop on Object Systems and 
Software Architectures (WOSSA'2004). 

[10] Pressman R (2001) Software Engineering: A 
Practitioner's Approach: Roger Pressman fifth 
edition, Mcgraw Page 1- 888, Toronto  

[11] Salman N. (2006): Complexity Metrics as predic-
tors of maintainability and integrability of software 
components. Journal of Arts and Sciences pp 39 
-50  

[12] Sharma A, Kumar R. and Grover P.S (2007): 
Empirical Evaluation and Critical Review of Com-
plexity Metrics for Software Components. Pro-
ceedings of the 6th WSEAS Int. Conf. on Soft-
ware Engineering, Parallel and Distributed Sys-
tems pp 24-29, Greece 

[13] Sharma A, Kumar R. and Grover P.S (2008): 
Managing Component-Based Systems with Re-
usable Components. International Journal of 
Computer Science and Security, Volume 1: Issue 
(2) pp 52 – 57 

[14] Somerville I (2011): software engineering Addi-
son Wesley publication ninth editions  

[15] Vitharana P, Zahedi F.M, and Jain H. (2003): 
Design, Retrieval and Assembly in Component 
Based Software Development Communications 
of the ACM, Vol. 46, No. 11 pp 97 – 102 


