Sprouting Value Index: A Mathematical Evaluation Of IBA Induced Rooting Characteristics In Lemon Tree Stem Cuttings

Justin R. Nayagam Department of Botany, Union Christian College, Aluva, Kerala, India, 683102. Email. gigirn79@gmail.com

Abstract- Rooting ability in IBA induced rooting experiments largely depends on the medium used for rooting this has been established using SVI (sprouting value index), which, is a mathematical approach. Lemon plant Citrus lemon an fruit yielding plant with world wide market for its fruits has been selected for . Field studies were carried out using three rooting medium at a location in Central Kerala, Peninsular India, during June 2014, and repeated at four months regular interval till February 2015. Three IBA (Indole 3-butyric acid) concentrations 100 ppm, 200 ppm and 300 ppm, have been used and the data obtained was evaluated with SVI (sprouting value index) method in order to evaluate the suitable medium, which gives maximum results. The control cuttings do not recorded rooting. The results obtained indicate high SVI (sprouting value index), when stem root cuttings planted in root trainers with coir pith compost (RTCP) for all the three concentration of IBA applied. Sprouting percentage was increased and the delay in completion sprouting/rooting initiation of decreased by the use of IBA treatment.

Keywords—Citrus, lemon tree, sprouting value index, planting material, rooting media

I. INTRODUCTION

Plant propagation has a global effect, as it is a fundamental occupation of human kind and its discovery dates back to the origin of civilization and ornamental gardening attained high level during the period between 500 B.C to A.D. 1000 [1], [2]. The vegetative propagation of herbaceous plants can be performed easily as many of them produces bulbs, rhizomes, corms, tubers, offsets, suckers and stolons which are natural vegetative propagating structures. But vegetative propagation in tree species is a difficult process and it is attained through hormone application mostly in stem cuttings, which eventually initiates adventitious root and shoots [3], [4], [5]. Again, there mathematical are several expressions and explanations to measure seed germination and viability in sexually reproducing plants [6], [7], [8], [9], [10] but mathematical expressions for determining efficiency of vegetative planting material or for clonal propagation is scanty. The data obtained through the present investigation are being interpreted using sprouting value index (SVI) proposed by Nayagam [11].

The lemon tree, *Citrus limon* is an evergreen tree species which, is known for its fruits as it is used worldwide for its culinary and non-culinary purposes and the richness of its flavonoid content have been well documented [12]. Even though there are studies on rooting of stem cuttings are reported for the species [13] no attempt for mathematical interpretation in vegetative regeneration technique were considered for selecting the plant for the present experiment trials.

II. MATERIALS AND METHODS

A. Specimen collection and conduct of field trials

For the present investigation plant samples were collected from T.C Joseph Memorial Botanical Garden, of the Department of Botany, Union Christian College, Aluva, (+10° 7' 30.65", +76° 20' 3.32") Ernakulam district, Kerala State, India. Plant was identified by literature scrutiny, herbarium. All field trials was conducted in the plant nursery of T.C Joseph Memorial Botanical Garden, of the Department of Botany, Union Christian College, Aluva, (+10° 7' 30.65", +76° 20' 3.32") Ernakulam district, Kerala State, India.

For the sake of large scale planting material production in mechanized gardens, trials were conducted in 100cc root-trainer blocks (24 celled) using potting mixture (RTPM), root trainers with vermicompost (RTVC) and root trainers with coir pith RTCP as rooting medium.

B. Experiment design

For all field trials, average of the three replicates during 2014 in the months of June (P1), and October (P2), February (P3) till June 2015, in three different rooting medium such as root-trainers with potting mixture (RTPM), root trainers with vermi compost mixture (RTVC) and root-trainers with coir pith (RTCP). Stem cuttings with an average size of 7.5 to 10 cm were used. The sample size was kept twentyfour for each trials separately as the 100cc root-trainer block contains 24 cells. A non-auxin control and three Indole 3-butyric acid (IBA) concentrations were designed in this experiment with 100ppm, 200ppm and 300ppm (parts per million) in order to detect the rooting/sprouting ability by quick dip method. A randomized complete block design was employed. After 45 days, the cuttings were evaluated for rooting/sprouting percentages, mortality percentage and viability percentage. The data obtained were subjected to one factor analysis, employing analysis of variance (ANOVA) and two-way ANOVA.

C. Calculation of SVI

In order to develop the new idea of calculating sprouting value index (SVI), data regarding sprouting and successful rooting percentages (SP - sprouting percentages), percentage of planting material with callus production but without rooting (CWR - callus without rooting), percentage of sound unsprouted propagule without callus production (SUP) (was determined by vertical cut test: planting material with more than three nodes living tissues was considered viable) was prepared. Viability percentage can be prepared using the formula (VP = SP + CWR + SUP), peak value (PV = maximum mean sprouting recorded at any time during the test), final mean sprouting (final MDS = cumulative percentage of full sprouting at the end of the test divided by number of days to finish sprouting) were calculated. SVI index method developed through the present study is calculated by the equation.

SVI = PV * MDS.

III. RESULTS

Sprouting and rooting studies of stem cuttings were carried out in three different rooting medium during three seasons (June, October and February), and the averages of various attributes obtained are given in table 1 and 2. Stem cuttings of 5 year old lemon tree, was used as mother plants in order to obtain stem cuttings at four months interval.

Table 1 gives the VP of prop root cuttings in three concentrations used against the control whereas table 2 gives SVI in different concentrations. Callus production as well as sprouting and rooting was very poor in control. High VP was obtained with all the three concentrations of IBA used (ranging between 33% to 97%) in the rooting/sprouting medium RTCP.

IBA Conc.	Rooting Medium	CWR	SP	SUP	VP
100ppm	RTPM	2.72	0	5.55	8.27
	RTVC	33.33	52.78	4.17	90.28
	RTCP	16.50	58.33	20.21	95.03
200ppm	RTPM	4.17	0	2.72	6.89
	RTVC	12.5	66.67	16.83	96.00
	RTCP	12.5	75	4.17	91.67
300ppm	RTPM	5.55	0	2.72	8.27
	RTVC	12.5	66.67	16.83	96.00
	RTCP	11.10	79.16	4.17	94.43

Table 1. VP of IBA treated stem cuttings of lemon

Table 2. SVI results	of IBA	300ppm	treated	stem
cuttings of lemon				

IBA Conc.	Rooting Medium	PV	MDS Final	SVI
100ppm	RTVC	8.34	1.32	11.01
	RTCP	8.34	1.46	12.18
200ppm	RTVC	12.5	1.67	20.88
	RTCP	16.67	1.88	31.34
300ppm	RTVC	16.67	1.67	27.84
	RTCP	16.67	1.98	33.01

With stem cuttings of lemon SVI was obtained in RTCP (300ppm treated cuttings). The speed of completion of sprouting/rooting in RTVC was found lower than in RTCP (Fig. 1).

The ANOVA results on callus production show significance at 1% level between concentrations of IBA and significance at 5% level between media of study. The ANOVA results on callus formation and callus with root formation show significance at 1% level between concentrations of IBA and between mediums. The results was non significant at 5% level between periods of study.

The ANOVA results on callus formation and callus with root formation show significance at 1% level between concentrations of IBA and significance 5% level between media of study for callus formation root production show significance at 1% level between medium of study.

IV. DISCUSSION

The SVI studies worked out in the present study is a mathematical approach to determine the quality of rooting material, suitability of the medium used for rooting and the optimum concentration of IBA to be used. Production of elite genotypes of any plant species can be generated by vegetative method of propagation round the year. Successful propagation using stem cuttings has been reported by several studies in various plants, which uses stem cuttings, rhizomes or other vegetative parts [14], [15], [16], [17]. Rooting of stem cuttings using tree species is very scanty and treatment of the results with mathematical approach is still few.

In field trials, all planting materials gave elite performance in RTCP planting medium. In the trials using 300ppm IBA (Indole 3-butyric acid) treated cuttings also SVI was highest in RTCP (14.48). Significant differences in rooting were found between various rooting media when effect of rooting, in sheanut root cuttings were performed [18]. Sprouting percentage and speed of completion of sprouting/rooting initiation increased by the use of IBA treatment [11]. SVi has been found effective in evaluating vegetative propagation of tree species and in evaluation of rooting media efficiency [19] [20] [21]. However, it is shown by other workers [18] that very high IBA concentration have negative effect in rooting. Comparing the CWR and SUP percentages one can also assess the defects in management practices. dormancy and the genotype of the cultivar.

Sprouting index value (SVI) proposed through the present study is a very recent method of evaluation in vegetative propagation (Nayagam, 2015). It is also suitable in field and nursery trials for vegetative propagation and IBA treated rooting of cuttings. The incorporation of CWR (callus production without rooting) along with SUP (sound unsprouted propagule) in calculating VP (Viability percentage) is effective in finding the field oriented defects. SVI and VP is an integrated measure of planting material quality. The speed of sprouting/rooting ability along with the completeness of sprouting can also be determined vegetative planting materials. Suitable rooting media hold considerably high rooting ability [20], [22].

Even though SVI for control were found zero, the VP for IBA treated trials resulted > 90% (table 1) which. indicates that by using alternate methods like pretreatments and management practices, SVI can be increased. The internal physiology of the planting material may be the reason for the same. The change in planting material and IBA treatment used affects the rooting process as in the present study; SP was increased in higher concentration (300ppm IBA). Methods for reducing CWR and SUP values can increase SP and the sample in rooting medium with least difference in SP and VP value will give maximum performance. Results of the rooting experiments showed that with very high IBA concentration in sheanut tree cuttings, rooting ability decreased [18] and hence three concentrations of IBA were used in the present experiment.

V. CONCLUSIONS

The present study focuses on regeneration of plantlets from stem cuttings of lemon and the data obtained were interpreted using sprouting value index (SVI) to establish suitable vegetative planting material and suitable rooting medium through field trials. Trials conducted in different rooting medium reveal the sprouting efficiency and vigor in different medium. SVI is a statistically treated data, which follows the very recent sprouting value index proposed by Nayagam [11]. The incorporation of CWR (callus production without rooting) along with SUP (sound unsprouted propagule) in calculating VP (Viability percentage) makes it suitable for vegetative cultivation practices and it interprets the quality of planting material, failure due to management practices and the selection of suitable rooting medium. This method of planting stock preparation is valuable in large-scale cultivation and much promising in producing quality clonal planting material production in economically important plants in future.

ACKNOWLEDGEMENT

The author expresses his heartfelt gratitude to Dr. Benny Cherian, Principal and Dr P. M. Kuriachen, Head of the Botany Department, Union Christian College, Aluva, for providing space to conduct field trials in the Dr. T.C Joseph Memorial Botanical Garden, Department of Botany, Union Christian College, Aluva. Thanks to Mr. Thomachen, Gardener, Dr. T.C Joseph Memorial Botanical Garden, Department of Botany, Union Christian College, Aluva, for maintaining the field specimens throughout the study period. Extending a word of thanks to Mr. Jabir who helped in statistical correlation.

REFERENCES

[1] Harlan, J.R. 1992. *Crops and man.* 2nd ed. Madison,Wia. Amer. Soc. Of Agron., Inc. Crop Science of America. America.

[2] Solbrig, O.T., D.J Solbrig., 1994. So shall you reap. Farming and crops in human affairs. Island Press. Washington, D.C.

[3] Davies, F. T., T.M. Davies, D.E. Kester, 1994. Commercial importance of adventitious rooting to horticulture. In T. M. Davis and B. E. Hassing, eds. *Biology of adventitious rooting*. Plenum Press, New York and London. pp.53-60.

[4] MacDonald, A. B., 1986. Propagation facilitiespast and present. *Comb. Proc. Intl. Plant Prop.* Soc. **35**: 170-75.

[5] Ritchie, G. A., 1994. Commercial application of adventitious rooting to forestry. In T. M. Davis and B. E. Haissing, eds. *Biology of adventitious root formation*. Plenum Press, New York and London. pp.37-52.

[6] Czabator, F.J., 1962. Germination value: an index combining speed and completeness of pine seed germination. Forest Science 8:386-396.

[7] Nichols, M.A, Heydecker, W., 1968. Two approaches to the study of germination data. Proceedings of the International Seed Testing Association 33:531-540.

[8] Brown, R.F., Mayer, D.G., 1988. Representing cumulative germination. 1. A critical analysis of single-value germination indices. Annals of Botany 61:117-125.

[9] Bewley, J.D., Black, M., 1994. Seeds: physiology of development and germination. 2nd ed. Plenum Press, New York.

[10] Santana, D.G., Ranal, M.A., 2004. Análise da germinação: um enfoque estatístico. Editora UnB, Brasília.

[11] Nayagam, J. R., 2015A. Sprouting Value Index: A New Concept in Evaluation of Rooting of Cuttings. World Journal of Agricultural Research, 2015, Vol. 3, No. 4, 139-142. DOI:10.12691/wjar-3-4-4

[12] Del Rio, J. A., Fuster, P., Gomez, P., Parras, I., Garcia-Lidon, A., Orunto, A. 2004. Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chemistry. 84(3): 467-461. doi:10.1016/S0308-8146(03)00272-3

[13] Sagee, O, Raviv, M., Sh, Medina, Becker, D. 1992. Involvement of rooting factors and free IAA in the rootability of Citrus species stem cuttings. Scientia horticulturae. Vol. 51. (3-4) :187-195. doi:10.1016/0304-4238(92)90118-V

[14] Sharma, S.D., Aier, N.B., 1989. Seasonal rooting behaviour of cuttings of plum cultivars as in.uenced by IBA treatments. Scientia Horticulturae, 40: 297–303.

[15] Rosier, C.L., Frampton, J., Goldfarb, B., Blazich, F.A., Wise, F.C., 2004. Growth stage, auxin type, and concentration in uence rooting of stem cuttings of Fraser r. HortScience, 39: 1392–1396.

[16] Hartmann, H.T., Kester, D.E., Davies, F.T., Geneve, R.L. 1997. Plant propagation principles and practices. 6th edition, Asoke K. Ghosh, Prentice-Hall of India. Private Limited, M-97, Connaught Circus, New Delhi – 110 001. [17] Hambrick, C.E., Davies, F.T., Pemberton, H.B. 1991. Seasonal changes in carbohydrate/ nitrogen levels during field rooting of *Rosa* multi.ora 'Brooks 56' hardwood cuttings, Scientia Horticulturae, 46: 137–146.

[18] Akakpo, D.B., Amissah, N., Yeboah, J., Blay, E., 2014. Effect of Indole 3-Butyric Acid and Media Type on Adventitious Root Formation in Sheanut Tree (*Vitellaria paradoxa* C. F. Gaertn.) Stem Cuttings. American Journal of Plant Sciences, 5, 313-318.

[19] Nayagam, JR., Varghese, Mani KI., 2015A. Sprouting Value Index: A Mathematical Approach for Evaluation of Vegetative Propagation in Tree Species. American Journal of Environmental Protection. 4(6): 271-274. doi:10.11648/j.ajep.20150406.11

[20] Nayagam, JR., Varghese, Mani KI., 2015B. IBA Induced Rooting Characteristics in Golden Shower Tree: Evaluation Using SVI Concept. International Journal of Agriculture and Forestry 2015, 5(5): 287-290 DOI: 10.5923/j.ijaf.20150505.04

[21] Nayagam, JR., Varghese, Mani KI., 2015C. Sprouting Value Index: A Mathematical Approach For Evaluation Of Rooting Media Efficiency. Journal of Current Agricultural Research, Vol. 4, No. 10, PP. 145-148.

[22] Nayagam, J.R., 2015B. Plantation Technology for Seven Tropical Tree Species. LAP Lambert Academic Publishing, OmniScriptum GmbH & Co. KG, Saarbrücken, Germany.