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Abstract—In this paper we have considered 
 𝐒𝐄𝐈𝐒𝐈𝐍𝐑  mathematical model, as an extension of 
SEIR, to describe the propagation of Influenza 
disease among the population.  Influenza has 
been a burning issue around the world. 
Mathematical analysis, descriptions, stability 
analysis and simulation studies of influenza 
epidemic are taken up and are included. The 
registered data of influenza epidemic collected 
from the main campus, University of Central 
Florida, is used for parameter estimation and 
simulation studies. It is hoped that the information 
and results provided here would encourage other 
researchers to use mathematical modeling in the 
study of evolution and transmission of epidemic 
diseases. 

Keywords—Influenza, Flu, Modeling, 
Simulation study, Infectious diseases.  

1. Introduction  

The interconnectedness among the people and 
places in the world has created the need to 
understand the present and predict the future 
dynamics of infectious diseases. Obviously, the 
infectious diseases suffering the people are caused 
due to pathogenic micro-organisms such as bacteria, 
viruses, fungi and parasites. The pathogenic micro-
organisms could spread from person to person or 
from animals and birds to human beings in a direct or 
indirect ways and propagates diseases. These 
infectious diseases have a potential cause leading to 
deaths of people worldwide as the medical 
advancement is not up to the requirement level [1]. 
Also, the medical administer is not proper and costs 
involved are not reachable to a common man [2 – 3]. 

Influenza, commonly known as "flu" is one of the 
infectious diseases that transmits from birds and 
mammals to people and then propagates among the 
people. The flu disease has the symptoms such as 
common cold, chills, high fever, sore throat, muscle 
pains, severe headache, coughing, bleeding from 
nose, body weakness and other general discomforts. 
The disease flu is caused by three types of Reborn 
Nucleolus Acid (RNA) viruses called as Influenza 
types A, B and C of the family orthomyxoviridae. 
Influenza type – A affects all age groups of humans 
and other animals and the disease causes moderate 
to several illnesses. Influenza type – B is a milder 
disease in comparison with that of type – A, and 

affects only humans specially children. Influenza type 
– C is rarely reported causing illness among the 
infected people and has not been considered as an 
epidemic disease. The serious outcome of the flu 
infection can result in hospitalization or death [4 – 5].  

The mathematical modeling of infectious diseases 
is used to study the means by which diseases spread, 
to forecast the future course of an outbreak and to 
evaluate strategies to control an epidemic [6]. The 
mathematical models do not offer comprehensive 
descriptions of how to control the diseases. But, they 
are elegant methods used for evaluating the possible 
influence and effectiveness of different strategies 
offered in public health intervention programs [7]. 
During the recent Influenza – A known as 𝐻1𝑁1 type 
or Swine Flu pandemic mathematical modeling is 
used to investigate interventions of both social and 
medical and thus modeling has become popular.  

The present work considers the effects of disease 
control measures applied on a Meningococcal 
Disease or meningitis outbreak. The data of the 
current influenza pandemic collected from a college 
campus as well as a broader reveals the effects of the 
disease on the defined population. Analysis of such 
data helps decision makers, clinical practitioners and 
allocation of health care resource [8 – 9]. 

Influenza type – A or 𝐻1𝑁1 is one of the diseases 
that have a latent or exposed phase, during which the 
individuals are said to be infected but not infectious. 
Due to the characteristics of the disease the   𝑆𝐸𝐼𝑅   
model requires modifications. The infectious 
compartment  𝐼  is replaced with (i) symptomatic  𝐼𝑆   
and (ii) non-symptomatic  𝐼𝑁   compartments. Thus, the 
modified model is named as 𝑆𝐸𝐼𝑆𝐼𝑁𝑅 and is used in 
the present work for further analysis and 
interpretations.  

In other words, the total population size   𝑁 (𝑡)  is 
partitioned into five compartments namely, 
susceptible  𝑆(𝑡) , infected with symptoms  𝐼𝑆(𝑡) , 
infected without symptoms   𝐼𝑁(𝑡)  , an incubation 
period  𝐸 , and removed 𝑅(𝑡). Thus,  𝑁 =  𝑆 + 𝐸 + 𝐼𝑆 +
𝐼𝑁 + 𝑅  [16] 

Many mathematical models describing the 
evolution and dynamics of infectious diseases 
including Ebola, Breast cancer, Malaria and 
Tuberculosis have been proposed in literature [10 - 
14].  

In the present paper we have introduced a new 
compartmental model called as   𝑆𝐸𝐼𝑆𝐼𝑁𝑅   model. 
Here, we have presented mathematical analysis of 
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𝑆𝐸𝐼𝑆𝐼𝑁𝑅  model and conducted simulation study in 
case of the disease called Influenza A,   𝐻1𝑁1. Also 
we have identified the equilibrium points and 
conducted the stability analysis of those points. The 
details are included in the body of the paper. 

Here we now introduce some important 
terminology that is frequently used in this work. 
Compartment is a group of people with similar status 
for example with respect to a disease. Susceptible a 
person is said to be susceptible if she or he has not 
yet infected by the disease but likely to get the 
disease in future. Exposed a person is said to be 
exposed to a disease when the bacteria enters into 
the person’s body. At this stage the effects of the 
disease cannot be identified with the person, because 
the effects are in sleeping state. Infected a person is 
said to be infected if she or he has the disease and is 
able to transfer it to other susceptible persons. 
Infected with symptoms this person exhibits 
symptoms of the disease. But, the disease will be 
confirmed after conducting proper tests only. Infected 
without symptoms this person does not exhibit 
symptoms of the disease. But, the disease will be 
confirmed only with conducting of proper tests. 
Incubation period the time duration between an 
individual gets exposed to an infection and he gets 
sickness or confirmation of the disease. The person 
may be tested positive of the infection after this 
period. This is the time taken by a person to shift from 
the compartment  𝐸  to the compartment  𝐼𝑆   or  𝐼𝑁  . 
The incubation period is also known as Latent period. 
Removed compartment a person is said to be in the 
removed compartment if he will never again get 
infected or infect others. The persons of this 
compartment are completely immune against the 
disease or isolated from the population or simply 
dead. Epidemic diseases these are the diseases 
which migrate in from other areas. These diseases will 
come and go with time. Endemic diseases these 
diseases always present in a population. They may 
occur several times or may lead to immunity over a 
period of time. Contagious disease these are the 
diseases which spread by physical contact between 
susceptible and infected persons. 

2. Mathematical Modeling using  𝑺𝑬𝑰𝑹  
compartments 

In this section, we have considered   𝑆𝐸𝐼𝑅  
epidemic model as it is a base for the  SEISINR  model. 
The letters in the string  𝑆𝐸𝐼𝑅   respectively stand for 
the Susceptible, Exposed, Infected, and Removed 
compartments. We also have discussed its 
mathematical analysis briefly [15 – 16]. The simple 
flow diagram of  𝑆𝐸𝐼𝑅  model is as follows: 

The mathematical equations describing the  𝑆𝐸𝐼𝑅  
model can be described by a system of ordinary 
differential equations as 

 
𝑑𝑆 𝑑𝑡⁄ = −𝛽 (𝑆𝐼 𝑁⁄ )                           (1a) 
𝑑𝐸 𝑑𝑡⁄  = 𝛽 (𝑆𝐼 𝑁⁄ ) − 𝜎𝐸                  (1b) 
𝑑I dt⁄  = 𝜎𝐸 − γI                               (1c) 
𝑑𝑅 dt⁄   = γI                                         (1d) 

In the  𝑆𝐸𝐼𝑅  compartment model (1) the population 
is assumed to be closed. That is, births, deaths and 
migrations are considered to be negligible and 
omitted. Thus, the population size parameter 𝑁 =
 𝑆(𝑡) +  𝐸(𝑡) +  𝐼 (𝑡) +  𝑅(𝑡)  is a constant. Here,  𝑆(𝑡) 
represents the number of individuals those are 
susceptible to the disease but not infected at time 𝑡. 
The parameter 𝐸(𝑡)  denotes the number of 
individuals those are exposed to the virus or infected 
but not yet tested positive of the infection. The 
parameter  𝐼(𝑡)  denotes the number of infected 
individuals who are able to spread the disease to 
other susceptible people, and  𝑅(𝑡)  represents the 
number of individuals those have successfully gained 
immunity from the disease and/or removed by death. 

After exposed by the virus the individuals from 
the susceptible compartment  𝑆(𝑡) enters the exposed 
compartment  𝐸(𝑡)  before they become infectious 
individuals and later either recover or die. The 
parameter  𝛽  represents the transmission rate of 
disease from susceptible to exposed. Similarly,  (1/𝜎)  
and  (1/𝛾)  are the average durations of incubation 
and infectiousness periods respectively. 

2.1 Analysis of  𝑺𝑬𝑰𝑹  model 

Using the biological interpretation of system 
defined by the ordinary differential equations (1), it 
can be easily understand that the feasible region for 
system (1) is   𝑅+

4
 , the four dimensional space 

surrounded by only the positive axes.  
Clearly, the addition of all the equations of the 

system (1) results in  (𝑑 𝑑𝑡⁄ ) (𝑆 + 𝐸 + 𝐼 + 𝑅) = 0 . It 
can be interpreted that this restriction on the 
variables 𝑆 , 𝐸 ,   𝐼  and  𝑅  simplifies the 4 – 
dimensional world and the solution region can be 
represented by the simplex ℇ = {(𝑆, 𝐸, 𝐼, 𝑅) 𝜖 𝑅+

4 ∶
 (𝑆 + 𝐸 + 𝐼 + 𝑅) = 𝑁}.  

Further, it can be noted that the region  ℇ  is 
positively invariant. The population size of the 
removed compartment satisfies the relation  𝑅(𝑡) =
𝑁 − 𝑆(𝑡) − 𝐸(𝑡) − 𝐼(𝑡)  everywhere in the region  ℇ . 
Also, it can be noticed that disease – free equilibrium 
state exists for the model (1). In the disease – free 
equilibrium state absence of infection occurs. Thus, all 
the compartments except the susceptible will be zero 
and the entire population will comprise of only 
infection free susceptible individuals.  

Here in what follows equilibrium points of system 
(1) are found, analyzed and discussed. For this very 
purpose Jacobean stability approach is used and 
shown that the stability of the disease-free equilibrium 
state occurs. The disease free equilibrium (DFE) point 
of the model (1) which we have discussed above can 
be computed as 

2.2 Analysis of  𝑺𝑬𝑰𝑹  model 

(𝑑𝑆 𝑑𝑡⁄ ) = (𝑑𝐸 𝑑𝑡⁄ ) = (𝑑𝐼 𝑑𝑡⁄ ) = (𝑑𝑅 𝑑𝑡⁄ ) = 0   (2a) 
−𝛽(𝑆𝐼 𝑁⁄ ) = 0                 (2b) 
𝛽(𝑆𝐼 𝑁⁄ ) − 𝜎𝐸 = 0         (2c)         

(𝜎𝐸 – γI) = 0                    (2d)       

http://www.jmest.org/
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On solving the equations (2) we get the 
disease free equilibrium point as  𝐸0 =  (𝑁, 0, 0) and at 
this equilibrium point the basic reproductive number 
takes the value     𝑅0 =  (𝛽 𝛾⁄ )   < 1 . This shows that 
the susceptible individuals are stable at the 
equilibrium point   𝐸0 and it can be interpreted as the 
epidemic is died out. Note that at any equilibrium point 
if the reproductive number assumes the value  𝑅0 > 1  
then the equilibrium point is considered to be unstable 
and it means that the epidemic spread continuous. 
The relation  𝑅0 > 1 means an infected individual will 
infect more than one i.e.,  𝑅0  number of susceptible 
individuals. In our present work, the basic  𝑆𝐸𝐼𝑅  
epidemic model (1) given in [17] was modified to 
include death rates occurring in the symptomatic 
infectious compartment due to the disease. 

3. Formulation of the 𝑺𝑬𝑰𝑺𝑰𝑵𝑹  model 

In this study we have considered 𝑆𝐸𝐼𝑅 , 
Susceptible – Expose – Infected – Removed,    
epidemic model and classified the infected population 
 𝐼  as those with symptoms  𝐼𝑆   and without 
symptoms  IN . We will also conduct a simulation study 
by assigning different valid values to the parameters 
of the model. The present model has a compartmental 
structure and is designed based on the assumptions 
described as follows: 

The individuals in the susceptible compartment are 
subjected to get infection due to contact with infected 
population at a rate of  β. The susceptible population 
on getting infection enters in to the exposed 
compartment. The virus in the exposed population 
multiplies for a period of time 𝑘. It is important to note 
here that for the present model (1) we do not consider 
mutation of the pathogens. From the exposed 
compartment a portion 𝑝   of individuals enter into the 
infected with symptoms compartment   𝐼𝑆  , while the 
remaining portion  (1 −  𝑝)  of individuals enter into the 
infected without symptoms compartment    𝐼𝑁 . An 
infected person of the  𝐼𝑆 compartment will either die 
with the disease or recover from the disease by some 
means and enter into the removed compartment. The 
population of the  𝐼𝑆  compartment will enter into the 
removed compartment   𝑅  at a rate of  γ  and die with 
influenza disease at a rate of  𝜇 . The population of 
the  𝐼𝑁   compartment recovers from the disease and 
enters into the removed compartment   𝑅  at a rate 
of   η  [18]. The compartmental structure and flow 
directions of populations of this model can be 
illustrated as shown in Figure 1. 

 
 

Figure 1 Flow Diagram of populations for 
Influenza disease 

 

The mathematical formulation of  SEISINR  
model can be expressed as systems of differential 
equation as follows: 
𝑑𝑆 𝑑𝑡⁄  = −𝛽𝑆  (IS + δ IN)           (3a) 
𝑑𝐸 𝑑𝑡⁄ = 𝛽𝑆  (IS + δIN) − 𝐾 𝐸    (3b) 
 𝑑IS dt⁄ = P K E − γ IS − μ IS       (3c) 
  𝑑IN dt⁄ = (1 − P) K E − η IN      (3d) 
𝑑𝑅 𝑑𝑡⁄  = γ IS + η IN                     (3e) 

The notations and physical meanings of the 
parameters used in (3) are as follows:  𝛽   is the 
contact rate of susceptible individuals with infection; 
𝑘 is the latency period in the exposed class; 𝑝  is the 
fraction of exposed individuals that enter into  𝐼𝑆  
compartment; γ   is the rate of recovery from the 
disease in 𝐼𝑆  compartment;  μ  is death rate with 
influenza in 𝐼𝑆 compartment;  η is the rate of recovery 
from the disease in the 𝐼𝑁  compartment and  δ is the 
factor by which 𝐼𝑁   have reduced infectivity. 

4. Expression of the model in terms of 
scaling variables 

Scaling of the variables in mathematical modeling 
has some advantages. Scaling removes unnecessary 
parameters and decreases the number of parameters. 
Also, scaling eliminates the physical units. Note that 
the physical units are not important for the dynamical 
analysis of a model [19]. For the purpose of 
constructing dimensionless or scaled system of model 
equations we now introduce a set of new variables as 
  𝑢 = (𝑆 𝑁⁄ ) , 𝑧 = (𝐸 𝑁⁄ ) , 𝑣𝑠 = (𝐼𝑆 𝑁⁄ )  , 𝑣𝑛 = (𝐼𝑁 𝑁⁄ )  ,
𝑤 = (𝑅 𝑁⁄ )    and     𝑡 = (𝜏 𝛾⁄ ) . With the use of these 
scaling variables the system of model equations given 
in (3) will take the form 
𝑑𝑢 𝑑𝜏⁄  =  −𝑅1 𝑢 (𝑣𝑠 +  𝛿𝑣𝑛)           (4a) 
 𝑑𝑧 𝑑𝜏⁄ =  𝑅1𝑢 (𝑣𝑠 +  𝛿𝑣𝑛) − 𝑅2 𝑧   (4b) 
 𝑑𝑣𝑠 𝑑𝜏⁄ = 𝑝 𝑅2 𝑧 − (1 + 𝑅3 ) 𝑣𝑠      (4c) 

 𝑑𝑣𝑛 𝑑𝜏⁄ = (1 − 𝑃) 𝑅2 𝑧 − 𝑅4𝑣𝑛      (4d) 
𝑤 = 1 − 𝑢 − 𝑧 − 𝑣𝑠 − 𝑣𝑛                 (4e) 

Here in (4) we have used the notations    𝑅1 =
(𝛽 𝛾⁄ ) , 𝑅2 = (𝑘 𝛾⁄ ), 𝑅3 = (𝜇 𝛾⁄ )  and   𝑅4 = (𝜂 𝛾⁄ ). The 
purpose of these notations is just to make the 
equations appear simple. The basic reproduction ratio 
(𝑅0), which we have used in the present simulation 
study, was calculated using the formula given in [20] 
as   R0 = [β/(γ + μ + η)]. 

5. Mathematical analysis of the model 

Here we consider mathematical analysis of the 
model (3) and draw some important observations. 
From the system of equations (3) it can be easily 

understood that the feasible region of system is  R+
5 , 

the five dimensional space surrounded by only the 
positive axes.  

On summing up all the individual equations of the 
system (3), it is straight forward in getting  (dS dt⁄ )    +
(dE dt⁄ ) + (dIS dt⁄ ) + (dIN dt⁄ ) + (dR dt⁄ ) = 0 . This 
homogeneous equation can be integrated to obtain 
 (𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝑁 + 𝑅) = 𝑁 which is a constant. Here 𝑁 
can be interpreted as size of the total human 
population and is usually considered as a constant 
during the small interval of an epidemic.   

http://www.jmest.org/
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Further, it can be interpreted that this restriction 
on the variables 𝑆, 𝐸, 𝐼𝑆 , 𝐼𝑁  and 𝑅 simplifies the 5-
dimensional world and can be represented by the 
simplex region ℇ = {(𝑆, 𝐸, IS,  IN, 𝑅)𝜖 R+

5 ∶
 (𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝑁 + 𝑅) = 𝑁}.  Further, it can be noted 
that ℇ is positively invariant and on which 𝑅(𝑡) = 𝑁 −
𝑆(𝑡) − 𝐸(𝑡) − 𝐼𝑆  (𝑡) −  𝐼𝑁  (𝑡)  is satisfied everywhere 
[8]. It can be noticed that disease-free equilibrium 
state for (3) exists. In the disease – free equilibrium 
state the infection is absent. 

During the disease-free equilibrium state all 
the infected classes, except the susceptible class are 
empty, and as a result the entire population comprises 
of only infection free susceptible individuals. Here in 
what follows equilibrium points of system (3) are 
found, analyzed and discussed. For this very purpose 
here Jacobian stability approach is used and shown 
that the stability of the disease – free equilibrium state 
occurs. The disease free equilibrium point of the 
model which we have discussed above can be 
computed as 
(dS dt⁄ )  = (𝑑𝐸 dt⁄ ) = (dIS dt⁄ ) = (dIN dt⁄ ) = (dR dt⁄ ) =
0                                 (5a) 
− 𝑆 𝛽 (IS + δ IN) = 0                   (5b) 
𝑆 𝛽 (IS + δ IN) − 𝐾 𝐸 = 0           (5c) 
P K E − γ IS − μ IS = 0                (5d)  
(1 − P) K E − η IN = 0                (5e) 
γ IS + η IN = 0                             (5f) 

The basic reproduction ratio  𝑅0  quantifies the 
transmission potential of a disease. If the basic 
reproduction ratio falls below one   ( 𝑅0 < 1), i.e. the 
infective may not pass the infection on during the 
infectious period, the infection dies out. If the basic 
reproduction ratio is greater than 1,   ( 𝑅0 > 1  )  then 
the equilibrium point is considered to be unstable and 
there is an epidemic in the population. In case 
where    𝑅0 = 1 , the disease becomes endemic, 
meaning the disease remains in the population at a 
consistent rate, as one infected individual transmits 
the disease to one susceptible [20]. 
On solving the equations (5) we get the disease free 
equilibrium point 𝐸0 = (𝑁, 0,0,0) and at this equilibrium 
point the basic reproductive number takes the value 
𝑅0 = [𝛽/(𝛾 + μ + 𝜂)] < 1 . This shows that the 
susceptible individuals are stable at the equilibrium 
point and it can be interpreted as the epidemic is died 
out [20 – 22]. 

6. Simulation study of the model 

Here we consider simulation study of the model (3) 
and draw some important observations. This 
simulation study is based on the given data of 
University of Central Florida (UCF) main campus. To 
facilitate the simulation study, we arranged the system 
of ODE in (4) as follows:  
 

𝑑𝑢 𝑑𝜏⁄  =  −𝑎 𝑅0𝑢 (𝑣𝑠 +  𝛿𝑣𝑛)         (6a) 
 𝑑𝑧 𝑑𝜏⁄ =  𝑎𝑅0𝑢 (𝑣𝑠 +  𝛿𝑣𝑛) − 𝑅2 𝑧  (6b) 
 𝑑𝑣𝑠 𝑑𝜏⁄ = 𝑝 𝑅2 𝑧 − (1 + 𝑅3 ) 𝑣𝑠       (6c) 

 𝑑𝑣𝑛 𝑑𝜏⁄ = (1 − 𝑃) 𝑅2 𝑧 − 𝑅4𝑣𝑛       (6d) 
𝑤 = 1 − 𝑢 − 𝑧 − 𝑣𝑠 − 𝑣𝑛                  (6e) 

Here R0 is as described before and 𝑎 =
[(𝛾 + μ + 𝜂)/𝛾]. 

Calculations of parameters From the given data, 

we have that 𝑁 = 50,000 people, 𝐴 =  5.726 sq. kms., 
𝑞 =  10% =  0.1  (where 𝑞  is the probability of an 
infective transmitting the infection), μ =  0.0002, 𝛾 =
 𝜂 =  0.244, 𝑅 =  1𝑐𝑚 =  0.00001𝑘𝑚, (where R is the 
radius within which an infected individual must 
encounter a susceptible person in order to transmit 
the disease), 𝜈 = (4.39km/hr)(24hr/day) = 105.36 
km/day (where 𝜈  is the population average speed). 
Then, contact rate, 𝛽 , was determined for the 
specified campus area using the following equation 
derived in [16]  𝛽 =   (8𝑅𝑞𝜈𝜌 𝜋⁄ )  =  2.343/𝑑𝑎𝑦 . This 
formula considers a moving population where the 
transmission rate of the disease is a factor of the 
density of the individuals within the specified area. 
Here  𝜌 = (𝑁 𝐴⁄ )  and is considered to be   8732     
people per one square kilometer. Here  𝐴 is the area 
in which the population is constrained and 𝑁  is the 
total population size. Hence, one can determine the 
values of 𝑅0,  𝑅1,  𝑅2, 𝑅3 and 𝑅4 based on these values 
which have been calculated based on the collected 
data of Influenza on the UCF campus. The results of 
the simulation study are pictorially represented and 
described in what follows.   

 
Figure 2: For   R0 = 0 , the population size of 
susceptible decreases smoothly, whereas the 
exposed and infected compartments decreases to 
asymptotically zero, but the removed compartment 
size increases smoothly. The complete population 
sizes of these compartments are the multiples of the 
respective fractions and the total population  𝑁. 

 
Figure 3 population dynamics of  𝑆𝐸𝐼𝑆𝐼𝑁𝑅  - epidemic 

compartmental model when   R0  = 0.5 . The 
susceptible fraction decreases smoothly, whereas the 
Exposed, infective with both symptoms and without 
symptoms and removed compartments decrease 
asymptotically to zero. Finally the epidemic dies out. 
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Figure 4 Population dynamics of  𝑆𝐸𝐼𝑆𝐼𝑁𝑅 – epidemic 

compartmental model when    R0  =  4.04 . The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 
without symptoms compartments are increasing to a 
maximum and then decreases to zero. But removed 
compartment increases steadily. Finally the epidemic 
seems dies out. 

 

 

Figure 5 population dynamics of   𝑆𝐸𝐼𝑆𝐼𝑁𝑅  – 

epidemic when    R0  =  4.7993  together with the 
progression of time. The susceptible population 
decreases steadily, whereas the exposed population, 
and infected population with both symptoms and 
without symptoms are initially increasing. All these 
populations are decreasing after reaching a maximum. 
But the removed population increases steadily. Finally 
the epidemic seems dies out. 

 

Figure 6 population dynamics of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅   - 

epidemic compartmental model when   𝑅0 = 20 . The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 

without symptoms compartments are increasing to a 
maximum and then decreases to vanish. But removed 
compartment increases steadily. Finally the epidemic 
seems dies out. 

 

Figure 7 population dynamics of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅   - 

epidemic compartmental model when   𝑅2   = 0 . The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 
without symptoms compartments are increasing to a 
maximum and then decreases to zero. But removed 
compartment increases steadily. Finally the epidemic 
dies out. 

 

Figure 8 population dynamics of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅   - 

epidemic compartmental model when  𝑅2   = 0.5. The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 
without symptoms compartments are increasing to a 
maximum and then decreases to vanish. But removed 
compartment increases steadily. Finally the epidemic 
dies out. 

 

Figure 9 population dynamics of  𝑆𝐸𝐼𝑆𝐼𝑁𝑅  - epidemic 

compartmental model when 𝑅2  =  1. The susceptible 
fraction decreases to approximately steadily, whereas 
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the Exposed, and infective both with symptoms and 
without symptoms compartments are increases and 
then decreases, but removed compartments 
increases. Finally the epidemic dies out. 

 

Figure 10: For 𝑅2 = 10  the figure shows that the 
population size of susceptible compartment decreases 
steadily up to approximately 0.2 and then decreases 
smoothly. The population size of exposed and 
infected compartments increase and then decrease. 
But the removed compartment increases steadily up 
to approximately 0.8 and then the increment is 
smoothly. Finally the epidemic seems to be dies out. 

 

Figure 11 population dynamics of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅   - 

epidemic compartmental model when   R3  = 0.5. The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 
without symptoms compartments are increasing to a 
maximum and then decreases to zero. But removed 
compartment increases steadily. Finally the epidemic 
dies out. 

 

 

Figure 12 population dynamics of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅   - 

epidemic compartmental model when   R3  = 10. The 
susceptible fraction decreases steadily, whereas the 
exposed and infective both with symptoms and 
without symptoms compartments are increasing to a 
maximum and then decreases to zero. But removed 
compartment increases steadily. Finally the epidemic 
seems dies out. 

7. Conclusions 

Mathematical modeling has provided the ability to 
choose the most effective and economical intervention 
activities for preventing and treating disease. In this 
study we have modeled influenza A (H1N1) disease. 
In order to describe about long and short durations of 
time and many or few for the populations, we need 
scales for all variables in the model equations. As a 
result, we can understand how to scale the system of 
ordinary differential equations of a model. 

As we have seen from the simulation study, time 
development of a 𝑆𝐸𝐼𝑆𝐼𝑁𝑅  -epidemic when  𝑅0  =
 4.7993  shows the susceptible fraction and a latent or 
exposed phase decreases steadily whereas the 
infective fraction increases to a maximum value and 
then decreases. Again when 𝑅0  = 10 , the susceptible 
fraction decreases steadily to zero whereas a latent or 
exposed phase and the infective fraction increase to a 
maximum value and then decrease to zero. Finally, in 
both cases the infectious dies out. 

Furthermore, one can understand from the 
simulation study that relatively the variability is very 
sensitive to the basic reproduction ratio (𝑅0) than any 
other parameters which are considered in our study. 
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