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Abstract—Closed-form explicit results for 
membrane stresses and deformations in liquid-
filled circular toroidal shells of revolution have 
been developed based on the linear theory of 
shells in this paper. For a toroidal mean radius of 
zero, the solutions coincide with those in 
literature for a spherical vessel under internal 
hydrostatic pressure. The analytical solution is 
adequate throughout the toroidal vessel, except in 
the zones surrounding the supports and the 
vicinity of the top and bottom circles of latitude, 
where additional bending will be required. The 
formulated results permit quick evaluation of 
membrane effects and the conduction of any 
desired parametric studies for shells of this type. 
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I.  INTRODUCTION  

Toroidal shells find applications in space, nuclear, 
under-water fields and containment vessels. Early 
investigations of these shell forms were based on 
pressure vessel application in mind [1-7]. It was noted 
that without additional bending, the membrane theory 
does not describe the state of stress and strain at the 
turning points of the toroidal shell where the curvature 
changes from positive to negative Gaussian 
curvature, even when loaded by a uniform pressure. 
Various approaches [4–6,8,9] were applied to obtain 
the exact solution valid for the entire toroid and for all 

opening ration ./ aA  This solution has proved to be 

very difficult. Depending on the kind of study, the 
formulation of toroidal shells has mainly been 
obtained through the Sanders shell theory [9] and 
Mushtari-Vlasov-Dennell shell theory [10,11]. 
Vibration analysis [12,13] and buckling investigation 
[14–16] of toroidal shells have been carried out using 
the Sanders shell theory. Various other studies [17–
24] have been conducted on toroidal shells of 
revolution. Non-circular toroidal shells have also been 
studied [25–30]. With liquid-containment application in 
mind, this paper presents closed-form analytical 
expressions for the determination of membrane 
stresses and deformations in a relatively large liquid-
filled circular toroidal shells of revolution, based on the 
linear theory of shells. For a toroidal limit ,0A  the 

solutions coincide with those in literature for a 
spherical vessel under internal hydrostatic pressure. 

The results for the membrane stress resultants are 
also valid for non-uniform shell-thickness variations. A 
set of design recommendation is given. The 
formulated results can also be used for the conduction 
of any desired specialized studies for shells of this 
type.  

II. GEOMETRY 

A complete circular toroidal shell of revolution is 

generated by rotating a circular profile through o360  

about an axis lying outside the profile.  This axis is 
referred to as the axis of revolution of the shell. Any 
given position of the circular profile as it is moved 
around the axis of revolution constitutes a meridian of 
the generated surface of revolution.  Figure 1 shows 
the geometric parameters of a circular toroidal shell 

under internal hydrostatic pressure, where A  is the 
toroid mean radius (the distance between the axis of 
rotation and the centre of the circular cross-section); 

a  is the radius of the circular cross-section; t  is the 

shell thickness;   is the angular coordinate along the 

hoop circle of revolution for the toroid and   is the 

angular coordinate along the meridian (measured 
from the vertical axis of the circular cross-section 
towards the outer surface the toroid). With this 
definition of  , two points - one in the outer region and 

the other in the inner region of the toroid are located 

for one value of .  To distinguish between these two 

points, when viewing the meridional profile to the right 
of the vertical axis of revolution Y-Y, we may consider 
all shells to the right side and left side of the local 
toroidal centreline y-y to be in the outer region of the 
toroid, while the shells to the left side of the local 
toroidal centreline y-y to be in the inter region of the 
toroid. This makes the segmented toroidal vessel to 
consist of four regions: the upper-outer, lower-outer, 
upper-inner, and lower-inner regions. 
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Fig. 1. Geometric parameters of the liquid-filled circular 
toroidal shell 

 The shape of the toroidal shell is characterized 
by    and    (the principal radii of curvature of the shell 
midsurface in the meridional plane and the second 
principal plane respectively): 
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where for the sign ( ), the plus sign applies to points 
in the outer region, while the minus sign applies to 
points in the inner regions of the toroid, and R  is the 
horizontal coordinate measuring the distance between 
the vertical axis of revolution Y-Y and any point in the 
middle surface of the toroidal shell. 

 The vessel is assumed to be supported on axially 
stiff vertical columns at the extrados )( oo XX   and 

intrados )( ii XX   of the toroid. That is, the vertical 

supports are located at the outer and inner equatorial 
circles of latitude )2/(    of the toroidal vessel, so 

that, the support reactions will be tangential to the 
shell middle surface. Therefore, the bending 
disturbances at the support regions will be minimal at 
these locations [1-5]. The support reactions on the 
shell are also assumed to be uniformly distributed 
around supports circumference. The latter assumption 
is justified, since the interposition of ring beams 
between the vertical columns (which are closely 
spaced) and the shell help to transfer the column 
reactions evenly to the shell, so that the support 
conditions of the vessel are essentially axisymmetric 
[1].  

III. LOADING PRELIMINARIES 

 Assuming the vessel is completely filled with liquid 

of specific weight  . The loading component 
rp  (per 

unit area of shell middle surface) due to the internal 
pressure loading from the contained liquid, acting 
normal to the shell middle surface is considered 
positive if pointing away from the axis of revolution of 
the shell (i.e outer region of the vessel), while 
negative if pointing towards the axis of revolution of 
the shell (i.e inner region of the vessel), may be 
expressed as: 

   cos1apr             (3) 

where; for the double operations, the upper sign 
applies to the outer region, while the lower sign 
applies to the inner regions of the toroid. 

 For the axisymmetrically loaded vessel, the loading 

components 
p  and p  (per unit area of shell middle 

surface) in the meridional and hoop directions, 
respectively, are each equal to zero, since hydrostatic 
pressure acts purely perpendicular to the shell middle 
surface. 

 0  pp             (4)  

IV. MEMBRANE STRESS RESULTANTS 

 For shells of revolution subjected to distributed 
loadings that vary smoothly, continuously and „not too 
rapidly‟ over the surface of the shell, the membrane 
hypothesis accurately predicts the state of stress in 
the interior of the shell, provided the shell geometry 
also exhibits the same smoothness proper-ties [6,34]. 
Both the loading and shell geometry of present 
considerations conform to these requirements. For 
toroidal shell geometry, the hydrostatic loading from 
the contained liquid is axisymmetric. The general 
expressions for the membrane stress resultants of 
axisymmetrically loaded shells of revolution have 
been presented [5,8]: 
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where; 
N  and 

N  are the membrane stress 

resultants in the meridional and hoop directions 
respectively. These are forces per unit length of the 
respective edge of a shell element, considered 
positive when tensile. 

 For the upper-outer region of the tank, using 

appropriate equations (1) - (4) to eliminate ,1r  ,2r  
rp  

and 
p  in expressing (5), and evaluating the integral, 

we obtain after some simplifications, the meridional 
stress resultant 
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where oC1
 is the constant of integration to be 

determined from a suitable boundary condition. At 

,0   oN
1
 must be zero. This condition gives aC o 1

, 

so that 
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 With  oN
1
 now known, the membrane stress 

resultant in the hoop direction follows from expression 
(6) which after eliminating ,1r  

2r  and 
rp  for the upper-

outer region of the vessel, may be written as 
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  For the lower-outer region of the vessel, 
N  must 

remain finite as .   This condition gives 

AaC o 351  , so that 

  
 

  





2
2

2
cos)cos23(5

sinsin6



 a

aA

a
N

o  

   sin)cos2(3  A          (10) 

 The membrane stress resultant in the hoop 
direction follows as: 
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 For the upper-inner region of the tank, using 
appropriate equations (1) - (4) to eliminate ,1r  ,2r  

rp  

and 
p  in expressing (5), and evaluating the integral, 

we obtain after some simplifications, the meridional 
stress resultant 
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where iC1
 is the constant of integration to be 

determined from a suitable boundary condition. At 

,    iN
1
 must be zero. This condition gives 

)3(1 AaC i  , so that 
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 With  iN
1
 now known, the membrane stress 

resultant in the hoop direction follows from expression 
(6) which after eliminating ,1r  

2r  and 
rp  for the upper-

inner region of the vessel, may be written as 
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  For the lower-outer region of the vessel, 
N  must 

remain finite as .0  This condition gives aC i 51  , 

so that  
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 The membrane stress resultant in the hoop 
direction follows as: 
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 As a check for ,0A  the vessel becomes a 

spherical tank, the above expressions for 
N  and 

N  

at the upper and lower parts of the toroidal vessel 
respectively coincide with the well-known results for a 
spherical tank [5,8].  

 The difference in the values of 
N  (membrane 

stress resultants in the meridional direction) just below 
and above the supports ( 2/  s

) is 
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where for the sign ( ), the plus sign applies to outer 
region, while the minus sign applies to the inner 
region of the toroid. 

sN  acts tangentially to the shell 

middle surface, in the direction of increasing   for the 

outer region, while in the direction of decreasing   for 

the inner region. 
sN  causes compressive or tensile 

actions in the vertical columns and ring beams 
depending on the region under consideration. The 
vertical columns and horizontal ring beams at the 
outer and inner regions of the toroid must be designed 
for their respective actions. 

 The actual membrane stresses 
  and 

  in the 

meridional and hoop directions respectively can be 
obtained from: 
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V. MEMBRANE DEFORMATIONS 

 Displacements in shells are required for the 
assessment of deflections and distortions suffered by 
a shell under service condition; or relevant for 
evaluating edge or support effects by the flexibility 
method [5,9,10]. It is usually the horizontal 

displacement   (considered positive when away from 

the axis of revolution) and the meridional rotation V  at 

any point on the shell that need to be known. For 
axisymmetrically loaded shells of revolution, these 
deformations have been expressed in terms of 

membrane stress resultants 
N  and 

N  [1]: 
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where E  is the young‟s modulus of elasticity of the 
shell material,   is its Poisson‟s ratio and other 

symbols are as previously defined.  

A. Outer Region of the Vessel 

 When use is made of expressions (1), (3), (8), and 
(9) for the upper-outer region of the toroidal tank, the 
following closed-form explicit results for the 
deformations are obtained: 
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 Similarly, the deformations at the lower-outer 
region of the toroidal tank are: 
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B. Inner Region of the Vessel 

 Using appropriate expressions (1), (2), (13), and 
(14) for the upper-inner region of the toroidal tank, the 
following closed-form explicit results for the 
deformations are obtained: 
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 Similarly, the deformations for the lower-inner 
region of the toroidal tank are: 
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VI. NUMERICAL EXAMPLE AND DISCUSSION 
OF RESULTS 

 Let us consider a relatively large circular toroidal 
vessel made from steel plate of Young modulus 

29 /10200 mNE  , Poisson ratio 3.0  and  constant 

thickness mt 05.0  throughout. The vessel of toroidal 

mean radius mA 30  and circular cross sectional 

radius ma 15 , is assumed to be completely filled with 

water of unit weight 33 /1010 mN . The variations of 

membrane stresses over the circular profile 

)16020( oo   of the toroidal vessel are shown in 

Figure 2. The values below o20  and beyond o160  

are not presented, as it is well-known, membrane 
solution cannot be used to estimate the state of stress 
in the vicinity of the top and bottom circles of latitude 
without additional bending due to the incompatibility of 
deformations at the meeting points of the synclastic 
and anticlastic surfaces of the toroidal shell.  
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Fig. 2. Variations of membrane stresses over the circular 
profile of the toroidal vessel: (a) outer regions, and (b) inner 

regions 

 The 
   and 

  in the outer region of the vessel 

appreciably rise in tension as one moves from the 
apex towards the outer support ,90o where these 

stresses attain values of 8.94 MPa and 108.19 MPa 
respectively. The corresponding membrane 

deformations   and V  are 23.74 mm and 31003.2 

respectively. As expected at the support junction 
between the upper-outer and lower-outer regions, 
there are discontinuities in the meridional stress and 
hoop stress in moving across the support junction, 
where the stress values become 66.06 MPa and -
63.19 MPa respectively at the lower-outer region of 

the vessel, while the deformations   and V  are -

18.68 mm and 31003.2   (compressive) respectively. 

The 
  continues to rise, but gradually in tension as 

one moves from the support location towards the base 
of the vessel, while the 

  changes from being 

compressive to tensile at .128o  

 Similarly, the 
  and 

  in the inner region of the 

vessel gradually rise in tension as one moves from the 

bottom towards the inner support ,90o where 

these stresses attain values of 123.19 MPa and 78.19 
MPa respectively. The corresponding membrane 

deformations   and V  are -27.55 mm and 31023.0   

respectively. As also expected at the support junction 
between the upper- inner and lower- inner regions, 
there are discontinuities in the meridional stress and 
hoop stress in moving across the support junction, 
where the stress values become 11.81 MPa and -
33.19 MPa (compressive) respectively at the upper-

inner region of the vessel, while the deformations   

and V  are 3.09 mm and 31023.0   respectively. The 

  continues to decrease gradually in tension as one 

moves from the support location towards the apex of 
the vessel, while the 

  continued to be compressive. 

 It should be noted that V  at the outer support level 
o90  is the same for the upper and lower regions of 

the vessel. This is also the case for the values of V  at 

the inner support level of the vessel. But the   values 

are different, just as the values of the membrane 

stresses 
  and 

 , implying a broken middle 

surface. Since the shell is physically continuous 
throughout, bending corrective actions are required in 
order to restore continuity so that the support circles 
are sources of bending disturbances. The magnitude 
of the bending disturbance is a function of support 
location, as earlier mentioned and the stiffness 
properties of the support ring beams [1, 5]. To cater 
for the localized bending stresses on either side of the 
support circles, stepwise local thickening of the shell 
should be adopted in a narrow band around the 
supports.  

VII. CONCLUSION 

 Closed-form analytical expressions for membrane 
stresses and deformations in liquid-filled circular 
toroidal shells of revolution have been presented 
based on linear theory of shells. For a toroidal limit

,0A  the solutions coincide with those in literature for 

a spherical vessel under internal hydrostatic pressure. 
The results for the membrane stress resultants are 
also valid for non-uniform shell-thickness variations. A 
set of design recommendation has been given. The 
formulated results can also be used for the conduction 
of any desired specialized studies for shells of this 
type.  
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