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Abstract— In this paper, a new fractional order 
Kalman filter will be provided which is suitable for 
SIMO (single input multi output) FOSs (fractional 
order systems). This filter is called sequential 
fractional order Kalman filter. This is a way of 
implementing the fractional order Kalman filter 
without matrix inversion. As a result, the 
sequential fractional order Kalman filter reduces 
the computational burden and computational 
complexity. Furthermore, a novel approach will be 
proposed for a linear FOS with colored 
measurement noise by using measurement 
differencing method. The application of the new 
algorithm yields more realistic and therefore 
useful state and covariance information than the 
standard implementation. Finally, the precision of 
the proposed algorithms will be examined by 
using an appropriate and applicable example. 

Keywords— Fractional order systems, colored 
measurement noise, sequential fractional order 
Kalman filter, measurement differencing 

I.  INTRODUCTION 

In 1695, the concept of  fractional calculus was 
expressed for the first time by Leibniz and L'Hospital. 
In the late nineteenth century, Riemann and Liouville 
gave the first definition of fractional derivatives. In 
recent years, because of their many applications, 
FOSs (systems that contain fractional derivatives and 
fractional integrals) have received the attention of 
many researchers [1]. However, this idea began to be 
a topic of interest for engineers since 1960, especially 
insofar as they observed that certain actual systems in 
which fractional derivatives are used exhibit greater 
accuracy [2]. Modelling the behaviour of materials 
such as polymers and rubbers can be considered as 
an example [3]. Electrochemical processes and robots 
with flexible arms are also modelled by fractional-order 
systems [4]. Fractional calculus is also a useful tool for 
modelling traffic in information networks [5]. Another 
research topic in the area of FOSs, which is 
developing rapidly, is fractional order PID controllers 

[6]. More applications and examples for the FOSs and 
also the fractional calculus can be found in [7-11]. 

State estimation is important for controller design 
and pole placement. Some methods have been 
reported for linear and nonlinear systems [12-15]. 

The sequential fractional Kalman filter (sfkf) is a 
suitable filter for the implementation of the single-input 
multi-output FOSs. This filter, instead of getting the 
inversion of a r r matrix at every stage, takes r  
reverse of a scalar value, which significantly reduces 
the computational burden in implementation. 

There are two major advantages of using the 
sequential filter. The first is that if the output noise 

covariance
kR is diagonal, using the sequential filter 

reduces up to fifty percent of the processing time, 
which depends on the selection of the signal model 
and other data system. The second reason is that if 
there is not sufficient time to complete the processing 
of the data vector, using the sequential filter is better 
because in simultaneous processing, the data vector 
will be lost totally; however, in sequential processing, 
just a part of data vector will be lost [16]. 

Furthermore, a new fractional order Kalman filter 
will be proposed in this paper that is suitable for 
models with colored measurement noise. 
Measurement differencing method is used in order to 
provide this novel filter [17]. In fact, by expanding the 
measurement differencing method, it is modified so 
that it will be suitable for FOSs. A few researches have 
been reported so far in the field of state estimation for 
fractional order systems with colored noise [18-21]. In 
this paper, using the measurement differencing 
method, the problem of colored measurement noise 
will be solved. 

The rest of the paper is organized as follows. In 
Section II, a short review about fractional order state 
space systems is presented and the sequential 
fractional order Kalman filter is given in Section III. 
Section IV provides fractional order Kalman filter with 
colored measurement noise. In Section V, an example 
is provided. Finally, Section VI concludes the paper. 
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II. FRACTIONAL ORDER SYSTEMS SUMMARIZD 

Consider the following fractional-order discrete 
time linear stochastic state-space system [22]. 
 

X( 1) ( ) ( ) ( )k AX k Bu k W k      (1) 
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X( 1) X( 1) ( 1) X( 1 )
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( ) ( ) ( )y k HX k v k   (3) 

where   is the order of the fractional difference 

 R  and X( )k  is the state vector  X( ) nk R . 

 1 2( ) ( ) ( ) ... ( )nW k w k w k w k  and ( )k  are the 

process and measurement white Gaussian noises 

with zero mean. In addition, ( )u k  and ( )y k  are the 

input and the output of the system, respectively. 
Furthermore, T  denotes the matrix/vector transpose 

and the symbol ( )nI I  shows an identity matrix with 

appropriate size ( )n n . The system matrices ,A B  

are known. 

Furthermore, 
j

 
 
 

 is defined as: 
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Assuming that 0v  , Euler’s function   is defined 

as:  
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(6) 

 

where 
1,..., n   are the order of the system equation 

and n  is the number of system equations. 

Assumption 1: ( )v k  and ( )W k  are two 

independent white noises with zero mean and 

covariance matrixes 
kR  and 

kQ , respectively. In other 

words, we have: 

   ( ) 0, ( ) 0E W k E v k   (7) 

( ) ( )T

k k jE W k W j Q  
     (8) 

( ) ( )T

k k jE v k v j R  
     (9) 

( ) ( ) 0, ,TE W k v j k j      (10) 

Assumption 2: (0)X  is uncorrelated with ( )v k  

and ( )W k , and 

  ˆX(0) (0)E X  (11) 

0
ˆ ˆ(X(0) (0))(X(0) (0))TE X X P   

 
 (12) 

By combining the equations (1) and (2), the 
following equation is obtained: 
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(14) 

where the matrices A, B and the state vector X( )k  are 

defined as follows: 
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In addition, we also assume that: 

( ) 0 0

( ) 0 0

X( ) 0 0

u k k

y k k
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 

 

 

 
(15) 
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III. THE SEQUENTIAL FRACTIONAL ORDER KALMAN 

FILTER 

Now in this section, the sequential fractional order 
Kalman filter is provided. This is a way of 
implementing the fractional order Kalman filter without 
matrix inversion [16]. 

In the standard fractional order Kalman filter, it is 
required to inverse a r r matrix where r is the 
number of measurements. So, using the sequential 
fractional order Kalman filter reduces the 
computational burden and computational complexity. 
Before providing the sequential fractional order 
Kalman filter considering the following points is 
essential. 

Suppose that instead of measuring ( )y k  at time 

instant k , r separate measurements can be obtained 

at time k . This means that the firstmeasurement is 

1( )y k , the second is 
2 ( )y k , …, and the final one is 

( )ry k . In the following, the notations ( )iy k  are used 

for the expression of the ith element of the 

measurement vector ( )y k . Here, it is assumed that 
kR  

(the measurement noise covariance) is a diagonal 
matrix as follows: 

1

2

0 ... 0

0 0

0 0 ...

k

k

k
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R

R
R

R

 
 
 
 
 
 

 

 

(16) 

     Furthermore,  the notation 
ikH is used for 

expressing the ith row of 
kH and 

ikv  is used for 

expressing the ith element of 
kv . Thus, the 

measurement equation can be rewritten as follows: 

( ) ( )

(0, )

i ik ik

ik ik

y k H X k v

v R

 
 

 

(17) 

Thus, instead of processing a measurement vector 

at time k , implement the fractional order Kalman filter 

measurement-update equation with one measurement 
at a time. 

We can also define the following notations: 

( )iK k  denotes the Kalman gain that is obtained 

from the ith measurement at time k . ˆ ( )ix k denotes the 

state estimation that is obtained for the ith 

measurement at time k. In addition, 
ikP  denotes the 

covariance matrix that is obtained from the ith 
measurement at time k.  

The sequential fractional order Kalman filter 
algorithm is expressed in the following steps. 

1- The system and measurement equations are 

given as: 

X( 1) ( ) ( ) ( )k AX k Bu k W k      (18) 
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( ) ( ) ( )y k HX k v k   (20) 
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(21) 

The measurement noise covariance 
kR  is a 

diagonal matrix and can be considered as follows: 

1 2( , ,..., )k k k ikR diag R R R   

2- The filter is initialized as: 

0

X̂(0) (X(0))

ˆ ˆ(X(0) (0))(X(0) (0))T

E

P E X X


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(22) 

 
3- At each time step k, the time-update 

equations are given as: 

1 1 1 1

2

( )P ( )
k
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k k j k j j k

j
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
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(23) 

ˆX( ) X( ) ( )k A k Bu k    (24) 

1

ˆX( ) X( ) X( )
k

j

j

k k C k j


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(25) 

This is the same as the standard fractional Kalman 
filter. 

4- Measurement update equations at each time 

step k are given as follows: 

(a) Initialize the a posteriori estimate and covariance 

as: 

0

0

ˆ ( ) ( )

k k

x k x k

P P




 

 

(26) 

(b) For 1,...,i r  (where r is the number of 

measurements), we act as follows: 

1,

1,

( )
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i k ik

i T

ik i k ik ik

P H
K k
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






 
 

(27) 

 1 1
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )i i i i ik ix k x k K k y k H x k     (28) 

1,( ( ) )ik i ik i kP I K k H P   (29) 

(c) Finally, assign the estimate and covariance as 
follows: 

ˆ ˆ( ) ( )r

k rk

X k x k

P P




 

(30) 

In the above process, it is assumed that the 

measurement noise covariance
kR is diagonal. 
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IV. FRACTIONAL ORDER KALMAN FILTER WITH 

COLORED MEASUREMENT NOISE 

The Kalman filter introduced in section III was 
exposed to uncorrelated process and measurement 
noises. In this section, a novel fractional order Kalman 
filter will be proposed to estimate the states of a 
fractional order state space system with colored 
measurement noise. A fractional order state space 
system with colored measurement noise is expressed 
as follows: 

( 1) ( ) ( ) ( )X k AX k Bu k W k      (31) 

1

1

( 1) ( 1) ( 1 )
k

j

j

X k X k C X k j






        
(32) 

( ) ( ) ( )y k HX k v k   (33) 

1( ) ( 1) kv k v k      (34) 

where    is a white Gaussian noise with zero mean 

and ( )v k   is a colored measurement noise. 

Measurement differencing is a method that can be 
used when there is a colored measurement noise. 
However, this method is applicable to integer order 
systems. Hence, a generalization to this method is 
necessary to be applicable for fractional order 
systems. So, a complementary signal denoted by 

( )z k   is defined as: 

( 1) ( ) ( 1)z k y k y k     (35) 

Therefore, a new equivalent system is formed as 
follows:  

1

( 1) ( 1) ( 1)

( ) ( 1)
k

j

j

z k H X k HBu k

H C X k j v k


    

 
    

 


 

 

(36) 

where H and ( 1)v k   are defined as follows: 

H HA H     (37) 

1( 1) ( 1) kv k HW k  
      (38) 

It is clear that a new measurement equation is now 

introduced for ( )z k . Therefore, the equivalent system 

can be formulated as below: 

( 1) ( ) ( ) ( )X k AX k Bu k W k      (39) 
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(41) 

The covariance for the new measurement noise v

and its cross-covariance with the process noise W

can be calculated as: 

( ) ( )T

k k jE W k W j Q  
      (42) 
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k j k k jE Q   
      (43) 
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 

 

 

(45) 

As it can be seen in Eq. 45, there is a correlation 
between measurement noise of the new equivalent 
system and the process noise. Therefore, to estimate 
the states of the new equivalent system, a fractional 
Kalman filter is required. As a result, a fractional order 
Kalman filter algorithm suitable for systems with 
correlated noises can be introduced. 

This Kalman filter is expressed for each time 

instance 1,2,...k   as following: 

1. The system and measurement equations are given 

by Eqs. 39 - 41. 

2. H    , v  and ( )z k  are defined by Eqs. 36 and 38. 

3. At each time step, execute the following equations 

to update the state estimate: 

   1 1 1 1

2

k
T T

k k j k j j k

j

P A C P A C C P C Q

  



      
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  
1

( ) T T T T

k k k k k kK k P H M HP H HM M H R


      (47) 
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1
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j
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
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(48) 
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   

 

 

( ) ( )

( ) ( )

( ) ( )

( )

T

k k

T T T

k k k

T T
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k k k

P I K k H P I K k H

K k HM M H R K k

M K k K k M

P K k HP M

  
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 

  

 

 

 

 

(50) 

The above mentioned algorithm is a novel method 
for estimating the states of fractional order systems 
with colored measurement noise. 

V. SIMULATION RESULTS 

To show the accuracy of the algorithm expressed 
in Sections III and IV, a FOS with one input and four 
outputs have been used. The system has two states. 
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Consider a SIMO fractional-order state-space 
system with the following matrices: 

 

1

21 22 2

1 2

0 1
, ,

1 0

0.9 0
,

0.8 0

0.7 0

b
A B

a a b

H  

   
    
   

 
 
   
 
 
 

 

21 22

1 2

1 2

0.5, 0.9

0.3, 0.7

0.9, 0.3

a a

b b

 

   

   

 

 

The number of elements in equation (2) should be 
limited – here, the value is equal to L, which would 
simplify and reduce the number of calculations. 
Although it will cause a bit of error, by considering a 
reasonable value for L, the error value would be very 
small and negligible. Accordingly, equation (2) can be 
written as follows: 

1

X( 1) X( 1) ( 1) X( 1 )
L

j

j

k k k j
j





 
        

 
  

(51) 

The state equations are then given as: 

0 1 0.3
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j
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1 0

0.9 0
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0.7 0

y k k v k
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 
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and 

0.1 0
( ) ( )

0 0.1

TE W k W k
 
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0.02 0 0 0

0 0.02 0 0
( ) ( )

0 0 0.02 0

0 0 0 0.02

TE k k 

 
 
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 
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Here, ( )u k  and ( )y k  are the input and the output 

of the system, respectively. In this simulation, the 

input  ( )u k  is an uncorrelated signal with variance 1. 

The initial values at time k=1 are considered as 
follows: 

6

0
ˆ10 ,X(1) 0

0.02 0 0 0

0 0.02 0 0 0.1 0
,

0 0 0.02 0 0 0.1

0 0 0 0.02

P

R Q

 

 
 

        
 
 

 

The original and the estimated state variables  

and  are also shown in Figs 1 and 2, respectively. 

As it is seen, the proposed method can estimate the 
state variables accurately. It is assumed that  in 

these figures. Furthermore, Fig. 3 shows the input and 
first output signals from the plant with white noise. 

The above example is re-analyzed with the below 
dynamics and colored measurement noise. 

( ) ( 1) ( 1)

0.2

v k v k k 



   


  

where    is a white Gaussian noise with zero mean. 

Instead of the Kalman filter introduced in section III 

which was suitable for uncorrelated white noise, the 
new Kalman filter introduced in section IV is applied 

which is applicable for systems with colored 
measurement noise. The simulation results for the 

estimated states  and  with colored 

measurement noise are depicted in Figs. 4 and 5. It is 
expectable that accuracy of the estimations is a little 
lesser with colored measurement noise but yet it is 
acceptable. 
 

 

Fig. 1: Original and estimated state variable 
1x  for 50L   with 

white noise. 

1x

2x

50L 

1x 2x
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Fig. 2: Original and estimated state variable 
2x  for 50L   with 

white noise. 

 

Fig. 3: Input and output signals from the plant with white noise. 

 

Fig. 4: Original and estimated state variable 1x  for 50L   with 

colored noise. 

 

Fig. 5: Original and estimated state variable 
2x  for 50L   with 

colored noise. 

 

VI. CONCLUSION 

In this paper, two new algorithms were provided. 
First, a novel sequential fractional order Kalman filter 
was introduced. The simulation results show that this 
filter is a suitable filter for the implementation of the 
single-input multi-output FOSs. Secondly, a new 
fractional order Kalman filter was proposed in this 
paper that is suitable for models with colored 
measurement noise. The results show that these two 
methods have had better performances than previous 
methods. 
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