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Abstract—In the present work we have reported a 
possible analogy that exists in three different 
domains in physics. These are the phenomena of 
multiple reflection, spatial hole burning and 
squeezed states of light. There are three pairs of 
parameter which have been included for our 
analogy. In the first case it is the intensity versus 
phase angles at different reflectivity. In the 
second case it is the normalized population 
difference versus axial coordinates (Phase angle) 
at various values of dimensionless intensities and 
in the third case it is the variance of a squeezed 
state vs. squeezing angles. 
 
I. Introduction 
 In many ways some phenomena in physics 
appearing in different contexts are quite analogous. In 
some cases the phenomena appearing in physics 
show up also in non-physics contexts. In the present 
work we report a possible analogy in three different 
phenomena appearing in classical optics, laser and 
quantum optics. These are respectively the 
phenomena of multiple reflection [1], spatial hole 
burning [2] and squeezed state of light [3, 4]. An 
analogy between spatial hole burning and the intensity 
contour of the fringes in multiple reflection inside a 
Fabry-Perot cavity is already established in an earlier 
work [5] reported by one of the authors of the present 
work. In this work it is shown that the socalled 
“dimensionless intensity” I, a parameter in the semi 
classical theory of laser is identical to the parameter 
reflectance (r). In the present work we carry the 
analogy further to include the squeezed state of light. 
In all the three cases phase sensitive events are 
involved. 
 
II. Squeezed State of Light 
  

The zero-point fluctuations or vacuum 
fluctuation is a universal phenomenon which arises as 
a result of quantization of the electromagnetic field in 
the quantum theory of radiation. Many phenomena 
like spontaneous emission. Casimir effect, Lamb-shift, 
laser line width etc. can be explained adequately only 
with the help of the quantum theory. The quantum 
fluctuations in coherent state are equal to the zero-

point fluctuation and are randomly distributed in 
phase. These zero-point fluctuations represent the 
standard quantum noise limit (QNL) to the reduction of 
noise in a signal. Even an ideal laser operating in a 
pure coherent state would still possess quantum noise 
due to zero-point fluctuation. We know that the electric 
field for a nearly monochromatic plane wave may be 
decomposed into two quadrature components with 
time dependent coswt and sinwt respectively. In a 
coherent state closent counterpart of a classical field, 
the fluctuations in the two quadratures are equal and 
minimize the uncertainty product given by 
Heisenberg’s uncertainty product. We cannot 
suppress the fluctuations altogether, that would violate 
the uncertainty principle. But it is possible to rearrange 
them between the quadratures so that it is possible to 
generate light which has less noise in one selected 
quadrature than the quantum noise limit (QNL) 
dictates. Light with this property is called squeezed 
light. We can build experiments or applications which 
measure only one quadrature at a time. Consequently 
it will be possible to reduce fluctuations in this one 
quadrature only. 
 We consider here a formal quantum model of 
squeezed states [6] which could exist and can 
explained quantum theoretically from the vacuum 
state, the lowest number state, Squeezed states are 
represented by  

   , and exp 2s sr i   
 

                                            (1) 

 Where,
2  is the intensity of the states,   is 

the orientation of the squeezing angle and sr  is the 

degree of squeezing. The squeezing states are 
generated from the lowest number state. 
   
 

     , 0D S   
 

                                         (2) 

 The squeezing operator  S   is defined as  

   * 2 †21 1
exp

2 2
S a a  

 
  

   
                                         (3) 
And the properties of the squeeze operator are  
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         † † † cosh exp 2 sinhs s sS a S a r a i r    

                                          (4) 
  
 It may be noted that the reverse order of 

 D   and  S   in (2) is possible. This results in 

the so called two photon correlated state. The concept 
of two photon correlated state was originally 
introduced by Yuen [7] in the work concerning two 
photon coherent state of the radiation field, even 
before the name squeezed state was coined. The 
formal definition allows us to derive the noise 
properties of a squeezed state exactly. The squeezed 
states have the following expectation values for the 
creation and annihilation operators 

  , ,a      

     2 2, , cosh sinh exp 2s s sa r r i        

  
2† 2, , sinh sa a K r        (5) 

From the last equation it is seen that the intensity of a 
squeezed light is greater that of the coherent state 

with the same value  . This is, however, a minute 

effect for any laser beam for detectable intensity. 
Using these properties one can work out the variance 
of the generalized quadrature 
 

       †exp expX i a i a      

the quadrature which would be measured at the 

rotation angle  . This variance is given by  

 

         V cosh 2 sinh 2 cos 2s s sar X r r    

   (6) 
The expression as given by (6) shows that the 
variance is a periodic function of the rotation angle as 
one would expect from the concept of an ellipse being 

rotated. It has a minimum when s    and 

maximum in the orthogonal direction, that is, 

2
s


    . This variance is the central point of our 

discussion in connection with other domains in 
physics. The variance is plotted in Fig.1 for one fixed 

squeezing angle, 3s   , and for angles of 

squeezing parameters 0.25,0.5,0.75sr   and 1.00. 

Fig.1 is a linear plot of the variance. 
 It is seen that as the squeeze parameter is 
increased the minimum variance decreases and the 
maximum increases. This is similar to the concept of a 
stretching ellipse. It is worthwhile to note here that the 
uncertainty area for the squeezed state is generally 

drawn as an ellipse. Detecting squeezed light means 
detecting noise fluctuations. These fluctuations are 
very small and we need to have a minimum 
detectable energy to overcome the limitations 
imposed by electronic noise in the detecting system. 

 
Fig.1 : A plot of the variance of a squeezed state as a 

function of the squeezing angle and different 
squeezing 

 
III. Spatial Hole Burning 
 
 In this section we consider the phenomenon 
of the so-called spatial hole burning which is 
inherently present in a laser cavity and explained 
beautifully in the semiclassical theory of laser [2]. 
Spatial hole burning inhibits gain in laser originating 
from a Febry Perrot cavity. 
 The normalized population difference in terms 

of density matrix aa  and bb  is given by  

  

 
 

1

, 1

aa bb

s

RN z t
R

 



                            (7) 

Where the constant sR  is known as saturation 

parameter and is given by 

  
1

2 ,
2

s a b ab ab a bR           

a   and b   are the decay rates from the upper and 

lower levels respectively. R is called the rate constant, 
given by 

  
2

2 11

2

n
n n

E
R U    
  

 
L   

Where  
 

2

22n

n


 

  
 

 
L   

For a rate constant R  with  
2 2sinn nU z K Z   

dependence we have 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 11, November - 2015 

www.jmest.org 
JMESTN42351082 2970 

 

 

 

2

22

2 ab
n

s n

R
I

R

 

   

 
  

  
  

Where 

2 2

2

1

2

n
n

a b

E
I

 


   is known as the dimensionless 

intensity, 2
nK 


  . For central tuning 0n     

and using 2 ab    Eqn. (7) becomes 

 
2

,

1 sin
aa bb

n n

N z t
P P

I K Z
 


  (8) 

Eqn. (8) has been used to draw the graph depicting 
the normalized population difference versus axial 
coordinate z. This is shown in Fig.2. 

 
Fig.2: Normalized population difference vs axial co-

ordinate. 
 In this figure dips are produced at regular 
intervals in the normalized population difference at 

various values of dimensionless intensity nI  . These 

dips created by the laser field are known as spatial 
holes and they are clearly depicted. We observe here 
that these dips are more prominent at higher values of 
dimensionless intensities. Complete depletion of 
population difference takes place at a value of 
dimensionless intensity which is equal to 1000. With 
this brief introduction of the phenomenon of spatial 
hole burning we consider the topic of the multiple 
reflections inside a Febry Perrot cavity which has 
been described in the section to follow. 
 
 
IV. Intensity Contour of Fringes Due to Multiple 
Reflections 
  
 When a broad source of light is allowed to be 
incident on a pair of parallel plates, as in the case of 
Febry Perrot mirrors, the transmitted ray interfere  at a 
point outside the plates after a series of multiple 
reflection. The intensity of the transmitted ray is given 
by 

 

 
o

2
2 2 21 4 1 sin

2

T

I
I

r r



  
  

    (9) 

  
 Fig.3 depicts the intensity contour of Fringes 
due to multiple reflections worked out with the help of 

Eqn. (9). In (9) 2 m  , 1,2,3....m  . At maxima

2sin 0
2


 , and

OTI I . When the reflectance 
2r  is 

very large and approaching unity, the quantity 

 
2

2 24 1r r  will also be large and as a result, even 

a small departure of   from its value for maximum 

will result in a rapid drop of intensity. This is also true 
in the case of Fig.2 where normalized population 
difference is plotted against axial coordinates. We 
observe in Fig.2 that when the parameter I is large 
even a small departure of the axial coordinate in 
phase from its value for maximum will result in a rapid 
drop of population difference. This case of decrease in 
the magnitude of the normalized population difference 
has its parallel in the intensity contour of fringes due 
to multiple reflections where it is shown that the 
sharpness of fringes depends on reflectance. We term 
these holes in the intensity contour of fringes due to 
multiple reflections as ‘dark holes’. Comparing Eqns. 
(8) and (9) we note that 

 
 

2

O2
2

4
, , ,

1
aa bb T n

r
I I N z t I

r
    


  

  
2

2z m


 


    

 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 11, November - 2015 

www.jmest.org 
JMESTN42351082 2971 

 
Fig.3: Intensity contour of Fringes due to multiple 

reflections 
 
IV. A Comparative Analysis 
 
 From what has been discussed above it is 
now appropriate to provide an analogy that exists in 
three phenomena from classical optics to quantum 
optics. But it is also true that squeezed states 
represent a class of quantum state which has actually 
no classical analogy. There is already a worthwhile 
analogy between the intensity contour of multiple 
reflections and spatial hole burning. These are both 
phase sensitive events in the sense that in spatial 
hole burnings the normalized populated difference 

   ,aa bb N z t   depends in phase. Similarly, the 

intensity contour of the fringes in multiple reflections is 
also phase sensitive process. Carrying the analogy 
further we observe that the squeezed filed is also a 
phenomenon involving phase sensitive quantum 
fluctuations which at certain phase angles are less 
than those of a perfectly coherent field, or of no field 
at all. Table-1 includes the co-efficient appearing in 
these domains. 
 

Table-1: Comparison of the parameters and 
phenomena appearing in three domains 

 
Multiple 

Reflection 
Spatial Hole Burning 

Squeezed 
State 

Classical Semi-classical Quantum 

Phase sensitive 
event 

Phase sensitive event 
Phase 

sensitive event 

F.P. Cavity F.P. Cavity F.P. Cavity 

Normalized 

intensity TI  

Normalized population 
difference 

   ,aa bb N z t   

Variance 

  Var X   

Reflectance 

 2r  
Dimensionless 

Intensity 

Squeezing 

parameter sr  

 
2

2 24 1r r  
2 2

2

1

2

n
n

a b

E
I

 


  

 
 The spatial hole depletes the population and 
consequently inhibits gain in a laser. Similarly the 
‘dark holes’ in the intensity contour reduces the 
intensity of transmitted beam. In the third case the 
dips in the variance vs. phase angle curve lowers the 
intensity of variance which results in the reduction of 
quantum fluctuations. 
 
V. Conclusion 
 In the present work we have attempted to 
provide an analogy in three domains of physics. There 
is a worthwhile analogy between the phenomena of 
spatial hole burning in the semiclassical theory of 
laser and the so-called dark holes in the intensity 
contour of fringes due to multiple reflection. Spatial 
holes reduce the population difference and inhibit gain 
in a laser cavity. Dark holes reduce the intensity of the 
intensity contour of the fringes due to multiple 
reflections. Dip in the plot of variance vs. squeezing 
angles reduces the variance of a squeezed state and 
quantum fluctuations. 
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