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Abstract—A version of the method of collocations 
and least residuals is proposed for the numerical 
solution of the Poisson equation in polar 
coordinates on non-uniform grids. By introducing 
the general curvilinear coordinates the original 
Poisson equation is reduced to the Beltrami 
equation. A uniform grid is used in curvilinear 
coordinates. The grid non-uniformity in the plane 
of the original polar coordinates is ensured with 
the aid of functions controlling the grid stretching 
and entering the formulas of the passage from 
polar coordinates to the curvilinear ones. The 
method has been verified on three test problems 
having the exact analytic solutions. The examples 
of numerical computations show that if the radial 
coordinate origin lies outside the computational 
region then the proposed method has the second 
order of accuracy. If the computational region 
contains the singularity then the application of a 
non-uniform grid along the radial coordinate 
enables an increase in the numerical solution 
accuracy by factors from 1.7 to 5 in comparison 
with the uniform grid case at the same number of 
grid nodes

1
.
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I.  INTRODUCTION 

At the modeling of many physical processes, it is 
necessary to solve the Poisson equation in a circle or 
in an annulus between two concentric circles. In 
particular, when solving numerically the Navier–
Stokes equations governing viscous incompressible 
fluid flows with the aid of projection methods one 
needs the solution of the Poisson equation for the 
pressure. The existing numerical methods for solving 
the Posson equations in the regions with circular 
boundaries (in the two-dimensional case) and in the 
regions with cylindrical boundaries (in the three-
dimensional case) may be subdivided into two groups. 

The methods, which enable the solution of the 
Poisson equations in the disc or in an annulus directly 
in Cartesian rectangular coordinates belong to the first 
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group. In the two-dimensional case, one solves the 
Poisson equation 
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where x and y are the Cartesian rectangular 

coordinates, and f(⋅) is a given function. The immersed 
boundary method was proposed for the first time in 
[1], where the approximation of the δ-function was 
used for ―smearing‖ the solution within a thin strip in 
the neighborhood of the computational region 
boundaries. A symmetric discretization of the Poisson 
equation was proposed in [2] for the case when the 
Dirichlet conditions are specified at the boundary of an 
irregular spatial region. According to [2], the 
computational region is completed to a rectangular 
one, and in the fictitious cells lying outside the original 
irregular computational region and near its boundary, 
the numerical solution values are computed with the 
aid of linear extrapolation. This enables the 
application of standard central differencing 
approximations in the entire spatial region for the 
Laplace operator approximation. The approximation 
order of the immersed boundary method described in 
[2] was increased in [3] up to the third and fourth 
orders with the aid of specifying the quantities in 
fictitious cells by extrapolation formulas of higher 
orders than the first order. 

A finite volume method was presented in [4] for the 
numerical solution of the Poisson equation with 
variable coefficients in Cartesian coordinates in 
irregular domains with the Dirichlet boundary 
conditions. In addition, a multigrid algorithm was used 
in [4] for convergence acceleration. The Poisson 
equation was solved in an elliptic region in [5] by a 
high-order difference method with a special 
approximation of the boundary condition. The 
convection-diffusion equation was solved in [6] by the 
method of collocations and least squares in a region 
with curved boundary on an adaptive rectangular grid 
with irregular cells at the region boundary. A 
projection difference method was proposed in [7] for 
solving the Navier–Stokes equation on an adaptive 
Cartesian rectangular grid. Within the framework of 
this method, the Poisson equation for the pressure 
was solved, and a constraint was imposed on a grid 
that the ratio of sizes of two neighboring cells cannot 
exceed 2. This limitation for the size of neighboring 
cells was overcome in the work [8], where a finite 
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difference scheme for the numerical solution of the 
Poisson equation in irregular regions on an adaptive 
rectangular grid refining near the region boundary was 
presented. The refinement criterion was based on the 

estimation of the proximity to the irregular boundary 
so that the cells of the least size are located at the 
boundary. The data structure in the form of an octree 
was used in [7] to store the data on the spatial 
discretization, and in [8], the data structures in the 
form of quadtrees and octrees were employed. A 
shortcoming of using the data structures in the 
quadtree and octree form was indicated in [8]: some 
CPU time expenses are needed to pass along the tree 
from its root to the needed node of the graph. 

The second group of the works devoted to the 
development of the numerical techniques for solving 
the Poisson equation in the discs or annuli is 
constituted by the works in which the Poisson equation 
in polar and cylindrical coordinates is solved in the 
two- and three-dimensional cases, respectively. The 
convenience of using the above curvilinear coordinates 
consists of the fact that the spatial computational 
region becomes a rectangle in the two-dimensional 
case and a parallelepiped in the three-dimensional 
case. The two-dimensional Poisson equation in polar 
coordinates was approximated in the work [9] by a 
finite difference scheme having a centered three-point 
stencil along each of the both polar coordinates. The 
efficient spectral-difference methods were developed 
later for solving the Poisson equations in polar and 
cylindrical coordinates by using the discrete fast 
Fourier transform. In the two-dimensional case, one 
obtains for the coefficients of the Fourier expansion a 
system of linear algebraic equations (SLAE), which is 
solved efficiently by the Thomas method, and in the 
three-dimensional case, the arising SLAE is solved by 
the matrix factorization technique. A second-order 
difference scheme was constructed in [10] for the 
Fourier coefficients. A compact fourth-order difference 
scheme was presented in [11] for the Fourier 
coefficients in the case of solving the Poisson equation 
in polar coordinates. The spectral-difference method of 
the work [10] was applied in [12] for the numerical 
solution of the Poisson equation for the pressure 
correction in cylindrical coordinates within the 
framework of a finite difference method [13] with the 
aid of which a problem of the viscous incompressible 
gas flow in a cylindrical casing with a rotating disc was 
solved numerically. 

One should note a shortcoming of spectral-
difference methods for solving the Poisson equations 
in polar and cylindrical coordinates: the grid along the 
circumferential coordinate must be uniform. The 
highest efficiency of the discrete fast Fourier transform 
is reached only in the case when the number of nodes 
Nθ along the circumferential coordinate has the form 
Nθ = 2

N
 + 1, where N is a positive integer, N > 1.  

As is known, at an adequate generation and use of 
non-uniform grids one can increase significantly the 
numerical solution accuracy in comparison with the 
use of a uniform grid with the same number of nodes 

[6, 14, 15]. In this connection, a number of numerical 
techniques were developed for solving the Poisson 
equation in polar coordinates on non-uniform grid. In 
particular, a numerical technique using the Green 
function was proposed in [16], where the grid was non-
uniform only in the radial direction. A compact fourth-
order difference scheme on non-uniform grid was 
proposed in [17] for the two-dimensional convection-
diffusion equation in polar coordinates. Test 
computations have confirmed the fourth order of 
accuracy of the scheme. 

There are many applied problems, in which it is 
desirable to apply the non-uniform grid along the 
circumferential coordinate θ. These are the problems 
of computing the fluid flows in the devices, for which 
the presence of a junction with some technological 
elements in the interval of the circumferential 
coordinate variation 0 < θ ≤ 2π is typical, the size of 
which is much less than the external diameter of the 
device. The sprayers, injectors, and hydraulic drives 
are the examples of such devices in technologies. 

A sufficiently universal applicability of the method of 
collocations and least residuals (CLR) for solving 
various initial- and boundary-value problems for partial 
differential equations of different types was 
demonstrated previously in the works [18–24]. In this 
connection, it appears reasonable to investigate the 
applicability of this method also for the numerical 
solution of the Poisson equation in polar coordinates. 

The CLR method for the numerical solution of 
boundary-value problems for differential equations was 
developed relatively recently. It is a projection-grid 
technique. The solution is sought therein in each cell of 
a difference grid in the form of a linear combination of 
basis elements of some finite-dimensional functional 
space. One uses as the latter, in view of certain 
convenience, the space of polynomials. The CLR 
method differs from other numerical methods in that 
the numerical solution of the problem reduces to the 
solution of an overdetermined SLAE. The solution of 
the latter is found from the requirement of the 
minimization of a functional of the residual of problem 
equations on the numerical solution of the problem. 
Due to such a combination of the method of 
collocations with a ―strong‖ requirement to the solution 
of the discrete problem, the solution properties 
(smoothness, accuracy) improve in comparison with 
the solutions obtained by a simple method of 
collocations. In fact, the CLR method possesses also 
several other improved properties as compared to the 
method of collocations. In particular, the residual 
functional minimization contributes to the suppression 
(damping) of various disturbances arising in the 
process of problem solution and speeds up the 
convergence of the solution at the iteration technique 
of its construction. A more detailed review of the 
bibliography on the CLR method as well as a 
description of the applied problems, which were solved 
by this method, may be found in [20, 23–25]. 
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In the present work, we propose the versions of the 
CLR method for the numerical solution of the two-
dimensional Poisson equation in polar coordinates on 
both uniform and non-uniform grids. 

II. THE CLR METHOD FOR THE NUMERICAL SOLUTION 

OF THE POISSON EQUATION IN POLAR COORDINATES 

As a result of the passage from the Cartesian 
coordinates x,y to polar coordinates r, θ by the 
formulas x=rcosθ, y=rsinθ the Poisson equation (1) 
takes the form 

                
2 2

2 2 2

1 1
( )

u u u
f r

r rr r



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    

 
                 (2) 

where ( ) ( cos sin )f r f r r     . We will omit the bar 

over f in the following for the sake of brevity. Equation 
(2) is solved in the rectangular region  

               1 2, 0 2r R r R                       (3) 

under the Dirichlet boundary conditions 

    
1 1 2 2( ) ( ) 0 2u g r R u g r R                 (4) 

In (3) and (4), R
1
 and R

2
 are the given quantities, 0 ≤ 

R1 < R2. The periodicity condition is specified at the 
boundaries θ = 0 and θ = 2π:  

               
1 2(0 ) (2 )u r u r R r R                        (5) 

Let us formulate the ―discrete‖ problem 
approximating the original differential boundary-value 
problem. In the CLR method, a computational grid is 
generated in the spatial computational region (3). This 
grid may be non-uniform along the both coordinates θ 
and r. Denote the r-coordinate of the jth grid node on 
the r-axis by r

j
, and let N

r
 be the number of nodes of 

the non-uniform grid in the interval 
1 2[ ]R R . The set of 

grid nodes 
1 rNr … r   must satisfy the relations R1 = r1 < 

r2<…<
rNr = R2. One specifies similarly the set of grid 

nodes 
1 N…


   in the interval [0,2π) in such a way that 

the relations 0 = θ1< θ2 < …< 
N

 = 2π are satisfied, 

where Nθ  is the number of grid nodes in the interval 

[0,2π). Denote by i j  a subregion of region (3), 

which is occupied by a cell with indices i, j that is  

            
  1 1, , , ,

1,..., 1, 1,..., 1.

i i j j

r

r r r r

i N j N

        

   
           (6) 

One often encounters in fluid dynamics problems 
the spatial subregions, in which the solution has large 
gradients. In the case of a uniform grid, such 
subregions may have a size of less than one grid step; 
in these cases, the numerical algorithm can simply ―not 
identify‖ such narrow transitional regions, and this may 
lead to considerable errors and incorrect results of the 
numerical simulation. In such situations, the 
application of non-uniform grids clustering in the 

subregions of large solution gradients makes it 
possible to increase the accuracy of simulation.  

One of the simplest techniques of controlling the 
grid stretching in the case of the Poisson equation (10 
consists of the use of the mapping [14] 

          
2 1 2 1( )cos ( ) ( )sin ( )x f f y f f                 (7) 

where the monitoring functions    1 2,f f   enter the 

relations    1 2,f r f     and are specified by the 

user with regard for the specifics of the problem to be 
solved. The computational region in the plane of 
curvilinear coordinates (ξ, η) still remains rectangular 

as in the case when    1 2,f f     . Let us 

assume following [14,15] that the computational grid 
in the (ξ,η) plane is square with steps Δξ = Δη = 1. If 

 1f    or  2f   , then the computational grid in 

the original plane (θ, r) will be non-uniform. 
Equation (1) takes the following form at the 

passage from the variables x, y to curvilinear 
coordinates ξ, η [15]:  

                        
B ( ) ( )u f                                (8) 

where ΔBu is the Beltrami operator, 

          
2 1 2 1( ) ( ( )cos ( ) ( )sin ( ))f f f f f f        , 
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g g g

   

 

      
       

         

(9) 

gij (i, j=1, 2) are the scalar products of covariant 

tangent vectors, 
i jijg x x   , 1 2i j   , where 

1  , 

2 ,  ( )x x       , ( )y y       , etc.; 

( )x yx    , ( )x yx    , etc., that is 

  

2 2 2 2

11 22 12 21g x y g x y g g x x y y

g x y x y

       

   

         

  
 (10) 

The computation of quantities gij according to (10) in 
the specific case of the mapping (7) leads to the 
following expression for the Beltrami operator:  
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    

   
 

  

     (11) 

In each cell i j , the local coordinates y1 and y2 

are used in the CLR method along with the global 
coordinates ξ and η. For the implementation of the 
CLR method it is convenient to introduce the local 
coordinates in such a way that they vary from −1 to +1 
within the cell. Since the computational grid in the (ξ, 
η) plane has the steps Δξ = Δη = 1, the local variables 
y1 and y2 are introduced by the formulas  
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               1 21 2

1 2
0 5 0 5

jiy y
     


   
 

              (12) 

where 1 2 1 2( )i j      are the coordinates of the 

geometric center of the cell i j  in the (ξ, η) plane. 

The formulas 

       1

1 1 1 2

1
2 2

0 5

dy

d y y y y  

     
     

      
      (13) 

enable one to replace the differentiation with respect 
to ξ and η in (11) with the differentiation with respect 
to y1 and y2. Besides, it is necessary to replace ξ and 

η in      2 1 2, ,f f f     by the formulas ξ = 0.5y1 + 

ξi+1/2, η = 0.5y2 + ηj+1/2. 
In the works devoted to the application of the CLR 

method for solving various boundary-value problems 
for partial differential equations, which were 
mentioned above in the Introduction, the polynomials 
in local coordinates were used for the solution 
approximation in each computational grid cell. In the 
present work, the polynomial representation of the 

solution of the Poisson equation in each cell i j  is 

also employed. Let U(y1,y2) be an approximate 
solution in the cell of the polynomial form. In order to 
have the possibility of approximating the second 
derivatives the polynomial must have at least the 
second order in variables y1 and y2. Therefore, we 
employ in the following the second-order polynomial 
of the form  
 

    U(y1,y2) = a1 + a2y1 + a3y2 + a4y1
2 
+ 2a5y1y2 + a6y2

2
.   (14) 

 

The derivatives        1 2 1 2, , ,f f f f       enter 

formula (11). These derivatives were approximated at 

the center of the cell i j  with the second order of 

accuracy. Let us illustrate the procedure for 
calculating these derivatives by the example of the 

derivatives    2 2, .f f    The central differences were 

used for their approximation in internal cells [14, 15]: 
 

   2 1/ 2 1 2 1/ 2 3/ 2 1/ 2 1/ 2, 2 .j j j j j j jf r r f r r r      
      (15) 

 

In the left boundary cell 1i , we apply the right one-

sided differences:  

 
    

 
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1/ 2 4 3 ,

2 .

f r r r

f r r r





   

   
  (16) 

In the right boundary cell 
1ri N  , we apply the left 

one-sided differences: 

        
    

 

2 1/ 2 1/ 2 3/ 2 5 / 2

2 1/ 2 1/ 2 3/ 2 5 / 2

1/ 2 4 ,

2 .

r r r r

r r r r

N N N N

N N N N

f r r r

f r r r





   

   

   

   
  (17) 

It is to be noted that at the application of the CLR 
method for solving any problems, it is important that 
the equations of the overdetermined system, which 
play equal role in the approximate solution, have 
approximately equal weight coefficients. Denote by 

1 2,B y y  the Beltrami operator in local variables y1 and 

y2. Not that the factor  
2

21/ f    enters the Beltrami 

operator (8). This factor has the order of smallness 

 21/ rO h in the uniform grid case, where hr is the grid 

step in the interval [R1, R2]. And the coefficients of the 
equations obtained from the boundary condition have 
the order of smallness O(1). To ensure the same 
orders of smallness for the coefficients of all equations 
of the algebraic system for a1,…,a6 it is enough to 
multiply the both sides of the Beltrami equation by a 

quantity of the order  2

rO h . One can ensure this by 

multiplying the equation by the quantity  
2

2f    :  

                 
1 2

2 2

2 , 2 1 2, ,B y yf U f F y y 
                    (18) 

where F(y1,y2) =  1 1/ 2 2 1/ 20.5 , 0.5i jf y y    . This 

results in some improvement of the numerical solution 
accuracy. 

 The number of collocation points Nc in each cell 

i j  and their location inside the cell are specified by 

the user, and this can be done in different ways. More 
than 20 versions of the specification of the local 
coordinates (y1,i,m , y2,j,m) of collocation points were 
implemented in the given study. For the values Nc = 6 
and Nc = 8, two different techniques of placing the 
collocation points inside the cell were implemented. In 
the first technique, at Nc = 6 the coordinates of 

collocation points are as follows:
2

, ,
3


 
  
 

 ,0 ,

2
,
3


 
 
 

, where ω is a value specified by the user in 

the interval 0 < ω < 1, see Fig. 1, (a). The collocation 
points are shown in Fig. 1 by dark circles, and ω = 0.7. 
At Nc = 8, the local coordinates of collocation points 
were computed in the first technique by the formulas 

3 1 1 3
, , , , , , ,

4 4 4 4
   

       
            
       

, see Fig. 1, (b). 

    
                      (a)                                   (b) 

   
                                                (c) 

Fig. 1. Versions of the specification of collocation 
and matching points: (a) Nc = 6, Nm = 2;  
(b) Nc = 8, Nm = 1; (c) Nc = 11, Nm = 4. 
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Thus, at Nc = 6 and Nc = 8, a larger number of rows of 
collocation points were specified along the polar axis r 
in the cell than along the θ axis. This was done for the 
purpose of a more accurate computation of the 
solution near the boundaries r = R1 and r = R2, where 
the boundary layers with large solution gradients may 
be available. 

Another algorithm for specifying the collocation 
points has also been implemented in the same 
computer code at Nc ≥ 2. In this algorithm, the 
collocation points were set at the same angular 
distance from one another on the closed curve  

  1 2 1,

M M
y y

 

   
    

   
    (19) 

where M is a user-specified even number, M ≥ 2. Fig. 
1, (c) shows the example of specifying 11 collocation 
points by the given technique; the dashed line shows  
curve (19) at M = 12. It is to be noted that the 

collocation points are located in the cell i j  

asymmetrically with respect to the straight lines y1 = 0, 
y2 = 0 at odd Nc (see Fig.1, (c)), which may deteriorate 
to some extent the accuracy of the solution obtained 
by the CLR method. It is, therefore, desirable to use 
the even values of parameter Nc.  

The substitution of expression (14) in (18) leads to 
an algebraic equation, which is linear in the 
coefficients a1,…,a6. The coordinates of Nc collocation 
points (y1,i,m, y2,j,m), m = 1,…,Nc are then substituted in 
this linear equation. As a result, one obtains Nc 
collocation equations. Since the number of unknown 
coefficients a1,…,a6 in (14) is equal to six, it is 
desirable to specify in each cell six or more collocation 
points. 

As in [Error! Reference source not found.], one 
specifies on the sides of each cell the conditions for 
matching the solution therein with the solutions in 
neighboring cells. These conditions ensure the unique 
piecewise polynomial solution. The requirements of 
the continuity of a linear combination of the values of 
the approximate solution and its derivative along a 
normal to the wall have been taken here as such 
conditions:  

      1 2 1 2/ / .h U n U h U n U                   (20) 

One takes in the left-hand side of these relations the 
solution in the current cell, and in the right-hand side, 
one takes the solution in the neighboring cell. The 
points at which equations (20) are written are called 
the matching points. Here n = (n1, n2) is the external 
normal to the cell side, and U

+
, U

–
 are the limits of the 

function U as its arguments tend to the cell side from 
within and outside the cell; ζ1 and ζ2 are the non-
negative weight parameters, which affect to some 
extent the condition number of the obtained system of 
linear algebraic equations (SLAE) and the solution 
convergence rate [26]. 

The quantity h in (20) is specified as follows: on 

the side r = rj+1 of the cell i j  we assume h = ½ 

according to (12). Then h∂U
+
/∂n= h∙dy2/dn∙dU

+
/dy2.= 

(1/2) ∂U
+
/∂y2. We have similarly on the side θ = θi + 1: 

hθ∂U
+
/∂n= hθ∙dU

+
/dθ =∙∂U

+
/∂y1, hθ = ½. Denote by Nm 

the number of matching points on each cell side. 
Since the number of cell sides is equal to four, we 
obtain 4Nm matching conditions in each cell (the 
matching points are shown by small squares in Fig. 1). 

If the cell side on which r = const belongs to the 
boundary of the Ω region, then one writes the 
boundary conditions U(y1,y2) = g1 or U(y1,y2) = g2 
according to (4) instead of the matching conditions on 
this side at the points, to which on the cell sides lying 
inside the region the points of assigning the matching 
conditions correspond. 

 In the matching conditions (20), the periodicity 
conditions (5) were taken into account along the θ 

coordinate in the boundary cells 1 j  and 
1N j   , j = 

1,…,Nr – 1. Consider at first the cell 1 j . The side θ1 = 

0 of this cell is simultaneously the side θ1 = 2π of the 

cell
1N j   . Therefore, equality (20) was implemented 

in the cell 1 j  as follows:  
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          (21) 

In a similar way, the equation 
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         (22) 

was included in the SLAE when assembling it for the 

cell 1N j   .  

 In the version of the method implemented here, the 
numerical solution of the global problem is found 
iteratively in the so-called Gauss–Seidel process. In 
this process, all cells of the region are scanned 
sequentially at each global iteration after the initial 
guess has been assigned to the solution in each cell. 
One solves in each cell a SLAE, which determines a 
―local‖ piece of the global solution. In the implemented 
version, the solution in the cell was found by an 
orthogonal method using the reduction of the matrix of 
the overdetermined SLAE by the Givens method to the 
upper triangular form. In doing so the solution in a 
current cell is matched with the aid of matching 
conditions with the solutions available in neighboring 
cells. If the current cell belongs to the region boundary, 
the boundary conditions of the problem are then 
realized therein because their approximation has been 
included in the SLAE determining the solution in this 
cell. The global iterations are terminated at the 
satisfaction of the criteria (27), (28) for stopping the 
iterations. 
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At the practical implementation of the CLR 

method, the solution is found in the cells i j  in the 

direction of the increasing indices i, j. Therefore, at the 

SLAE assembly in the cell 1 j , the solution in the cell 

1N j   is not known yet. In this connection, we have 

implemented the computation with the use of the 
alternating Schwarz method [28]. According to this 
method, the values known at the moment of the 
solution in the given cell were taken as U

–
 in (20) and 

(21). Let k be the iteration number, k = 0,1,2,…. 
Condition (21) was then implemented as follows:  
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And on the right-hand side of equation (22), one can 
take the values of U(y1,y2) and ∂U(y1,y2)/∂y1 at the 
(k+1)th iteration because at the computation in the 
direction of the increasing index i, the values of the 
coefficients a1,…,a6 in (.   (14) are already known by 
the moment when the computational process reaches 

the boundary cell 
1N j   . 

The initial guess u
0
(θ, r) was specified with regard 

for the boundary conditions (5) by a linear 
interpolation of the values g1(θ) and g2(θ):  

       1 2 2 1 1 20

1 2

( , ) .
g g r g R g R

u r
R R

   


    





As a result, one obtains in each cell a system 
involving Nc + 4Nm  equations, where Nc ≥ 6, Nm ≥ 1, 
by including in the SLAE the collocation equations and 
the matching conditions. By virtue of the fact that Nc + 
4Nm ≥ 10, the SLAE for finding six unknown 
coefficients a1,…,a6 in (.   (14) is overdetermined. The 
Givens method [23, 29] was applied for the numerical 
solution of this SLAE. 

The Poisson equation (2) contains a singularity at 
point r = 0. The solution itself is regular if the right-
hand side of the Poisson equation and the boundary 
conditions are sufficiently smooth. In the spectral-
difference methods [10, 11], the singularity problem 
was solved by using a uniform grid on the r axis, 
which was shifted by a half-step from the point r = 0, 
and the symmetry conditions of the coefficients of the 
expansion into the Fourier series. 

There is no singularity problem in the proposed 
CLR method at finite grid step values. The collocation 
points are specified inside the cell, therefore, always 
r = rj,m > 0 (j = 1,…,Nr – 1; m = 1,…,Nc). There is no 
division by r in the matching conditions (20) that is 
they have no singularity. 

To derive all needed formulas of the numerical 
algorithm for problem solution by the CLR method all 
the above analytic calculations were implemented in 

the system of symbolic computations Mathematica. All 
the arithmetic operators were translated into the 
FORTRAN operators with the aid of this system and 
were included in the corresponding places of the 
computer code for the numerical solution of the 
problem. 

III. COMPUTATIONAL RESULTS 

To investigate the accuracy of the above-proposed 
version of the CLR method the following test solutions 
of the Poisson equation (1) were taken [10, 16]: 

                2 2, 3 5,x yu x y e x x y y                   (23) 

                       , ,
1

x ye e
u x y

xy





                          (24) 

               5/ 2 5/ 2
, 1 1 1 1 .u x y x x y y          (25) 

The corresponding right-hand sides f(x, y) are 
easily obtained by substituting solutions (23)–(25) into 
the left-hand side of equation (1). Then one finds the 

expression for the function  ,f r  in (2). Note that at 

the use of test (24), it is necessary to specify 
2 2R   

in (3) because at 
2 2R   and θ = 3π/4, the 

denominator in (24) vanishes. One can also note that 
solution (25) possesses the property: u(x,y) = u(y,x). 

The computations by the CLR method were done 
on both uniform and non-uniform grids along the θ 
and r axes. The non-uniform grids were generated 
along each axis by the same algorithm described in 
[14]. Let us briefly describe the algorithm for obtaining 
the non-uniform grid in the interval R1 ≤ r ≤ R2. In this 
algorithm, one must at first specify the grid steps r2 – 

r1 and 1r rN Nr r   by the formulas: r2 – r1 = λr,L ∙hr, 

1r rN Nr r  = λr,R ∙hr, where hr is the uniform grid step in 

the interval R1 ≤ r ≤ R2, the grid has N
r
 nodes that is 

hr = (R2 – R1)/(Nr – 1); λr,L and λr,R are the coefficients 
specified by the user, 0 < λr,L, λr,R ≤ 1. If λr,L < 1, λr,R = 
1, then one obtains along the r axis a grid clustering 
near the boundary r = R1; if λr,L < 1 and λr,R < 1, then 
the grid is refined near the both boundaries r = R1 and 
r = R2; if λr,L = 1, λr,R < 1, then the grid is refined near 
the boundary r = R2; and, finally, at λr,L = λr,R = 1, one 
obtains a uniform grid. The function sinh (ζ) is 
involved in the computations of the coordinates of grid 
node coordinates in this algorithm.  

To determine the error of the method on a specific 
spatial computational grid the grid analogs of the error 
norms were computed with the use of the norms of 
the Lp spaces (p ≥ 1) by the formula  
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 (26) 
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where 
1/ 2, 1/ 2

ex

i ju  
 and 

1/ 2, 1/ 2

k

i ju  
 are, respectively, the 

exact solution and the approximate solution by the 
 
CLR method, which have been computed at the 

center of the cell i j . 

The convergence rate νp of the CLR method on a 
sequence of grids at the grid refinement was 
computed by the formula known in numerical analysis  

    
 
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1

log /
,

log /

k k

m mp p

p

m m

u h u h

h h

 






  

where hm, m = 2,3,… are some values of steps hr and 
hθ such that |hr,m – 1 – hr,m| + |hθ,m – 1 – hθ,m| > 0. 

Let 
, ,

k

i j la  (k = 0,1,…; l = 1,…,6) be the value of the 

coefficient al in (.   (14) in the cell i j  at the kth 

iteration.  
The following condition was used for the termination 
of iterations by the Schwarz’s alternating method:  

                            
1 ,ka                             (27) 

where  

                1 1

, , , ,
, 1 6

max max ,k k k

i j l i j l
i j l

a a a  

 
               (28) 

ε is a user-specified small positive number,  

    
2

1 1
,

min , .i i j j
i j

r r   
  
  



Numerical results presented in Tables I, II, III, and 
IV were obtained by using the value ω = 0.7 at the 
specification of collocation points; ζ1 = ζ2 = 1 in (20). 
The value ε = 10

–9
 was taken in criterion (27) for 

TABLE I. ERROR ||ΔU||2  AND CONVERGENCE RATE ΝU2  

ON A SEQUENCE OF GRIDS, 

    2 2, 3 5,x yu x y e x x y y      0.5 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||2 ν2 
Uniform grid 

75 6 5.0539E−04  

100 8 2.8206E−04 2.03 

150 12 1.2498E−04 2.01 

200 16 7.0317E−05 2.00 

250 20 4.5033E−05 2.00 

Non-uniform grid along the r axis  
(λr,L = 0.93, λr,R = 1.0) 

and uniform grid along the θ axis  

75 6 5.6142E−04  

100 8 3.0738E−04 2.09 

150 12 1.3454E−04 2.04 

200 16 7.5413E−05 2.01 

250 20 4.8216E−05 2.00 

Uniform grid along the r axis 
and non-uniform grid along the θ axis 

(λθ,L = λθ,R = 0.6) 

75 6 4.7726E−04  

100 8 2.6860E−04 2.00 

150 12 1.1989E−04 1.99 

200 16 6.7660E−05 1.99 

250 20 4.3404E−05 1.99 
 

TABLE II. ERROR ||ΔU||∞  AND CONVERGENCE RATE ΝU∞  
ON A SEQUENCE OF GRIDS, 

    2 2, 3 5,x yu x y e x x y y      0.5 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||∞ v∞ 
Uniform grid 

75 6 1.1629E−03  

100 8 6.6402E−04 1.95 

150 12 2.9861E−04 1.97 

200 16 1.6847E−04 1.99 

250 20 1.0805E−04 1.99 

Non-uniform grid along the r axis  
(λr,L = 0.93, λr,R = 1.0) 

and uniform grid along the θ axis  

75 6 1.1213E−03  

100 8 6.8916E−04 1.69 

150 12 3.2792E−04 1.83 

200 16 1.9028E−04 1.89 

250 20 1.2396E−04 1.92 

Uniform grid along the r axis 
and non-uniform grid along the θ axis 

(λθ,L = λθ,R = 0.6) 

75 6 1.1430E−03  

100 8 6.6327E−04 1.89 

150 12 3.0050E−04 1.95 

200 16 1.6884E−04 2.00 

250 20 1.0842E−04 1.99 
 

TABLE III. ERROR ||ΔU||2  AND CONVERGENCE RATE ΝU2  

ON A SEQUENCE OF GRIDS, 

    2 2, 3 5,x yu x y e x x y y      0 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||2 ν2 
Uniform grid 

75 12 3.4861E−03  

100 16 2.3369E−03 1.39 

150 24 1.3983E−03 1.27 

200 32 1.0222E−03 1.09 

250 40 8.2012E−04 0.99 

Non-uniform grid along the r axis  
(λr,L = 0.4, λr,R = 0.998) 

and uniform grid along the θ axis  

75 12 2.0722E−03  

100 16 1.2641E−03 1.72 

150 24 6.2044E−04 1.76 

200 32 3.7129E−04 1.78 

250 40 2.4852E−04 1.80 
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computation termination. Six collocation points were 
used in each cell, equation (20) with M = 2 was used 
for specifying their coordinates. Four matching points 

were specified on each side of the cell i j . 

Tables I and II present the numerical results 
obtained by the CLR method in the annulus between 
two concentric circles with radii R1 = 0.5 and R2 = 1.0, 
that is the singularity r = 0 is outside the computational 
region. One can see from these tables that the 
convergence rate ν2 is very close to the second one;  
the convergence rate ν∞ is also close to the second 
one, although it is slightly lower than 2. 

As one can see further from Tables I and II, in the 
case of solving the Poisson equation in the annulus 
0.5 ≤ r ≤ 1, the application of a non-uniform grid along 
the r-axis does practically give no gain in accuracy. If 

one uses a non-uniform grid along the θ-axis, then 
there is some improvement in solution accuracy. 

If the singular point r = 0, however, a boundary 
point of the computational region, then the application 
of a non-uniform grid along the r-axis leads to a 
significant increase in accuracy, see Tables III and IV. 
The errors ||δu||2 and ||δu||∞ drop, respectively, by 
1.7–3.3 times and 2–5 times as compared to the 
uniform grid case. 

One can see from the comparison of Tables I, II 
and III, IV that if the point r = 0 is a computational 
region boundary (that is R1 = 0), then there occurs a 
considerable (by one or two decimal orders) increase 
in the errors ||δu||2 and ||δu||∞ in comparison with the 
case when R1 = 0.5. One can explain this effect as 
follows by the example of a uniform grid with steps hr 
and hθ along the r and θ axes, respectively. Consider 

the cells i j  lying near the point r = 0. According to 

(2), the derivative ∂u/∂r is divided by r. In the cell 1i , 

the coordinates rj,m of collocation points satisfy the 
inequalities 0 < rj,m < hr . This leads to the fact that in 
the cell under consideration, the order of the 
approximation error of the term (1/r)∂u/∂r decreases. If 
R1 = O(1), then no such loss of the numerical solution 
accuracy is observed. 

In the case of the test solution (24), the errors of 
the numerical solution obtained by the CLR method 
are higher than in the case of test (23), compare 
Tables I, II, III, IV with Tables V and VI. A similar 
effect of the numerical solution loss in the case of test 
(24) as compared to (23) was reported previously in 
[11], where a compact difference scheme was 
proposed for equation (2). It was found here in 
numerical experiments that the application of a non-
uniform grid along the r-axis has made it possible to 
increase the numerical solution accuracy by two-three 
times in comparison with the uniform grid case, see 
Tables V and VI. 

TABLE IV. ERROR ||ΔU||∞  AND CONVERGENCE RATE ΝU∞  

ON A SEQUENCE OF GRIDS, 

    2 2, 3 5,x yu x y e x x y y      0 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||∞ v∞ 
Uniform grid 

75 12 2.5131E−02  

100 16 2.0583E−02 0.69 

150 24 1.5271E−02 0.74 

200 32 1.2481E−02 0.70 

250 40 1.1284E−02 0.45 

Non-uniform grid along the r axis  
(λr,L = 0.4, λr,R = 0.998) 

and uniform grid along the θ axis  

75 12 1.1213E−03  

100 16 7.1873E−03 1.30 

150 24 4.3878E−03 1.22 

200 32 3.0676E−03 1.24 

250 40 2.3191E−03 1.25 

TABLE VI. ERROR ||ΔU||∞  AND CONVERGENCE RATE ΝU∞  

ON A SEQUENCE OF GRIDS, 

     , / 1 ,x yu x y e e xy    0 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||∞ v∞ 
Uniform grid 

75 12 7.7051E−02  

100 16 6.9087E−02 0.38 

150 24 5.6739E−02 0.49 

200 32 4.8329E−02 0.56 

250 40 4.2320E−02 0.60 

Non-uniform grid along the r axis  
(λr,L = 0.3, λr,R = 1.0) 

and uniform grid along the θ axis  

75 12 4.9344E−02  

100 16 3.8715E−02 0.84 

150 24 2.8247E−02 0.78 

200 32 2.2689E−02 0.76 

250 40 1.9107E−02 0.77 

TABLE V. ERROR ||ΔU||2  AND CONVERGENCE RATE ΝU2  

ON A SEQUENCE OF GRIDS, 

     , / 1 ,x yu x y e e xy     0 ≤ r ≤ 1. 

Nθ – 1 Nr – 1 ||δu||2 ν2 
Uniform grid 

75 12 1.2773E−03  

100 16 1.0188E−02 0.79 

150 24 7.3624E−03 0.80 

200 32 5.8088E−03 0.82 

250 40 4.8153E−03 0.84 

Non-uniform grid along the r axis  
(λr,L = 0.3, λr,R = 1.0) 

and uniform grid along the θ axis  

75 12 8.9070E−03  

100 16 5.9090E−03 1.43 

150 24 3.3825E−03 1.38 

200 32 2.2881E−03 1.36 

250 40 1.6888E−03 1.36 
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In the case of the test solution (25) (see Tables VII 
and VIII), the accuracy of the numerical solution 
obtained by the CLR method proves to be much 
higher than in the case of test (24). When a discrete 
analog of the L2 norm is used the numerical solution 
errors in the case of using a non-uniform grid on the r-
axis are less than in the case of a uniform grid with 
the same number of nodes by the factors from 1.1 to 
2.6, and the difference in the accuracy increases with 
the increasing number of grid nodes. In addition, the 
convergence rate ν2 differs in the case of test (25) 
much less from the second order than in the case of 
test (24) when the non-uniform grid is used on the 
polar axis. 

IV. CONCLUSIONS 

A new version of the method of collocations and 
least residuals has been presented for the numerical 
solution of the Poisson equation in polar coordinates. 
The method has been verified on two test problems 
having the exact analytic solutions. It is shown that if 
the radial coordinate origin does not belong to the 
computational region then the proposed method has 
the second –order accuracy. 

If the singularity — the radial coordinate origin — 
enters the computational region, then the application 
of a non-uniform grid along the radial coordinate 
enables an increase in the numerical solution 
accuracy by factors from 1.7 to 5 in comparison with 
the uniform grid case.  

One can also note that the CLR method is well 
parallelizable. One can partition the entire 
computational region along the boundaries of grid 
cells into several subregions containing approximately 
equal number of cells. In each subregion, the global 
problem computation can be performed in parallel. 
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