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Abstract—Thermal wave oscillations within a 
finite thin plate based on single-phase-lagging 
(SPL) heat conduction model is investigated. 
Results were obtained by Crank-Nicholson (CN) 
finite difference scheme. The stability of the 
numerical scheme has been discussed and 
observed that the solution is unconditionally 
stable. The whole analysis is presented in 
dimensionless form. A numerical example of 
particular interest has been studied and 
discussed in details. 
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I.  INTRODUCTION 

Cattaneo [1] and Vernotte [2] removed the 
deficiency [3]-[6] occurs in the classical heat 
conduction equation based on Fourier's law and 
independently proposed a modified version of heat 
conduction equation by adding a relaxation term to 
represent the lagging behavior of energy transport 
within the solid, which takes the form 
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where k  is the thermal conductivity of medium and 

 is a material property called the relaxation time. 

This model characterizes the combined diffusion and 
wave like behavior of heat conduction and predicts a 
finite speed 
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for heat propagation [7], where   is the density and 

bc  is the specific heat capacity. This model addresses 

short time scale effects over a spatial macroscale. 
Detailed reviews of thermal relaxation in wave theory 
of heat propagation were performed by Joseph and 
Preziosi [8] and Ozisik and Tzou [9]. The natural 
extension of CV model is 

( , ) ( , )t k T t   q r r
                                   3  

which is called the single-phase-lagging (SPL) heat 
conduction model [10]-[14]. According to SPL heat 

conduction model, there is a finite built-up time   for 

onset of heat flux at r , after a temperature gradient is 
imposed there i.e.  represents the time lag needed 

to establish the heat flux (the result) when a 
temperature gradient (the cause) is suddenly 
imposed. 

 The single-phase-lagging heat conduction differs 
from the Fourier heat conduction, where, the 
maximum or minimum value of temperature will only 
be achieved at the boundary of the medium or at the 
initial instant if no heat source exists in the heat 
conduction medium while in single-phase-lagging heat 
conduction, the temperature of some inner regions in 
the medium may exceed the temperature at the 
boundary because of the presence of interference 
phenomenon [15]. Ordonez-Miranda and Alvarado-Gil 
[16] analytically studied the thermal wave oscillation 
based on hyperbolic heat conduction model and 
shown that the analysis of this phenomenon is useful 
in the determination of the thermal relaxation time 
which has elusive physical quantity. Thus to handle 
such type of problem, it is very desirable to construct 
high order algorithms for efficient computations. 

Based on CV hyperbolic heat transport model, 
Ordonez-Miranda and Alvarado-Gil [16] shown that 
oscillations of amplitude and phase of the spatial 
component of the surface temperature are obtained in 
the high frequency regime for Dirichlet and Neumann 
boundary conditions. Dai et al. [17] extended the 
parabolic two step model for micro-heat transfer and 
analyzed the thermal oscillation in generalized N-
carrier system by stable finite difference scheme. Lam 
and Fong [18] analytically compared the parabolic 
heat conduction equation based on Fourier's law and 
hyperbolic heat conduction equation based on CV 
constitutive relation. It was found that due to the effect 
of lagging parameter, the hyperbolic model predicts a 
wave front in the direction of propagation and causes 
a large concentration of energy in a localized area; 
whereas, the parabolic model predicts an 
instantaneous diffusion of heat into the medium. 
Based on the CV hyperbolic heat conduction model, 
Ordonez-Miranda and Alvarado-Gil [19] investigated 
the thermal wave transport in a layered system and 
found the analytical formulas to determine its thermal 
relaxation time as well as additional thermal properties 
for single semi-infinite layer and for a system of two 
finite layers in thermal contact. In the present work, 
we attempt to examine thermal wave oscillation in thin 
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plate by computationally efficient high order accurate 
finite difference scheme. 

In this paper, we present unconditionally stable 
accurate finite difference scheme for solving SPL heat 
conduction equation. Unconditional stability will give 
no restriction on the mesh ratio. The outline of the 
paper is as follows. SPL heat conduction model is 
given in Section 2. Section 3 deals solution of model. 
Stability of the numerical scheme is given in Section 
4. Section 5 contains result and discussion. 
Conclusion is given in Section 6.  

 

II. 2D SPL HEAT CONDUCTION MODEL 

The combination of Fourier’s law of heat conduction 
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and law of conservation of energy 
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provides the law of heat conduction as follows 
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where *g denotes the internal energy generation rate 

per unit volume inside the medium. In two dimension 
(6) can be written as 
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Equation (7) is the classical diffusion model which 
governs thermal energy transport in solids. By 
introducing dimensionless parameters 
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Equation (7) can be expressed in dimensionless 
form as 
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where Fourier number 0F  represents dimensionless 

time. The CV constitutive relation (1) together with the 
energy conservation (5) gives the equation governing 
propagation of thermal energy 
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where   is the thermal diffusivity of the material and 

the relaxation time 
2c


  . On the left hand side of 

above equation, the second order time derivative term 
indicates that heat propagates as a wave with a 
characteristic speed given by equation (2) and the first 
order time derivative corresponds to a diffusive 
process, which damps spatially the heat wave. One 
can see that if energy travels at an infinite propagation 
speed (i.e.c ), then (9) reduces to the parabolic 

heat conduction equation (based on Fourier law). The 
equation (9) can be expressed in dimensionless form 
as 
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In present study, an isotropic thin plate, 

0 , 1,x y  with uniform thickness and constant 

thermophysical properties, is assumed. Initially, the 
thin plate is at temperature 

( , ,0) 0.01sin ,
2

x
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 which is a function of 

position within the thin plate and rate of change in 

temperature is 3 . For time 0 0,F   the following 

boundary conditions will be considered 
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0 0(0, , ) 0, (1, , ) 0y F y F  
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0 0( ,0, ) 0, ( ,1, ) 0x F x F  
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For sake of convenience we assume that there is 
no internal heat source in the heat conduction medium. 

 

III. SOLUTION 

To establish numerical approximation 

0, 0
l l

x h y k
N L

        and 0

1
F

M
  be 

the grid size in space and time direction respectively. 

The grid points in the space interval  0, l are numbers 

, 0,1,2... ; , 0,1,2...i jx ih i N y jk j L    and grid 

points in time interval 0 0 , 1,2,3... .
n

F n F n M    The 

values of the functions   at grid points are denoted 

by  , 0, ,
n

n

i j i jx y F  . To solve the above problem, 

(10)-(13), using the finite difference scheme, one may 
employ the Crank-Nicholson scheme for (10) as 
follows 
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It can be seen that the truncation error of the new 

scheme has an order of  
2 2 2

0F h k    at all grid 

points
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Equation (14) together with (11)-(13) can be written in 
vector matrix form as follows 

1 0 ,A B   0n       15  

1 1,n n nA B C      1n     16  

where
1 1 1 1 1

1 2 1, ,..... , ,
t

n n n n n

N N        


     ,A  B and 

C are the matrices involved in the scheme.  

Thus, from (15)-(16), we get dimensionless 

temperature . In present analysis, Mathematical 

software MATLAB 11.0 has been used to obtain 
dimensionless temperature. 

 

IV. STABILITY OF NUMERICAL SCHEME 

To examine the stability of the numerical scheme 
we first we re-write (15)-(16) in equivalently as [20, 21] 
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This technique has reduced a three-level difference 
equation in time to a two level. Equation (17) will be 

stable when each eigenvalue of D  has a 

modulus 1 , i.e.   1D  . From a computational 

point of view, the Eigen-values of D  can be evaluated 
numerically. It is shown that the Eigen-values satisfy 
the stability condition. Our experience for solved 
examples shows that spectral radius of the 

corresponding D  matrix stays less than 1, for 

various 0F  and ,x .y  

In Figs. 1-2, the Eigen-values of the D  matrix are 
sketched. We show numerically that the upper bound 

for the absolute value of D 's Eigen-values is 1 for all 
temporal grid size (Fig. 1) and spatial grid size (Fig. 2). 
Thus, the scheme is not dependents on grid size 
hence unconditionally stable. 

 

Fig. 1.  Variation of eigenvector with eigenvalue for 

1000N   at (a) 0 0.01F  ; (b) 0 0.001F  . 

 

Fig. 2. Variation of eigenvector with eigenvalue for 

0 0.001F   at (a) 250N  ; (b) 500N  . 

V. RESULTS AND DISCUSSION 

This section presents complete analysis of thermal 
wave oscillations and observes the effect of Fourier 

number  0F . The Figures presented in this study, only 

the parameters whose values different from the 
reference value are indicated. The selected reference 

values include 0.01,h  0.01,k  0 0.001F  , 

3 0  . 

Figs. 3-6 show the dimensionless spatial 
temperature profiles at different heating periods. For 
small heating period, two sharp waves appear near the 
boundaries as both boundaries are insulated, as 
shown in Fig. 3. Due to lagging behavior, two thermal 
waves travel slowly toward the centre of thin plate and 
as energy moves inward, both waves’ meets at the 

centre of thin plate at 0 0.025F   which creates a 

peak temperature at this location. The ``increase'' in 
peak temperature is due to constructive interference of 
somewhat elastic waves, is only momentary, and is 
unstable. 
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Fig. 3. Spatial temperature profile for Fourier number 

 0F =0.025. 

 

Fig. 4. Spatial temperature profile for Fourier number 

 0F =0.05. 

From Fig. 4 it is observed that temperature at 
midpoint of thin film decreases due to the destructive 
interference of thermal waves. A close examination of 
Figs. 3 and 4 reveals that the dimensionless 
temperature increases with Fourier number as Fourier 
number is a measure of rate of heat conduction in 
comparison with the heat storage in the given volume 
element. Larger the Fourier number deeper the 
penetration of heat into a body over a given time. 

Further, from Figs. 5-6, it is evident that, for large 
heating period, intensity of peak temperature 
increases, similar to the result given in Fig. 4. A close 
examination of Figs. 5 and 6 reveals that intensity of 
peak temperature increases very rapidly as time period 
of heating increases and energy spread over a larger 
time interval. 

 

Fig. 5. Spatial temperature profile for Fourier number 

 0F =0.075. 

 

Fig. 6. Spatial temperature profile for Fourier number 

 0F =0.1. 

VI. CONCLISION 

A mathematical model of two-dimensional SPL 
heat conduction is solved by high order numerical 
techniques. The effect of spatial and temporal grid size 
on stability of numerical scheme has been observed 
and found that scheme is independent on grid size i.e. 
scheme is unconditionally stable. Due to the lagging 
behavior two waves travels towards each other and 
creates peak due to the constructive interference. The 
intensity of peak temperature increases with increase 
of Fourier number. 

This technique is useful to measure the accurate 
analysis of sudden increase of temperature which is 
responsible for thermal damage. Further, this 
technique can be applied to solve SPL model of 
general body under most generalized boundary 
conditions.  
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VII. NOMENCLATURE 

A   Matrix of order N N  

B   Matrix of order N N  

C   Matrix of order N N  

c  Thermal wave propagation speed  /m s  

bc  Specific heat capacity  / .J kg K  

rf  Reference heat flux  / *q q  

0F  Fourier number  2 / 2c t   

0F  Temporal grid size  m  

g  Dimensionless internal heat            

source  4 * /
r

g cf  

k  Thermal conductivity  / .W m K  

l  Length of the medium  m  

L  Dimensionless length of the medium  2 / l  

*q  Dimensionless heat flux  / rfq  

r  Position vector 

t  Time  s  

T  Temperature  K  

T  Temperature gradient  /K m  

x  Dimensionless spatial coordinate  */2cx   

y  Dimensionless spatial coordinate  */2cy   

x  Spatial grid size 

y  Spatial grid size 

  Thermal diffusivity  2 /m s  

  Dimensionless Temperature  / rkcT f  

  Density  3/kg m  

  Lagging parameter  s  
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