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Abstract—Analytical solution to thermoelastic 
response of a long rod (solid cylinder) subjected 
to periodic boundary condition is derived. The 
solution to the heat conduction equation is 
obtained by the application of Duhamel's theorem. 
Manipulating on the basic equations of elasticity, 
the governing equation describing thermoelastic 
behavior of the solid cylinder is formulated in 
terms of the radial displacement. This equation 
turns out to be of type nonhomogeneous second 
order Cauchy-Euler. The distributions of thermally 
induced stress, strain and displacement are 
determined by the analytical solution of the 
governing equation. Two different periodic 
boundary conditions are handled. In the first, the 
boundary temperature is assumed to vary 
sinusoidal, and in the second vary periodic but 
decaying eventually to zero. 
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I.  INTRODUCTION  

The heat conduction in cylinders and spheres is 
one of the common problems in engineering. 
Especially heat conduction with periodic boundary 
conditions has many applications in engineering such 
as in the heat treatment of metals, air conditioning, 
wall temperature oscillation of internal combustion 
engines, components of nuclear reactors, spacecrafts, 
automobiles, brake systems, chemistry and energy [1-
6]. These applications may involve thermal 
disturbances that are large enough to force failures in 
materials. In order to predict these failures, 
determining the thermoelastic stresses causing them is 
important [7]. So, researchers have developed many 
analytical models and numerical methods to evaluate 
the transient thermal fields and resulting stresses in 
various parts and geometries.  

    The analytical solution for a temperature field 
and resulting thermal stresses in a hollow cylinder 
under arbitrary boundary conditions was first derived 
by Trostel [8]. The temperature field in a solid cylinder 
and caused by sinusoidal oscillation of the ambient 
temperature is presented in VDI [9]. Some general 
solutions of the transient temperature fields in solid 
and hollow cylinders under specific boundary 
conditions are given by Timoshenko and Goodier [2] 

and Hahn and Ozisik [1]. Mahmudi and Atefi [7] 
obtained an analytical solution for thermal stresses in a 
hollow cylinder, subjected to periodic time-varying 
thermal loading on the inner circular and insulated 
outer circular surfaces. An analytical solution for the 
transient thermal stresses in a hollow cylinder under 
constant boundary conditions by the use of the finite 
Hankel transform is given by Shahani and Nabavi [10]. 
Lee and Huang [11] developed an analytical solution 
method, without integral transform, to find the exact 
solutions for the transient heat conduction in 
functionally graded circular hollow cylinders with time-
dependent boundary conditions. Fazeli [12] derived the 
mathematical model of two-dimensional heat 
conduction at the inner and outer surfaces of a hollow 
cylinder which are subjected to a time-dependent 
periodic boundary condition. In this work Duhamel's 
theorem is used to solve the problem for the periodic 
boundary condition which is decomposed into Fourier 
series. In the studies of Segall [13-15] the solution for 
an unsteady temperature field for a thick-walled hollow 
cylinder under generalized thermal loading on the 
inner circular surface is offered.  

    In this paper, an analytical model is derived to 
solve the thermoelastic behavior of a solid cylinder 
subjected to a periodic boundary temperature, 
applying the uncoupled theory of thermoelasticity. The 
heat conduction problem is solved with Duhamel's 
theorem. Two different time dependent surface 
temperature functions are handled. The transient 
stress and displacement distributions are obtained and 
the von Mises equivalent stresses are determined. 

II. MODEL DEVELOPMENT 

A. Transient Temperature Distribution in the Rod 

An infinitely long solid cylinder of radius   is 
considered. The solid cylinder is initially at zero 
temperature and for times     its surface is 
subjected to a prescribed time-dependent boundary 
condition. The transient temperature distribution in the 
cylinder is described by the heat conduction equation 
[1]. The mathematical formulation of the problem in 
terms of dimensionless variables is 

  ̅

  
 
 

 ̅
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  ̅
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  ̅ 
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 ̅( ̅  )       

where  ̅      is the dimensionless radial coordinate, 

 ̅       is the dimensionless temperature,    is a 

reference temperature,          is the 

dimensionless time with    the thermal diffusivity and 
 ( ) is the time-dependent surface temperature. The 
solution of this problem is obtained by the use of 
Duhamel's theorem as [1] 

 ̅( ̅  )  ∫  ( )
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in which  ( ̅  ) represents the solution of the auxiliary 
problem defined by 
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The nonhomogeneous boundary condition  (   )    
is handled by proposing a solution of the form 

 ( ̅  )   ( ̅  )   ( ̅)                                         (6) 

Substituting into the auxiliary problem described by 
equation (4) results in two different problems 

 
 

 ̅

  

  ̅
 
   

  ̅ 
        ( )           ( )                

and 

 
  

  
 
 

 ̅

  

  ̅
 
   

  ̅ 
        ̅                               (8) 

subject to 
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  (   )                                                               (9) 
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The solutions are 

 ( ̅)                                                                (10) 

and 
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  (   ̅)
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in which    and    represent Bessel functions of the 

first kind of order zero and one, respectively, and    for 
     , are the positive roots of 

  (  )                                                               (12) 

Hence, the solution for  ( ̅  ) takes the form 

 ( ̅  )     ∑    
  

 

   

 
  (   ̅)

    (  )
                              

Substituting this solution into (3), the solution to the 
transient temperature distribution is obtained as 

 ̅( ̅  )   ∑    
  

 

   

 
    (   ̅)
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∫    

  
 

 
 ( )               

Furthermore, integrating this solution by parts, it can 
be put into an alternate and more convenient form as 

 ̅( ̅  )   ( )   ∑    
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since  ( ) is arranged so that  ( )   . 

    Two different boundary conditions are used and the 
corresponding integrals 

 (    )  ∫     
 (   )

 

 

  ( )

  
                                       

are evaluated.  

B.C. 1. The condition is 

 ( )                                                              (18) 

with   being a load parameter. Then we find 

     
 [  
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                         (19) 

B.C. 2. The condition is 

 ( )        ⁄                                                 (20) 

Then 
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     (21) 

Note that although the condition is periodic, it 
eventually decays to zero because of the existence of 

the term     ⁄ . 

B. Thermoelastic Behavior of the Cylinder 

    Small deformations and a state of generalized plane 
strain are assumed. In order to determine transient 
stresses and deformations in the solid cylinder, 
dimensionless forms of the basic equations are used 
[2,3]. These are the following. 

The equation of equilibrium 
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  ̅ 

  ̅
 
 ̅   ̅ 

 ̅
                                                    (22) 

the strain-displacement relations 

  ̅  
 ̅

 ̅
     ̅  

  ̅

  ̅
                                               (23) 

and the equations of the generalized Hooke's law 

  ̅   ̅   ( ̅   ̅ )   ̅ ̅                                   (24) 

  ̅   ̅   ( ̅   ̅ )   ̅ ̅                                   (25) 

  ̅   ̅   ( ̅   ̅ )   ̅ ̅                                       (26) 

In these equations   ̅        represents a 

dimensionless stress component,   ̅         a 

normalized strain component,  ̅         the 
dimensionless radial displacement,  ̅          the 

dimensionless coefficient of thermal expansion,   the 

Poisson's ratio,   the modulus of elasticity and    the 
uniaxial yield stress of the material. In a state of 
generalized plane strain       is constant and (26) 
can be solved for the axial stress to give 

 ̅      ( ̅   ̅ )   ̅ ̅                                  (27) 

Combination of this equation with strain-displacement 
relations, (23) and the equations of generalized 
Hooke's law, (24) and (25) allows one to formulate the 
stress displacement relations as 

 ̅  
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 ,     (29) 

A prime above denotes differentiation with respect to 

the dimensionless radial coordinate  ̅ . Substituting 

these stresses in the equation of equilibrium, (22), 
leads to the thermoelastic equation in terms of radial 
displacement 
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  ̅

  ̅
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  ̅

  ̅
                         (30) 

This is a second order nonhomogeneous Cauchy-
Euler type differential equation which assumes the 
exact solution 
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It is important to note that 
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Since the radial displacement  ̅ must be finite at the 
center of the solid cylinder ( ̅   )    must be zero. 
Hence, the solution becomes 

 ̅( ̅)     ̅  (
   

   
) (
 ̅

 ̅
)∫   ̅(   )  

 ̅

 

                      

The stresses are then obtained from (27)-(29). These 
equations contain two unknowns; namely    and   to 
be determined. Since the surface of the solid cylinder 
is free of stress we have the condition 

 ̅ ( )                                                                 (34) 

Another condition can be formulated by making use of 

the fact that the total axial force    must vanish as the 

ends of the solid cylinder are free. This leads to 

   ∫  ̅      ∫  ̅ ̅   ̅    
 

 

                                   

Application of these conditions reveal that 
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Finally, the complete thermoelastic solution of the solid 
cylinder takes the form 
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The integrals in the solution are evaluated as 
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in which  (    ) refers to the integral in (17). For the 
first temperature boundary condition it is to be 
replaced by    in (19) and for the second by    in (21). 

C. Mathematical Verification of the Model 

1. At the center of the cylinder  ̅(   )         , 

i.e.   ̅(   )   ̅  0. Based on the heat conduction 
solution presented by (16) the temperature gradient at 
any radial position and time instant turns out to be 

  ̅( ̅  )

  ̅
  ∑

  (   ̅)

  (  )
∫     

 (   )
  ( )

  
           

 

 

 

   

 

as    ( )    we determine   ̅(   )   ̅   . 

2. At the center of the cylinder  ̅   . By virtue of 
(32) we arrive at 
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3. At the center of the cylinder  ̅   ̅  by 
geometry. Since 
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it is easy to show that 
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4. At the surface of the cylinder  ̅ ( )  0. From 
(39) 
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III. NUMERICAL RESULTS AND DISCUSSION 

Another verification of the entire model can be 
made numerically. The computer program based on 
finite element collocation method developed by 
Eraslan and Varli [16] was modified to handle time-
dependent boundary conditions for this purpose. The 
distributions of the von Mises stress in the cylinder at 
various time instants are calculated and compared with 
the results of the numerical solution. The von Mises 
stresses  ̅   are obtained from [17] 

 ̅   √
 

 
[( ̅   ̅ )

  ( ̅   ̅ )
  ( ̅   ̅ )

 ].     (49) 

It is well known that the deformation is elastic as 
long as  ̅    . The reason why the von Mises stress 
is selected for comparison is that it is a function of all 
three principal stress components, a small error in one 
of them may result in apparent discrepancies in the 
results. The parameter values   0.3,   2.0 and 
 ̅  1.75 are used in these calculations. The results of 
these calculations are presented in Fig. 1a and Fig. 1b 
on which solid lines belong to the results of this work 
and dots to the results of numerical solution. Fig. 1a is 
based on B.C. 1 given by (18) while Fig. 1b on B.C. 2 
given by (20). As seen in these figures, perfect 
agreement is obtained between the results of this work 
and finite element solution verifying the present 
analytical model for both boundary conditions. Note 
also that the largest values of  ̅   occur at the surface 
of the cylinder, hence failure with respect to plastic 
deformation occurs at the surface of the cylinder as the 
load parameter   is further increased. 

The parameter values   0.3,   2.0 and  ̅  1.75 
are not altered in the following calculations. The 

change in temperature  ̅  and temperature gradient 

  ̅   ̅  with time at the radial position  ̅  0.5 are 

calculated and plotted in Fig. 2a and Fig. 2b. The 
periodic boundary condition described by (18) leads to 

periodic variation of  ̅  and   ̅   ̅  with time at any 
radial position as seen in Fig. 2a. This behavior is 

repeated with a period   . The variation of  ̅  and 

  ̅   ̅ with time die out for times   15 in case of B.C. 
2 as shown in Fig. 2b. Variations of the stress 
components, the von Mises stress and the radial 
displacement with time at the same radial location 
(  ̅  0.5) are plotted in Fig. 3a and Fig. 3b. It is 
apparent in these figures that the deformation is purely 
elastic as  ̅     throughout and compressive as well 
as tensile stresses may be found in the cylinder 
according as the temperature gradient is negative or 
positive. The variations shown in Fig. 3a correspond to 
thermal response depicted in Fig. 2a, and the ones in 
Fig. 3b correspond to thermal structure of the cylinder 
pictured in Fig. 2b. 

The cylinder may expand or contract in the axial 
direction as the ends are free. The change in height of 
it at any time instant is obtained by multiplying the axial 
strain with its height. The results of these calculations 
corresponding to B.C. 1 are depicted in Fig. 4. As seen 
in this figure the height of the cylinder follows a path 
similar to the boundary temperature and returns to the 
original height as soon as one period is completed. 

 

 

Fig. 1a.  Distributions of the von Mises stress in the cylinder at various time 

instants based on B.C.1 for the parameter set         ,          and 

  ̅       . The solid lines belong to the results of this work and dots to the 
numerical solution [16]. 
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Fig.1b. Distributions of the von Mises stress in the cylinder at various time 

instants based on B.C.2 for the parameter        ,          and 

  ̅       . The solid lines belong to the results of this work and dots to the 
numerical solution [16]. 

 

Fig. 2a. Variations of temperature and temperature gradient with time at 

  ̅       based on B.C.1 for the parameter set         ,          and 

 ̅        . 

 

Fig. 2b. Variations of temperature and temperature gradient with time at 

 ̅        based on B.C.2 for the parameter        ,          and 

  ̅       . 

 

Fig. 3a. Variations of the stress components, the von Mises stress and the 

displacement with time at   ̅         based on B.C. 1 for the parameter set  

       ,          and  ̅        . 
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Fig. 3b. Variations of the stress components, the von Mises stress and the 

displacement with time at   ̅       based on B.C. 2 for the parameter set  

       ,          and  ̅        . 

 

Fig. 4. The change in the height of the cylinder with time based on B.C. 1 

for the parameter set         ,          and  ̅        . 
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