
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2421

Software Process Models with CoCoMo
techniques, and CASE tools in the context of

Software engineering
Ali Tariq Bhatti

1

1
Department of Electrical and Computer engineering

1
North Carolina A&T State University, Greensboro NC USA

1
atbhatti@aggies.ncat.edu, ali_tariq302@hotmail.com, alitariq.researcher.engineer@gmail.com

Abstract— Clearly, a program to solve a problem
and a Programming System Product to solve the
same problem are two entirely different things.
Obviously much more efforts and resources are
required for a Programming System Product. As
a rule of thumb, a programming system product
costs approximately ten times as much as a
corresponding program. The software industry is
largely interested in developing Programming
System Products and most commercial software
system or packages fall in this category.
Software engineering is largely concerned with
the Programming System Product. In this paper,
it also aims to introduce and explain the basic
CoCoMo process for software estimating. It is
hoped to provide auditors, software engineers
and project managers with an insight to a stable
method for estimating time, cost and staff. The
basic model distinguishes between three
different development modes Organic, Semi-
detached, and Embedded. On the other hand,
Computer Aided Software (Systems) Engineering
(CASE) appears to have the potential to improve
software development productivity, reduce
software maintenance costs, and enhance overall
product quality. Therefore, different software
process models have been used for software
design, validation, and testing.

Keywords—component; Software engineering,
Software processes, CoCoMo, Waterfall, CASE.

1. Software and Software Engineering

Software Engineering has to deal with a different
set of problems than other engineering disciplines,
since the nature of software is different. A software
product is entirely conceptual entity; it has no
physical or electrical properties like weight, color or
voltage. Consequently, there are no physical or
electrical laws to govern software engineering. In
fact, one of the goals of research in software
engineering is to form general laws that are
applicable to software.

 Software failures are also different from
failures of mechanical or electrical systems. Products
of these other engineering disciplines fail because of
the change in the physical or electrical properties of
the system caused by aging. A software product, on

the other hand never “wears out” due to age. In
software, failures occur due to faults in the
conceptual process. Software fails because the
design fails. In general, when a design fault is
detected in software, changes are usually made to
remove that fault so that it causes no failures in the
future. Due to this, and other reasons, software must
constantly undergo changes, which makes
maintenance, an important issue with software. With
this background we must define the software and
software engineering.

SOFTWARE: is a collection of computer programs,
procedures, rules, and associated documentation
and data.

SOFTWARE ENGINEERING:

i) It is the systematic approach to the
development, operation, maintenance, and
retirement of the software.

ii) It is the application of science and
mathematics by which the capabilities of computer
equipments are made useful to man via computer
programs, procedures, and associated
documentation.

The use of the terms “systematic approach” or “
Science and mathematics” for the development of
software means that software engineering is to
provide methodologies for developing software that
are close to the scientific methods as possible.

 The phrase “usable to man” emphasizes the
needs of the user and the software‟s interface with
the user. This definition implies that user needs
should be given due importance in the development
of software, and the final program should given
importance to the user interface.

 The basic goal of software engineering is to
produce high quality software at low cost. The two
basic driving factors are quality and cost. Cost of a
complete project can be calculated easily if proper
accounting procedures are followed. Quality of
software is something not so easy to quantify and
measure.

 There are a number of factors that determine
software quality. One can combine these different
factors into “Quality metric”, but the relative weights

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2422

of these different factors will depend on the overall
objectives of the project. Taking a broad view of
software quality we can specify three dimensions of
the product whose quality is to be assessed:

(i)Product Operations

(ii)Product Transition

(iii)Product Revision

The first factor of “Product Operation” deals with
quality factors such as correctness, reliability,
efficiency, Integrity, and usability. The second factor
“Product Transition” deals with quality factors like
portability, reusability, and interoperability. The
“Product Revision” concerned with those aspects
related to modification of programs and includes
factors like maintainability and testability. These three
dimensions with there factors are shown as under:

Figure 1: Factors of Software Development

Correctness is the extent to which a program
satisfies its specifications. Reliability is the property
which defines how well the software meets its
requirements. Efficiency is a factor in all issues
relating to the execution of software and includes
such considerations as response time, memory
requirement, and throughput. Integrity is the ability
to ensure that information is not modified except by
the person who is explicitly intended to modify it.
Usability, or the efforts required to learn and operate
the software properly that emphasizes the human
aspect of the system.

 Maintainability is the effort required to
locate and fix errors in operating programs.
Flexibility is the effort required to modify an
operational program (perhaps to enhance its
functionality). Testability is the effort required to test
to ensure that the system or a module perform its
intended function properly.

 Portability is the effort required to transfer
the software from one hardware configuration to
another. Reusability is the extent to which parts of
the software can be reused in other related

applications. Interoperability is the effort required to
couple the system with other systems. Enabling
different systems to work together and exchange
data. Interoperability between different systems is
achieved by using common standards and
specifications. Examples of e-learning
interoperability: Passing information about a student
and their educational qualifications from a Student
Record System in one college to a Student Record
System in another college.

2. Software project Decomposion and
Milestones.

The project is initially divided into the following
functional blocks. Significant administrative
overhead, costly for small teams and projects [2].

3. Requirement gathering.
4. Input Design and Modeling.
5. Entities modeling and their relationships
6. Database design
7. Data Security requirements
8. Team Responsibilities and their tasks.
9. Development of Interface for Foreground and

Backend database.
10. Output Design
11. Maintenance requirements.

3. Software Development Methodology

Often, the customer defines a set of general
objectives for software but does not identified detail
input, processing, or output requirements. In these
cases, and many other situations, a Prototyping
Paradigm may offer the best approach. The
prototyping paradigm begins with requirements
gathering. Developer and Customer meet and define
the overall objectives for the software, identify
whatever requirements are known, and outline areas
where further definition is mandatory. A “quick
design” then occurs. The quick design focuses on a
representation of those aspects of the software that
will be visible to the customer/user (e.g., input
approaches and output formats). The quick design
leads to the construction of a prototype. So, we
decided to adopt Prototyping methodology for the
development of this software, so that customer sees
what appears to be a working version of the software.
The successful development of a modern day
Information System (IS) which involves the writing of
software units (sometimes referred to as modules)
demands much more than a modern block structured
programming language and a powerful operating
system.

4. Software units

The three questions that a planner or auditor
needs to know about a prospective software unit
are:-

(i)How long will it take?

(ii)How much will it cost?

(iii)How many people will it need?

Product Operation

Portability

Reusability

Interoperability

Maintainability

Flexibility

Testability

Correctness
Reliability

Efficiency

Integrity
Usability

P
ro

d
. T

ran
sitio

n

P
ro

d
. R

ev
isio

n

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2423

5. Generic Software Process Models

There are many variants of these models e.g. formal
development where a waterfall-like process is used,
but the specification is formal that is refined through
several stages to an implementable design [1]. There
are four generic software process models:

(i)The waterfall model: Separate and distinct phases
of specification and development

(ii)Evolutionary development: Specification and
development are interleaved

(iii)Formal systems development (example - ASML):
A mathematical system model is formally
transformed to an implementation

(iv)Reuse-based development: The system is
assembled from existing components

 5.1 Waterfall Model

Figure 2: Waterfall Model[3]

The drawback of the waterfall model is the
difficulty of accommodating change after the process
is underway.

5.1.1 Waterfall Model problems:

• Inflexible partitioning of the project into
distinct stages

• This makes it difficult to respond to changing
customer requirements

• Therefore, this model is only appropriate
when the requirements are well-understood

• Waterfall model describes a process of
stepwise refinement

However, it uses are

 Based on hardware engineering models

 Widely used in military and aerospace
industries.

Although the waterfall model has its weaknesses, as
it is instructive because it emphasizes important
stages of project development. Even if one does not
apply this model, he must consider each of these
stages and its relationship to his own project [4]

5.2 Evolutionary development

 Exploratory development

 Objective is to work with customers
and to evolve a final system from an initial
outline specification.
 Should start with well-understood
requirements.
 The system evolves by adding new
features as they are proposed by customer.

Figure 3: Evolutionary Development

5.3 Formal systems development

 Based on the transformation of a mathematical
specification through different representations to
an executable program.

 Transformations are „correctness-preserving‟ so
it is straightforward to show that the program
conforms to its specification

 Embodied in the „Cleanroom‟ approach (which
was originally developed by IBM) to software
development

Figure 4: Formal systems development

Figure 5: Formal transformations

5.4. Reuse-oriented development

• Based on systematic reuse where systems
are integrated from existing components or COTS
(Commercial-off-the-shelf) systems

• Process stages

• Component analysis

• Requirements modification

• System design with reuse

• Development and integration

This approach is becoming more important but still
limited experience with it

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline

description

Concurrent

activities

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

R2
Formal

specification
R3

Executable
program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2424

Figure 6: Reuse -oriented development

6. CoCoMo in Software engineering

Constructive Cost Model (CoCoMo) is an
algorithmic software estimation model. The
fundamental concept is that the amount of effort
required in writing a software unit will depend of the
size of that unit. The relationship is not linear i.e. a
unit twice as long does not take up exactly twice the
effort. The general idea is that the EFFORT required
by a team of programmers to write a software unit is
measured in persons and months i.e. we say a unit
will take 10 person months. This is 10 people all
working for 1 month, or 2 people working for 5
months or 1 person working for 10 months etc. There
are obvious limitations on this. For example if a unit
requires 200 person months, it is impractical to have
1 person working for 200 months which is 16 years
and 8 months, similarly there is an immense problem
managing 200 people working for 1 month.

6.1 CoCoMo techniques

(i)Effort

The effort required is measured in person
months. We stress that the units of measurement are
persons times months and that we are estimating at
this stage "manpower effort". This EFFORT is
proportional to the SIZE of the software unit
measured in 1000's of lines of code; each line
representing one source instruction.

The generally accepted form is:

 EFFORT is measured in Person Months =
PM

 SIZE is measured in = KDSI

 Thousands (K) of Deliverable Source
Instructions (KDSI).

Therefore the concept can be stated as

EFFORT (in Person Months) is proportional to
MODULE SIZE in (KDSI)

PM  (KDSI)

The original research showed that the model requires
the (KDSI) to be raised to a power and the whole of
the right hand side to be multiplied by a coefficient.

PM = A x (KDSI)
B

This gives a first estimate of the manpower effort
required to write a software module. We will see that
the numbers A and B are given to us depending on
further information to do with the complexity of the
software itself. The important step here is that once
we know the size of the software unit and can find A&

B, then we can calculate an estimate of person
months of effort. This will involve the use of a
calculator, but we will keep the arithmetic as straight
forward as possible.

(ii)Development Time

The next step is to estimate the Total
Development Time. As this name implies, this is the
time taken to develop a software unit from beginning
to end. The Total Development time is known as
TDEV and is usually measured in MONTHS. It may
appear that once we have estimated the EFFORT as
so-many-person-months, we could divide this figure
by the number of programmers available and work
out the time. So, taking a more scientific approach
we say that:

Total Development time TDEV is based on
Effort as follows:-

TDEV = 2.5 (PM)
C

where the power C is also given to us depending on
the software module complexity.

(iii) Development Modes

There are three basic modes of development
ranging from simplest to most complex with a middle
ground. These have become known as:-

(a)Simplest - Organic Mode

(b)Middle Ground - Semi-Detached Mode

(c)Most Complex - Embedded Mode

There are no crystal clear cut boundaries between
these 3 modes of development and an experienced
Project Manager will need to use his judgment when
deciding which mode a new unit of software will fall
into.

As a general rule the following:-

Organic Mode: Fairly simple construction, small
KDSI, small team of programmers who all know the
ropes.

Semi-Detached Mode: The middle ground.

Embedded Mode: Complex software, high KDSI
upwards of 150 KDSI, large team with associated co-
ordination problems.

(iv)Cost

Finally in this section, let us take our first look
at how much a software unit will cost. We now have a
rough idea of the average number of staff required
and the time in months this number of people will be
working. If we coupled this with the cost per month of
the average staff member we would have a first
estimate of staff

development costs.

Average Number of Staff x Development Time in
Months x Cost per Programmer per Month.

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2425

The Reader should notice that Average Number of
Staff was obtained from:

Average Number of Staff = PM/TDEV

So, Average Number of Staff x Development Time =
PM /TDEVx TDEV = PM

In other words

Staff Costs = PM x Cost per Programmer per
Month

This is sensible when we think that PM = Persons x
Months and when this is multiplied by Cost per
Person per Month. This will give the Cost of the
software unit.

So, if we couple the development EFFORT with the
monthly cost of a programmer we could estimate the
total cost of this software unit.

The number of person months of EFFORT x Cost
per person per month = Total cost estimate for a
unit of this size.

(v)FURTHER REFINEMENTS

So far our estimates have been of a global
nature and dealt only with overall Effort and overall
Development Time, treating the whole software
development as a single "black box" unit. The next
step is to consider the software development in more
detail with thought to the actual phases involved.
Once a specification is received (from the
Analyst/Designer for traditional life cycle
development, or as a technical specification derived
by the Analyst/Programmer and User as part of a
prototype, or whatever other authority) there are 3
main phases to consider in turning this authorized
requirement program specification into the
deliverable product of a software unit. The overall
software unit is now considered as being comprised
of 3 main phases.

These 3 main phases are:

i. Product Design

ii. Programming

iii. Integration and Testing

Of the overall Effort calculated from the basic
CoCoMo formula we now consider what % of this
overall effort will be spent by the professional
programmer on Product Design; then the % of Effort
for actual Programming and finally the % of Effort
for Integration and Testing.

(a)Product Design Phase

Having received a specification, the first task
for the programmer is to sit down and design the
software to accomplish the required result. This
phase will include the logical structure and initial
documentation to achieve this end. In prototyping it
could include the design of the basic structure,
screen layouts, color schemes. It should be done in
close harmony with the User so that the final product

is what was ordered and "does not result in any
surprises at all". This will take 16%, 17% or 18% of
the overall effort depending on development mode as
we shall see.

(b)Programming Phase

When the design is complete there will then
be the actual programming phase which will take
between ½ and ¾ of the overall effort. The % will
actually vary from 48% up to 68% and depends on
the development mode and the actually size of the
software unit in KDSI.

(c)Integrating & Testing Phase

Finally, once the unit has been completely coded
it must now be Integrated and Tested with other
software within the project. This is a test of such
facets as interfaces, how our Software Unit is going
to react and inter react with other Units both at
interfaces, passing of parameters and variables,
calling routines and boundary conditions. The actual
test harness is beyond the scope of this particular
text. The amount of the original overall Effort varies
from 16% to 34% depending on development mode
and the actual size of the code to be Integrated and
Tested.

7. CASE

CASE is an acronym of Computer-Aided Software
Engineering. Software systems which are
intended to provide automated support for
software process activities, such as requirements
analysis, system modelling, debugging and testing

• Upper-CASE: Tools to support the early
process activities of
requirements and design

• Lower-CASE: Tools to support later
activities such as programming, debugging and
testing

On the surface, some speak of CASE tool integration
in terms of the support of shared data storage [8];
others describe a fully supported development life
cycle [6] where all tools interface to a common
framework/database in a distributed environment [7].

7.1 CASE integration

• Tools; Support individual process tasks such
as design consistency checking, text editing, etc.

• Workbenches: Support a process phase
such as specification or design, Normally include a
number of integrated tools

• Environments: Support all or a substantial
part of an entire software process. Normally include
several integrated workbenches

7.2 Integration Issues

With this in mind, the discussion of tool integration
will be approached from several different aspects

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2426

relative to the perspective of the end-user. Five areas
of integration are examined here, namely:

• Single-vendor tool integration

• Multiple-vendor tool integration-

• Operating environment integration

• Development process integration

• End-user integration

7.1 Single-Vendor Tool Integration

The initial form of CASE tool integration is
“internal” integration, that is, integration of the tools
and data of a single vendor. Some vendor tools use a
local data dictionary; others fashion a toolset joined
together around a central, shared dictionary. The
data dictionary is usually some form of (relational)
database which offers a vendor a way to provide
reliable data storage and access for the tools. This
form of integration is generally of a proprietary nature
[5].

7.2 Multiple-Vendor Tool Integration

Another form of integration is “external”
integration. This is when a vendor integrates tools
with those of another vendor. This integration can be
of the form of “access control” and/or “data control.”
In access control, the vendor allows the tools to be
invoked/controlled by tools from other vendors and
returns appropriate messages/codes to the invoking
process. In data control, the vendor allows these
external tools to (in)directly manipulate the data
contained in the internal dictionary. This section
focuses primarily on the data control aspect of
external integration.

7.3 Operating Environment Integration

When discussing CASE tool integration, the
operating environment should also be considered.
This includes both the base computing environment
and the add-on tools and utilities that compose the
development support environment. Some CASE tools
have versions that run on a personal computer (e.g.,
Excelerator (Index Technology), Teamwork (Cadre
Technologies)),while others are targeted to
workstations or mainframes (e.g., Software through
Pictures (StP) (IDE), Procase C Environment
(Procase Corporation)). Tools are also developed for
use on a specific target operating system. The choice
of system generally has to do with considerations for
the technical (real-time) or commercial (Management
Information Systems(MIS)) application to be hosted
by the toolset.

7.4 Development Process Integration

CASE tools are also working into the
framework of the development process. These tools
are no longer targeted specifically to the
analysis/design phase of software development.
CASE tools are being considered to help combine
the various phases of the entire life cycle (e.g.,project

management, analysis and design, configuration
management) in anticipation of smoothing process
transitions.

7.5 End-User Integration

Finally, more emphasis is being applied to
integration of CASE tools with the users themselves.
The concept of integration with the end-user ranges
from something as simple as maintaining a
consistent user interface to something as complex as
providing support for an expert system interface to
aid in detailed design.

8. Conclusion:

A simplified representation of a software
process presented from a specific perspective.
Different generic process models to be used as
Water Fall, Evolutionary Development, Formal
transformation, and Integration from reusable
components. A set of activities whose goal is the
development or evolution of software all software
processes are Specification, Development,
Validation, and Evolution. Using Software
engineering, CoCoMo process, and CASE process,
the software should deliver the required functionality
and performance to the user should be maintainable,
efficient, usable, and dependable. Therefore, roughly
60% of costs are development costs, and 40% costs
are testing costs. It depends on the type of system
being developed and the requirements of system
attributes such as performance, system reliability,
and the development model that is being used.
Software engineering in the 21

st
 century faces three

key challenges are (a)Legacy systems: which are
Old, valuable systems must be maintained and
updated. (b)Heterogeneity: Systems are distributed
and include a mix of hardware and software
(c)Delivery: There is increasing pressure for faster
delivery of software.

References:

[1] Ian Sommerville, "Software Engineering", Addison
Wesley, 7th edition, 2004.
[2] Karlm, "Software Lifecycle Models', KTH, 2006 .
[3] CTG. MFA – 003, "A Survey of System
Development Process Models", Models for Action
Project: Developing Practical Approaches to
Electronic Records Management and Preservation,
Center for Technology in Government University at
Albany / Suny, 1998 .
 [4] National Instruments Corporation, "Lifecycle
Models", 2006 , http://zone.ni.com.
 [5} Acly, E. “Looking Beyond CASE.” IEEE Software,
5, 2 (Mar 1988), 39-44.

[6] Martin, J. “Integrated CASE Tools a Must for
High-Speed Development.” PC Week, 6, 3 (Jan

1990), 78.
[7] Phillips, B. “A CASE for Working Together.” ESD:
The Electronic System Design Magazine, 1912 (Dec
1989), 55-58.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 9, September - 2015

www.jmest.org

JMESTN42351042 2427

[8] Wasserman, A. I. “Integration and Standardization
Drive CASE Advancements.” Computer Design, 27,
22 (Dec, 1988), 86.

BIOGRAPHY

Ali Tariq Bhatti received
his Associate degree in
Information System
Security (Highest Honors)
from Rockingham
Community College, NC
USA, B.Sc. in Software
engineering (Honors) from
UET Taxila, Pakistan,
M.Sc in Electrical
engineering (Honors) from
North Carolina A&T State
University, NC USA, and
currently pursuing PhD in
Electrical engineering
from North Carolina A&T
State University. Working
as a researcher in

campus and working off-campus too. His area of
interests and current research includes Coding
Algorithm, Networking Security, Mobile
Telecommunication, Biosensors, Genetic Algorithm,
Swarm Algorithm, Health, Bioinformatics, Systems
Biology, Control system, Power, Software
development, Software Quality Assurance,
Communication, and Signal Processing. For more
information, contact Ali Tariq Bhatti
alitariq.researcher.engineer@gmail.com.

