# Investigation And Model Prediction Of Cbr And Ucs Parameters Of Composite Stabilized Orukim Residual Soils, Akwa Ibom State, Nigeria.

Essien Udo Department of Civil Engineering, University of Uyo, Nigeria. E-mail: essienau2006@yahoo.com

Abstract—Cement and river sand were deployed for this laboratory stabilization experiments. The objective was to ascertain the response of Orukim residual soils to various levels of the composite stabilization and structural behaviour in engineering applications. The major goal of treating residual soil is to increase the shear strength and load bearing capacity. Four different residual soil samples from four distinct borrow pits were utilized for this investigation. The cement content varied from 2% to 8% while river sand content varied from 10% to 60%. For the purpose of model formulations the cement content was restricted to 6% and river sand content to 40% for CBR and 4% cement content to 40% river sand content for UCS. The CBR obtained ranged from 85%-145% and 71%-178% for measured and computed values respectively. The UCS values varied from 69kPa-189kPa and 122kPa-260kPa for 7 and 28 days curing durations respectively. It must be noted that the contribution of hydrated calcium silicate  $[C_2S_xH_X.C_3S_2H_X]$ and calcium aluminate  $[C_2AH_X.C_4AH_X]$  in cement tend to increase the bonding between particulate structures and in concert with fines from river sand contribute to plasticity reduction in residual soil hence gaining Finally in strength propagation. multiple nonlinear regressed models were developed to aid prediction and optimization of CBR and UCS parameters of Orukim residual soils at various levels of composite stabilization.

| Keywords -     | <i>r</i> esidual | soil; | cement; | composite |  |
|----------------|------------------|-------|---------|-----------|--|
| stabilization; | river sand       | l;    |         |           |  |

- I. INTRODUCTION
- A. Cement–River Sand Stabilization

This is a composite process. In this process, the amount of cement to be added to the river sand and residual soil is determined by conducting laboratory experiments. The objective is to achieve comparatively higher CBR values on sub base and course materials applications. Having base determined the quantity of cement and river sand required the mixing can be carried out either on the

Charles Kennedy Department of Civil Engineering, University of Uyo, Nigeria. E-mail:Ken\_charles@yahoo.co.uk

site (site -mixing) or in a central plant (plant mixing). In site mixing, the cement is usually delivered in bulk in dump or hopper trucks and spread by a spreader box or some other type of equipment that will provide a uniform amount over the pulverized soil. Enough water is then added to achieve a moisture content that is one per cent or two per cent higher than the optimum required for compaction, and the soil, river sand-cement and water are properly blended to obtain uniform moisture of soil, river-sand, and cement. Blending at moisture content slightly higher than the compaction optimum moisture content allows for loss of water by evaporation during the mixing and compaction processes. Soil, cement-river sand mixing is used in several applications as a more economical or improved performance alternative to some other geosystem methods. The improvement of the properties of cement treated soil has been attributed to the soil-cement reaction<sup>2</sup> which primary and secondary produces cementitious materials in the soil-cement matrix.3

- II. MATERIALS SELECTED
- A. River sand

This is one of the most abundant stabilizing materials within the coastal plains and tributaries of the Atlantic. The material was obtained from a tributary of the Cross river in Itu. The deleterious and silty substances were thoroughly removed by washing. The material was then air-dried before particle size gradation through sieve analysis. The air-dried sample was separated through the riffle box and 1000g utilized for this experiment. The sample was sieved from 10mm through 0.075mm in a mechanical shaker. Sand plays a vital role in enhancing the bond in cementation reactions of soil mixing. It is found that grain size distribution provides a satisfactory skeleton, and the voids are filled with fine sand giving a compact and high load bearing capacity<sup>4</sup>. The sand is observed to have a D60 grain diameter at 60% passing equal to 1.00mm, D30 grain diameter at 30% passing equal to 0.525mm and D10 grain at 10% passing equal to 0.250mm.

B. Orukim Residual Soil

Four soil samples from four distinct borrow pits were selected for this research. The samples were dug with shovels bearing in mind the variability of residual soils in its natural composition. The samples were excavated both vertically and horizontally and thoroughly blended. The sample locations are identified as shown:

| Sample<br>Identification | Location                            |
|--------------------------|-------------------------------------|
| 1                        | Km 1+075 Orukim Bridge              |
| 2                        | Km 3+025 Orukim – Unyeghe<br>road   |
| 3                        | Km 6+175 Orukim – Eto Essek<br>road |
| 4                        | Km11+150 Orukim – Okposi road       |

The samples were conveyed in four, 50kg nylon bags, carefully tagged for identification purpose and transported to Mothercat Ltd, Materials Testing Laboratory at Uyo.

## C. Cement

The cement used in this research was the ordinary Portland cement (OPC). It was purchased from Ewet market in Uyo. This cement is the most widely used in the construction industry in Uyo, Akwa Ibom State. Cement stabilization is mostly applicable to road stabilization and fills especially when the moisture content of the sub-grade is very high<sup>5</sup>.Ordinary Portland Cement particle is a heterogeneous substance, containing minute tri-calcium silicate  $(C_3S)$ , di-calcium silicate  $(C_2S)$ , tri-calcium aluminate (C<sub>3</sub>A) and solid solution described as tetra calcium alumino-ferrite (C<sub>4</sub>A). When the pore water of the soil encounters with cement, hydration of the cement occurs rapidly and the major hydration (primary cementitions) produces hydrated calcium silicate (C<sub>2</sub>SHx, C<sub>4</sub>AHx) and hydrated lime Ca (OH)<sub>2</sub>.<sup>6</sup>. In the case of residual soils addition of inorganic chemical such as cement has a two-fold effect on the soil which is acceleration and promotion of chemical bonding.

- III. PREPARATION AND TESTING OF SAMPLES
- A. Plain Mechanical Compaction Tests

This test Plain Mechanical Compaction Tests was conducted to determine the mass of dry soil per cubic meter and the soil was compacted in a specified manner over a range of moisture contents, including that giving the maximum mass of dry soil per cubic meter. For each of the samples, the Modified Proctor Compaction tests were conducted. The air-dried material was divided into five equal parts through a riffle box and weighed to 6000g each. Each sample was poured into the mixing plate. A particular percentage of distilled water was poured into each plate and thoroughly mixed with a trowel. An interval of about 1hour was allowed for the moisture to fully permeate the soil sample. The

sample was thereafter divided into five equal parts, weighed and each was poured into the compaction mould, in five layers and compacted at 61 blows each using a 4.5kg rammer falling over a height of 450mm above the top of the mould. The blows were evenly distributed over the surface of each layer. The collar of the mould was then removed and the compacted sample weighed while the corresponding moisture content was noted. The procedure was repeated with different moisture contents until the weight of compacted sample was noted to be decreasing. With the optimum moisture content obtained from the Modified Proctor test, samples were prepared and inserted into the CBR mould and values for the plain mechanical compaction were read for both top and bottom at various depths of penetration.

B. Cement-River Sand Stabilization Tests.

The four residual soil samples were utilised in this experiment. The percentage of cement ranged from 2%, 4%, 6% and 8%. The percentage of river sand ranged from 10%, 20%, 30%, 40%, 50% to 60%. For each cement content the percentage or proportion of residual soil complemented the 100% level. It is an established fact that the measurement of the strength of soil-cement mixture in laboratory and the determination of the parameters which affect it is very important for the estimation of the strength of mixture in-situ<sup>7</sup>. The mixture was thoroughly blended and moisturised and Modified Proctor compaction test was conducted to establish the OMC and MDD. With the OMC and MDD results, three specimens each were prepared for the CBR test. One specimen was tested immediately while the remaining two were wax-cured for 6days and thereafter soaked for 24 hours, and allowed to drain for 15minutes. After testing in CBR machine, the average of the two readings was adopted. This procedure meets the provision of clause 6228 design criteria. FMW&H  $(1997)^{8}$ 

### C. California Bearing Ratio[CBR] Test

The CBR test [as it is commonly known] involves the determination of the load-deformation curve of the soil in the laboratory using the standard CBR testing equipment. It was originally developed by the California Division of Highways prior to World War II and was used in the design of some highway pavements. This test has now been modified and is standardized under the AASHTO designation of T193. With the OMC and MDD results, three specimens each were prepared for the CBR test. One specimen was tested immediately while the remaining two were wax-cured for 6 days and thereafter soaked for 24 hours, and allowed to drain for 15minutes. After testing in CBR machine, the average of the two readings was adopted. CBR gives the relative strength of a soil with respect to crushed rock, which is considered an excellent coarse base material. The main criticism of the CBR test is that it does not correctly simulate the shearing

forces imposed on sub-base and sub-grade materials as they support highway pavement. *D. Unconfined Compression Test* 

Unconfined Compression Test is a triaxial test in which the axial load is applied to a specimen under zero all round pressure. This test is applicable only for testing intact fully saturated soils i.e. only on saturated samples which can stand without any lateral support. By implication the test is applicable to cohesive soils only. The test is an undrained test and is based on the assumption that there is no moisture loss during the test. The unconfined compression test is one of the tests used for the determination of the undrained shear strength of cohesive soils. In this test no radial stress is applied to the sample and the plunger load is increased rapidly until the soil sample fails. The loading is applied quickly so that pore water cannot drain from the soil; the sample is sheared at constant volume.

#### IV. PRESENTATION OF TEST RESULTS

Table I: Orukim Residual Soil Compaction at Plain Condition

| Sample<br>No. | MDD<br>(Kg/m³) | NMC<br>(%) | unsoaked<br>CBR<br>(%) | Fines<br>(%) |
|---------------|----------------|------------|------------------------|--------------|
| 1             | 1940           | 9.5        | 64                     | 35           |
| 2             | 1960           | 10.7       | 61                     | 33           |
| 3             | 2020           | 10.2       | 60                     | 37           |
| 4             | 1980           | 10.5       | 61                     | 31           |

Table II: Cement- Sand Stabilization CBR Results -Sample Location 1

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | MDD<br>(kg/m <sup>3</sup> ) | ОМС<br>(%) | Soaked<br>CBR<br>(%) |
|--------------------------|------------------------|-----------------------------|------------|----------------------|
|                          | 10                     | 2100                        | 11.2       | 83                   |
|                          | 20                     | 2040                        | 12.4       | 120                  |
|                          | 30                     | 2030                        | 9.1        | 129                  |
|                          | 40                     | 2040                        | 9.5        | 138                  |
| 2                        | 50                     | 2050                        | 10.4       | 150                  |
|                          | 60                     | 2070                        | 10.8       | 159                  |
|                          | 10                     | 1940                        | 12.3       | 91                   |
|                          | 20                     | 2040                        | 10.7       | 117                  |
|                          | 30                     | 2050                        | 12.6       | 134                  |
|                          | 40                     | 2060                        | 10.4       | 145                  |
| 4                        | 50                     | 2080                        | 10.8       | 150                  |
|                          | 60                     | 2100                        | 11         | 162                  |
|                          | 10                     | 2040                        | 12.9       | 97                   |
|                          | 20                     | 2060                        | 7.4        | 124                  |
|                          | 30                     | 2080                        | 11.8       | 138                  |
|                          | 40                     | 2060                        | 12.5       | 148                  |
| 6                        | 50                     | 2110                        | 10.8       | 165                  |
|                          | 60                     | 2130                        | 10.4       | 174                  |
|                          | 10                     | 2060                        | 15.1       | 105                  |
|                          | 20                     | 2060                        | 9.8        | 127                  |
|                          | 30                     | 2090                        | 9.6        | 140                  |

|   |    |      | / <b>1</b> |     |
|---|----|------|------------|-----|
| 8 | 40 | 2120 | 9.4        | 158 |
|   | 50 | 2060 | 10.3       | 172 |
|   | 60 | 2140 | 9.2        | 184 |

Table III: Cement- Sand Stabilization CBR Results - Sample Location 2

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | MDD<br>(kg/m³) | ОМС<br>(%) | Soaked<br>CBR<br>(%) |
|--------------------------|------------------------|----------------|------------|----------------------|
| (//)                     | 10                     | 2060           | 11.4       | 88                   |
|                          | 20                     | 2050           | 12.4       | 111                  |
|                          | 30                     | 2050           | 12.5       | 123                  |
|                          | 40                     | 2060           | 10.2       | 130                  |
| 2                        | 50                     | 2070           | 10.8       | 144                  |
|                          | 60                     | 2080           | 10.4       | 148                  |
|                          | 10                     | 2130           | 13.1       | 92                   |
|                          | 20                     | 2030           | 10.2       | 128                  |
|                          | 30                     | 2070           | 12.4       | 136                  |
|                          | 40                     | 2050           | 9.8        | 141                  |
| 4                        | 50                     | 2080           | 10.6       | 158                  |
|                          | 60                     | 2100           | 9.9        | 160                  |
|                          | 10                     | 2050           | 11.8       | 97                   |
|                          | 20                     | 2040           | 8.3        | 127                  |
|                          | 30                     | 2080           | 7.9        | 130                  |
|                          | 40                     | 2060           | 12.5       | 145                  |
| 6                        | 50                     | 2090           | 8.5        | 155                  |
|                          | 60                     | 2090           | 8.4        | 172                  |
|                          | 10                     | 2070           | 13.2       | 104                  |
|                          | 20                     | 2070           | 8.5        | 135                  |
|                          | 30                     | 2080           | 8.9        | 141                  |
|                          | 40                     | 2110           | 8.8        | 145                  |
| 8                        | 50                     | 2050           | 12.7       | 163                  |
|                          | 60                     | 2120           | 8.6        | 178                  |

| Cement<br>Content | Sand<br>Content | MDD<br>(ka/m3) | OMC  | Soaked<br>CBR |
|-------------------|-----------------|----------------|------|---------------|
| (%)               | (%)             | (Ng/110)       | (70) | (%)           |
|                   | 10              | 2080           | 13.4 | 85            |
|                   | 20              | 2040           | 12.4 | 101           |
|                   | 30              | 2040           | 11.5 | 116           |
|                   | 40              | 2050           | 9.9  | 127           |
| 2                 | 50              | 2060           | 11.3 | 128           |
|                   | 60              | 2070           | 12.1 | 138           |
|                   | 10              | 2070           | 11.3 | 89            |
|                   | 20              | 2050           | 9.1  | 112           |
|                   | 30              | 2050           | 10.5 | 119           |
|                   | 40              | 2070           | 9.9  | 128           |
| 4                 | 50              | 2090           | 10.2 | 136           |
|                   | 60              | 2120           | 10.9 | 147           |
|                   | 10              | 2040           | 12.8 | 93            |
|                   | 20              | 2060           | 10.8 | 122           |
|                   | 30              | 2080           | 8.2  | 129           |
|                   | 40              | 2090           | 10.8 | 139           |
| 6                 | 50              | 2100           | 7.9  | 149           |
|                   | 60              | 2100           | 8.1  | 158           |
|                   | 10              | 2070           | 13.6 | 106           |
|                   | 20              | 2070           | 8.6  | 125           |
| 0                 | 30              | 2100           | 7.2  | 139           |
| ð                 | 40              | 2090           | 8.6  | 151           |
|                   | 50              | 2040           | 13.6 | 161           |
|                   | 60              | 2120           | 9.2  | 176           |

Table IV: Cement- Sand Stabilization CBR Results - Sample Location 3

| Table V: Cemen  | - Sand | Stabilization | CBR | Results | - |
|-----------------|--------|---------------|-----|---------|---|
| Sample Location | 4      |               |     |         |   |

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | MDD<br>(kg/m3) | ОМС<br>(%) | Soaked<br>CBR<br>(%) |
|--------------------------|------------------------|----------------|------------|----------------------|
|                          | 10                     | 1810           | 8.4        | 90                   |
|                          | 20                     | 2040           | 14.2       | 104                  |
|                          | 30                     | 2030           | 12.4       | 118                  |
| 2                        | 40                     | 2040           | 11.4       | 127                  |
| 2                        | 50                     | 2050           | 12.5       | 132                  |
|                          | 60                     | 2060           | 12.4       | 140                  |
|                          | 10                     | 2060           | 13.8       | 83                   |
|                          | 20                     | 2050           | 10.5       | 106                  |
|                          | 30                     | 2060           | 12.4       | 119                  |
|                          | 40                     | 2070           | 9.9        | 128                  |
| 4                        | 50                     | 2100           | 10.5       | 138                  |
|                          | 60                     | 2080           | 10.5       | 146                  |
|                          | 10                     | 2050           | 10.3       | 87                   |
|                          | 20                     | 2030           | 8.6        | 120                  |
|                          | 30                     | 2050           | 7.7        | 127                  |
|                          | 40                     | 2090           | 11         | 139                  |
| 6                        | 50                     | 2080           | 8.2        | 150                  |
|                          | 60                     | 2100           | 8.7        | 158                  |
|                          | 10                     | 2050           | 14.7       | 80                   |
|                          | 20                     | 2030           | 6.7        | 124                  |

| Journal of Multidisciplinary Engineering Science and Technology (JMEST) |
|-------------------------------------------------------------------------|
| ISSN: 3159-0040                                                         |
| Vol. 2 Issue 9, September - 2015                                        |

|   | 30 | 2060 | 6.5  | 140 |
|---|----|------|------|-----|
| 8 | 40 | 2090 | 6.7  | 148 |
|   | 50 | 2080 | 12.6 | 162 |
|   | 60 | 2020 | 6.4  | 175 |

Table VI: Cement-Sand Stabilization UCS Results at 7 Days Curing Duration

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Compressive<br>Strength<br>(KPa) |  |  |
|--------------------------|------------------------|--------------------|----------------------------------|--|--|
| Sample Location 2        |                        |                    |                                  |  |  |
|                          | 10                     | 7                  | 69                               |  |  |
|                          | 20                     | 7                  | 75                               |  |  |
|                          | 30                     | 7                  | 104                              |  |  |
| 2                        | 40                     | 7                  | 111                              |  |  |
| 2                        | 50                     | 7                  | 95                               |  |  |
|                          | 60                     | 7                  | 55                               |  |  |
|                          | 10                     | 7                  | 101                              |  |  |
|                          | 20                     | 7                  | 115                              |  |  |
|                          | 30                     | 7                  | 142                              |  |  |
|                          | 40                     | 7                  | 154                              |  |  |
| 4                        | 50                     | 7                  | 164                              |  |  |
|                          | 60                     | 7                  | 172                              |  |  |
|                          | 10                     | 7                  | 160                              |  |  |
|                          | 20                     | 7                  | 189                              |  |  |
|                          | 30                     | 7                  | 202                              |  |  |
|                          | 40                     | 7                  | 210                              |  |  |
| 6                        | 50                     | 7                  | 232                              |  |  |
|                          | 60                     | 7                  | 243                              |  |  |
|                          | 10                     | 7                  | 255                              |  |  |
|                          | 20                     | 7                  | 270                              |  |  |
|                          | 30                     | 7                  | 281                              |  |  |
|                          | 40                     | 7                  | 289                              |  |  |
| 8                        | 50                     | 7                  | 311                              |  |  |
|                          | 60                     | 7                  | 318                              |  |  |

Table VII: Cement-Sand Stabilization UCS Results at 7 Days Curing Duration

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Compressive<br>Strength (KPa) |
|--------------------------|------------------------|--------------------|-------------------------------|
|                          | Samp                   | le Location        | 4                             |
|                          | 10                     | 7                  | 71                            |
|                          | 20                     | 7                  | 78                            |
|                          | 30                     | 7                  | 92                            |
| 2                        | 40                     | 7                  | 94                            |
| 2                        | 50                     | 7                  | 101                           |
|                          | 60                     | 7                  | 108                           |
|                          | 10                     | 7                  | 111                           |
|                          | 20                     | 7                  | 126                           |
|                          | 30                     | 7                  | 144                           |
|                          | 40                     | 7                  | 155                           |
| 4                        | 50                     | 7                  | 161                           |
|                          | 60                     | 7                  | 169                           |
|                          | 10                     | 7                  | 117                           |
|                          | 20                     | 7                  | 153                           |
|                          | 30                     | 7                  | 159                           |
| 6                        | 40                     | 7                  | 167                           |
| 0                        | 50                     | 7                  | 200                           |

| ournal of Multidisciplinary Engineering Science and Technology (JMEST) |
|------------------------------------------------------------------------|
| ISSN: 3159-0040                                                        |
| Vol. 2 Issue 9. September - 2015                                       |

|   | 60 | 7 | 226 |
|---|----|---|-----|
|   | 10 | 7 | 253 |
|   | 20 | 7 | 274 |
|   | 30 | 7 | 289 |
|   | 40 | 7 | 310 |
| 8 | 50 | 7 | 327 |
|   | 60 | 7 | 344 |

Table VIII: Cement-Sand Stabilization UCS Results at 28 Days Curing Duration

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Compressive<br>Strength KPa) |  |  |  |  |  |
|--------------------------|------------------------|--------------------|------------------------------|--|--|--|--|--|
|                          | Sample Location 2      |                    |                              |  |  |  |  |  |
|                          | 10                     | 28                 | 122                          |  |  |  |  |  |
|                          | 20                     | 28                 | 138                          |  |  |  |  |  |
|                          | 30                     | 28                 | 157                          |  |  |  |  |  |
| 2                        | 40                     | 28                 | 166                          |  |  |  |  |  |
| 2                        | 50                     | 28                 | 163                          |  |  |  |  |  |
|                          | 60                     | 28                 | 143                          |  |  |  |  |  |
|                          | 10                     | 28                 | 162                          |  |  |  |  |  |
|                          | 20                     | 28                 | 185                          |  |  |  |  |  |
|                          | 30                     | 28                 | 193                          |  |  |  |  |  |
|                          | 40                     | 28                 | 213                          |  |  |  |  |  |
| 4                        | 50                     | 28                 | 241                          |  |  |  |  |  |
|                          | 60                     | 28                 | 267                          |  |  |  |  |  |
|                          | 10                     | 28                 | 202                          |  |  |  |  |  |
|                          | 20                     | 28                 | 218                          |  |  |  |  |  |
|                          | 30                     | 28                 | 264                          |  |  |  |  |  |
|                          | 40                     | 28                 | 286                          |  |  |  |  |  |
| 6                        | 50                     | 28                 | 301                          |  |  |  |  |  |
|                          | 60                     | 28                 | 320                          |  |  |  |  |  |
|                          | 10                     | 28                 | 340                          |  |  |  |  |  |
|                          | 20                     | 28                 | 352                          |  |  |  |  |  |
|                          | 30                     | 28                 | 366                          |  |  |  |  |  |
|                          | 40                     | 28                 | 375                          |  |  |  |  |  |
| 8                        | 50                     | 28                 | 383                          |  |  |  |  |  |
|                          | 60                     | 28                 | 394                          |  |  |  |  |  |

| Table IX: Cement-Sand Stabilization UCS Results | at |
|-------------------------------------------------|----|
| 28 Days Curing Duration                         |    |

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Compressive<br>Strength (KPa) |
|--------------------------|------------------------|--------------------|-------------------------------|
|                          | Sample                 | e Location 4       |                               |
|                          | 10                     | 28                 | 132                           |
|                          | 20                     | 28                 | 143                           |
|                          | 30                     | 28                 | 156                           |
| 2                        | 40                     | 28                 | 170                           |
| 2                        | 50                     | 28                 | 146                           |
|                          | 60                     | 28                 | 195                           |
|                          | 10                     | 28                 | 200                           |
|                          | 20                     | 28                 | 210                           |
|                          | 30                     | 28                 | 221                           |
|                          | 40                     | 28                 | 232                           |
| 4                        | 50                     | 28                 | 244                           |
|                          | 60                     | 28                 | 233                           |
|                          | 10                     | 28                 | 252                           |
|                          | 20                     | 28                 | 260                           |
|                          | 30                     | 28                 | 268                           |

| 6 | 40 | 28 | 281 |
|---|----|----|-----|
|   | 50 | 28 | 303 |
|   | 60 | 28 | 310 |
|   | 10 | 28 | 328 |
|   | 20 | 28 | 336 |
|   | 30 | 28 | 346 |
|   | 40 | 28 | 355 |
| 8 | 50 | 28 | 373 |
|   | 60 | 28 | 388 |

### V. DISCUSSION OF TEST RESULTS

Table 1 presents Orukim residual soil compaction at unstabilized or plain condition. The MDD and NMC varies from 1940kg/m<sup>3</sup> - 1980kg/m<sup>3</sup> and 9.5% -10.7% respectively. The CBR values vary from 64% -61% within the four locations. Tables 2 to 6 present the residual soil with cement-sand composite stabilization from the four distinct borrow pits. From all the samples and deploying 2% cement content, 20% river sand and 78% residual soil the MDD and CBR values are 2040kg/m<sup>3</sup>, 2050kg/m<sup>3</sup>, 2040kg/m<sup>3</sup>, 2040kg/m<sup>3</sup> and 120%, 111%, 101%, 104% respectively. With increase in cement content to 6% and reduced river sand content to10% and residual soil at 84% the resulting MDD and CBR values are 2040kg/m<sup>3</sup>, 2050kg/m<sup>3</sup>, 2040kg/m<sup>3</sup>, 2050kg/m<sup>3</sup> and 97%, 97%, 93%, 87% respectively. A further increase in cement content to 8%, river sand 10% and residual soil 82% yields the following MDD and CBR values; 2060kg/m<sup>3</sup>. 2070kg/m<sup>3</sup>. 2070kg/m<sup>3</sup>, 2050kg/m<sup>3</sup> and 105%, 104%, 106%. 80% respectively. Tables 6 and 7 present the UCS values of samples from locations 2 and 4 at curing duration of 7 days while Tables 8 and 9 show the values resulting from 28 days curing duration. The UCS results indicate variations from 69kPa - 344kPa for 7 days curing and 122kPa – 394kPa for 28 days curing. In all the samples the OMC values vary from 7.9% to 14.7%. It is therefore pertinent to note that with 2% cement, 20% river sand, Orukim residual soil could be stabilized for use as base course material in engineering applications. The CBR values from the four locations; 120%, 111%, 101% and 104% are reasonably above recommended minimum of 80% by the FMW&H (1997) specification.

### VI. MULTIPLE NONLINEAR REGRESSED MODELS

From analysis and utilizing multiple nonlinear regressed programs, some models were developed for Orukim residual soils at various levels of composite stabilization. The models aid prediction and optimization in determining for what values of the independent variables the dependent variable is a maximum or minimum.

 $CBR_2 = 21.217 - 1.016C - .073S + .723D - .807M - .881C^2 + .047S^2 - .342D^2 + .278M^2 + .362CS + .$ 

.494CD +.649CM +.339SD .081SM + + .361DM....1.1 Where C = cement content [%], S = River sand content [%], D =Maximum dry density [kg/m<sup>3</sup>], M = Optimum moisture content [%] CBR<sub>3</sub> =10.861 - 0.138C - .359S + 0.114D - 0.149M - $0.694C^2 - 0.016S^2 + 0.577D^2 + 0.196M^2 + 0.942CS -$ 0.754CD + 0.712CM + 0.251SD + 0.102SM -Where C = cement content [%], S = River sand content [%], D =Maximum dry density [kg/m<sup>3</sup>], M = Optimum moisture content [%]  $UCS_{7(2)} = 25.831 + 0.479C + 0.583S - 0.226T - 0.943C^{2} - 0.102S^{2} + 0.323T^{2} - 0.137CS - 0.685CT + 0.125CT + 0.125C$ 0.834ST......1.3 Where C =cement content [%], S = River sand content [%], T = duration [days]  $\begin{array}{l} UCS_{7(4)} = 24.157 + 0.448C + 0.545S - 0.212T - \\ 0.882C^2 - 0.095S^2 + 0.302T^2 - 0.128CS - 0.641CT + \end{array}$ 0.779ST.....1.4 Where C =cement content [%], S = River sand content [%], T = duration [days] 0.115ST......1.5 Where C =cement content [%], S = River sand content [%], T = duration [days] $UCS_{28(4)} = 10.431 + 0.881C + 0.363S + 0.463T 0.157C^{2} + 0.101S^{2} + 0.165T^{2} + 0.295CS + 0.314CT -$ 0.129ST......1.6 Where C =cement content [%], S = River sand content [%], T = duration [days] Table X: Multiple Regressed Variables for Computed CBR Measured and ValuesResidual Soil, Cement-Sand Stabilization – Sample Location 2

| Cement<br>Content<br>(%) | River<br>Sand<br>Content<br>(%) | MDD<br>(kg/m³) | ОМС<br>(%) | Soaked<br>CBR (%) | Computed<br>CBR (%) |
|--------------------------|---------------------------------|----------------|------------|-------------------|---------------------|
|                          | 10                              | 2.06           | 11.4       | 88                | 88.796              |
| 2                        | 20                              | 2.05           | 12.4       | 111               | 101.364             |
| 2                        | 30                              | 2.05           | 12.5       | 123               | 135.486             |
|                          | 40                              | 2.06           | 10.2       | 130               | 156.514             |
|                          | 10                              | 2.13           | 13.1       | 92                | 118.182             |
| 4                        | 20                              | 2.03           | 10.2       | 128               | 83.929              |
| 4                        | 30                              | 2.07           | 12.4       | 136               | 134.837             |
|                          | 40                              | 2.05           | 9.8        | 141               | 152.855             |
|                          | 10                              | 2.05           | 11.8       | 97                | 109.022             |
| G                        | 20                              | 2.04           | 8.3        | 127               | 71.312              |
| 6                        | 30                              | 2.08           | 7.9        | 130               | 98.898              |
|                          | 40                              | 2.06           | 12.5       | 145               | 178.334             |
| 8                        | 10                              | 2.07           | 13.2       | 104               | 125.171             |
|                          | 20                              | 2.07           | 8.5        | 135               | 72.831              |
|                          | 30                              | 2.08           | 8.9        | 141               | 105.943             |



TableXI:MultipleRegressedVariablesforMeasuredandComputedCBRValues–ResidualSoil,Cement-SandStabilization–Sample Location3

Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 9, September - 2015

| Cement<br>Content<br>(%) | River<br>Sand<br>Content<br>(%) | MDD<br>(kg/m³) | ОМС<br>(%) | Soaked<br>CBR (%) | Computed<br>CBR (%) |
|--------------------------|---------------------------------|----------------|------------|-------------------|---------------------|
|                          | 10                              | 2.08           | 13.4       | 85                | 71.236              |
| 2                        | 20                              | 2.04           | 12.4       | 101               | 44.693              |
|                          | 30                              | 2.04           | 11.5       | 116               | 45.418              |
|                          | 40                              | 2.05           | 9.9        | 127               | 36.986              |
|                          | 10                              | 2.07           | 11.3       | 89                | 82.794              |
| 4                        | 20                              | 2.05           | 9.1        | 112               | 29.622              |
|                          | 30                              | 2.05           | 10.5       | 119               | 39.752              |

|          | 40 | 2.07 | 9.9  | 128 | 37.088  |
|----------|----|------|------|-----|---------|
|          | 10 | 2.04 | 12.8 | 93  | 113.185 |
| <u> </u> | 20 | 2.06 | 10.8 | 122 | 36.837  |
| 6        | 30 | 2.08 | 8.2  | 129 | 28.293  |
|          | 40 | 2.09 | 10.8 | 139 | 42.963  |
|          | 10 | 2.07 | 13.6 | 106 | 135.294 |
| 8        | 20 | 2.07 | 8.6  | 125 | 27.735  |
|          | 30 | 2.1  | 7.2  | 139 | 24.022  |



| Table    | XII:  | Mu     | ltiple F | Regres  | sed  | Varia  | bles    | for  |
|----------|-------|--------|----------|---------|------|--------|---------|------|
| Measur   | ed a  | nd Co  | mputed   | UCS     | Valu | es –   | Resid   | lual |
| Soil, Ce | ement | t-Sand | Stabiliz | ation – | Sam  | ple Lo | ocation | า 2  |

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Measured<br>UCS (KPa) | Computed<br>UCS (KPa) |
|--------------------------|------------------------|--------------------|-----------------------|-----------------------|
| 2                        | 10                     | 7                  | 69                    | 78.942                |
| 2                        | 20                     | 7                  | 75                    | 109.812               |
| 2                        | 30                     | 7                  | 104                   | 120.282               |
| 2                        | 40                     | 7                  | 111                   | 110.352               |
| 2                        | 10                     | 7                  | 101                   | 78.942                |
| 2                        | 20                     | 7                  | 115                   | 109.812               |

| 4 | 30 | 7 | 142 | 92.114 |
|---|----|---|-----|--------|
| 4 | 40 | 7 | 154 | 79.444 |
| 4 | 10 | 7 | 160 | 56.254 |
| 4 | 20 | 7 | 189 | 84.384 |



TableXIII:MultipleRegressedVariablesforMeasuredandComputedUCSValues–ResidualSoil,Cement-SandStabilization–Sample Location4

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Measured<br>UCS (KPa) | Computed<br>UCS (KPa) |
|--------------------------|------------------------|--------------------|-----------------------|-----------------------|
| 2                        | 10                     | 7                  | 71                    | 73.785                |
| 2                        | 20                     | 7                  | 78                    | 102.705               |
| 2                        | 30                     | 7                  | 92                    | 112.625               |
| 2                        | 40                     | 7                  | 94                    | 103.545               |
| 2                        | 10                     | 7                  | 111                   | 73.785                |

| 2 | 20 | 7 | 126 | 102.705 |
|---|----|---|-----|---------|
| 4 | 30 | 7 | 144 | 86.283  |
| 4 | 40 | 7 | 155 | 74.643  |
| 4 | 10 | 7 | 117 | 52.563  |
| 4 | 20 | 7 | 153 | 78.923  |



| Table    | XIV:   | Multiple  | Regressed      | l Variables   | for  |
|----------|--------|-----------|----------------|---------------|------|
| Measu    | red an | d Comput  | ed UCS Va      | alues – Resi  | dual |
| Soil, Ce | ement- | Sand Stab | ilization – Sa | ample Locatic | n 2  |

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Measured<br>UCS (KPa) | Computed<br>UCS (KPa) |
|--------------------------|------------------------|--------------------|-----------------------|-----------------------|
| 2                        | 10                     | 28                 | 122                   | 127.379               |
| 2                        | 20                     | 28                 | 138                   | 119.869               |
| 2                        | 30                     | 28                 | 157                   | 130.159               |
| 2                        | 40                     | 28                 | 166                   | 158.249               |
| 2                        | 10                     | 28                 | 162                   | 127.379               |

| 2 | 20 | 28 | 185 | 119.869 |
|---|----|----|-----|---------|
| 4 | 30 | 28 | 193 | 129.961 |
| 4 | 40 | 28 | 213 | 152.811 |
| 4 | 10 | 28 | 202 | 137.661 |
| 4 | 20 | 28 | 218 | 124.911 |



| Table    | XV:    | Multiple  | Regressed      | Variables    | for  |
|----------|--------|-----------|----------------|--------------|------|
| Measu    | red ar | nd Compu  | ted UCS Val    | ues – Resi   | dual |
| Soil, Ce | ement  | Sand Stab | ilization – Sa | mple Locatio | n 4  |

| Cement<br>Content<br>(%) | Sand<br>Content<br>(%) | Duration<br>(days) | Measured<br>UCS (KPa) | Computed<br>UCS (KPa) |
|--------------------------|------------------------|--------------------|-----------------------|-----------------------|
| 2                        | 10                     | 28                 | 132                   | 143.183               |
| 2                        | 20                     | 28                 | 143                   | 135.093               |
| 2                        | 30                     | 28                 | 156                   | 147.203               |
| 2                        | 40                     | 28                 | 170                   | 179.513               |

| 2 | 10 | 28 | 200 | 143.183 |
|---|----|----|-----|---------|
| 2 | 20 | 28 | 210 | 135.093 |
| 4 | 30 | 28 | 221 | 146.965 |
| 4 | 40 | 28 | 232 | 173.375 |
| 4 | 10 | 28 | 252 | 154.745 |
| 4 | 20 | 28 | 260 | 140.755 |



Tables 10 and 11 present the multiple regressed variables for computed CBR values derived from cement-sand composite stabilization. The values vary from 85% – 145% and 71% – 178% for measured and computed values respectively. Tables 12 and 13 show the results of UCS values for 7 days curing duration.

Tables 14 and 15 show the UCS values for 28 days curing duration for sample locations 2 and 4 respectively. The UCS values vary from 69kPa – 189kPa and 122kPa – 260kPa for both durations.

The models 1.2 and 1.3 do not seem to generate higher correlations between the measured and computed values hence could further be optimized by subjecting the coefficients of the input variables to further basic iterations.

The models 1.1, 1.4, 1.5 and 1.6 are adequate for this research. Model 1.1 revealed that with 2% cement content and sand content from 10% - 40% the measured and computed CBR values vary from 88%-130% and 88%-156% respectively. With models 1.4 and 1.6 similar input variables revealed measured and computed UCS values ranging from 71kPa – 94kPa and 73kPa - 103kPa for 7 days curing duration and 132kPa – 170kPa and 143kPa – 179kPa for 28 days curing duration. These values are adequate for both sub base and base course applications because they are above recommended minimum by the FMW&H Specifications.

The accuracy and reliability of the models were checked by comparing the measured and computed values of CBR and UCS and computing the correlation coefficients. The figures I to VI illustrate the measured and computed values based on non-linear regressed models. The straight line in the figure represents the line of perfect equality where the measured and computed values are exactly equal.

The correlation coefficients  $R^2$  at 95% confidence interval are 0.341, 0.0757, for CBR with cement content from 2% to 6% and sand content from 10% to 40%. The UCS  $R^2$  are 0.1842, 0.476, 0.0613 and 0.026 for cement content from 2% to 4% and sand content from 10% to 40%. These values are statistically significant and suggest that the measured and computed values are compatible.

## ACKNOWLEDGEMENT

The author would like to acknowledge the contribution of Esudo Engineering Ventures for support rendered in the course of this research.

## REFERENCES

[1] Mitchell, J.K. and Shen, C.K. [1967] Soil-Cement Properties Determined by Repeated Loading in Relation to Bases for Flexible Pavements. Proc. 2<sup>nd</sup> Int. Conf. on SDAP University of Michigan, Michigan, vol.1 pp 427-451

[2] Kezdi, A. [1979] "Stabilized Earth Road." Development in Geotechnical Engineering. Elsevier Scientific Publishing Company

[3] Cokca, E. [2001 "Use of Class C Flyashes for the Stabilization of an Expansive Soil" Journal of

Geotechnical and Geo environmental Engineering, ASCE 27(7), 568-573.

[4] Deboucha, S., Hashim, R. and Alwi, A. [2008]
"Engineering Properties of Stabilized Tropical Peat Soils" Electronic Journal of Geotechnical Engineering.
[5] Muntohar, A. S.,and Hantoro, G. [2000] Influence of Rice Husk Ash and Lime on Engineering Properties of Clayey Subgrade. Electronic Journal of Geotechnical Engineering paper 094. [6] Bergado, [1996] Soil Compaction and Soil Stabilization by Admixtures. Proc. of Seminar on Ground Improvement Application to Indonesian Soft Soil, Indonesia, Jakarta 23-26.

[7] Porbaha, A. [2000] "State-of-the Art in Deep Mixing Technology, Design Considerations". Ground Improvement vol. 4, pp111-125

[8] Federal Ministry of Works & Housing, General Specifications (Roads and Bridges), vol. II, 1997.