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Abstract— The main purpose of this study is to 
obtain dimensionless differential equation of 
motion for free vibration of the axially vibrating 
beams, to solve this dimensionless vibration 
problem for different boundary conditions and to 
obtain the natural frequencies for the first five 
modes. The dimensionless differential equation of 
motion of the beam is obtained and solved to 
obtain the frequency equation. An I-profile beam 
is chosen for the numerical analysis. The natural 
frequencies of the first five modes are obtained 
for the I-beam modeled as a fixed beam, a 
cantilever beam and a free beam. The frequency 
values are listed in the tables. 
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I.  INTRODUCTION 

In practice, the representation of a beam by a 
discrete model is an idealized model; however, in fact, 
beams have continuously distributed mass and 
elasticity. Mostly, especially for the axially vibration, 
beams are modeled as continuous systems having 
infinite number of degreed of freedom and, usually, the 
dimensional equation of motion is taken into 
consideration in the vibration analysis of the beams [1-
5]. 

In this study, the dimensionless equation of motion 
of an axially vibrating beam for free vibration is 
obtained and solved by the method of separation of 
variables [6]. The natural frequencies for the first five 
modes are obtained for three beam types, being fixed 
beam, cantilever beam and free beam. The axially 
vibrating beam considered in the study is assumed to 
be homogeneous and isotropic.  

II. EQUATION OF MOTION FOR AN AXIALLY VIBRATING 

BEAM 

A. Dimensional Equation of Motion 

An axially vibrating beam, given in Fig. 1, with the 
distributed mass m, the length L, the modulus of 
elasticity E, the cross-section area A and the axial 
rigidity AE has a dimensional differential equation of 
motion for free vibration as [7] 

2u(x,t)

𝑥2 −
𝑚

AE

2u(x,t)

𝑡2 = 0        (1) 

where u(x,t) is the displacement function of the beam 
in terms of both displacement x and time t. Application 
of the separation of variables method to (1) as in the 
form of (2) is commonly used in vibration analysis of 
beams. 

𝑢(𝑥, 𝑡) = 𝑋(𝑥). 𝑇(𝑡) = 𝑋(𝑥). [𝐴. sin(𝑡) + 𝐵. cos(𝑡)] (2) 

In (2), X(x) is the eigenfunction named as shape 

function, T(t) is time function,  is the eigenvalue of the 
solution named as natural frequency and A, B are the 
integration constants. 

 

Fig. 1. An axially vibrating beam with the distributed mass 
m, the length L, the modulus of elasticity E, the cross-section 
area A and the axial rigidity AE. 

The derivatives used in (1) can, therefore, be written 
as 

2𝑢(𝑥,𝑡)

𝑥2 = 𝑢′′(𝑥, 𝑡) = 𝑋′′(𝑥). [𝐴. sin(𝑡) + 𝐵. cos(𝑡)] =

𝑋′′(𝑥). 𝑇(𝑡)         (3) 

2𝑢(𝑥,𝑡)

𝑡2 = 𝑢̈(𝑥, 𝑡) = 𝑋(𝑥). (−2)[𝐴. sin(𝑡) +

𝐵. cos(𝑡)] = −2. 𝑋(𝑥). 𝑇(𝑡)       (4) 

where (
//
) and (¨) denote the second order derivative 

due to x and t, respectively. Substitution of (3) and (4) 
in (1) gives the governing equation of motion in the 
dimensional form as 

𝑋′′(𝑥). 𝑇(𝑡) +
𝑚2

AE
𝑋(𝑥). 𝑇(𝑡) = 0 

𝑋′′(𝑥) +
𝑚2

AE
𝑋(𝑥) = 0     0 ≤ 𝑥 ≤ 𝐿      (5) 

B. Dimensionless Equation of Motion 

Taking z=x/L as the dimensionless displacement 

variable with x=z.L, x=z.L and x
2
=z

2
.L

2
, the 

dimensionless differential equation of motion for axial 
vibration of a beam is obtained from (1) as 

2u(z,t)

𝑧2𝐿2 −
𝑚

AE

2u(z,t)

𝑡2 = 0 
2u(z,t)

𝑧2 −
𝑚𝐿2

AE

2u(z,t)

𝑡2      (6) 

 Substituting the successive differentiations of the 
dimensionless displacement function u(z,t) in (7) 

 

 

m, L, AE 
x 

u(x,t) 
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obtained, again, by using the method of separation of 
variables into (6) give (8) for general solution of 
dimensionless equation of motion. 

 𝑢(𝑧, 𝑡) = 𝑍(𝑧). 𝑇(𝑡)        (7) 

2𝑢(𝑧, 𝑡)

𝑧2
= 𝑢′′(𝑧, 𝑡) = 𝑍′′(𝑧). 𝑇(𝑡) 

2𝑢(𝑧, 𝑡)

𝑡2
= 𝑢̈(𝑧, 𝑡)

= 𝑍(𝑧). (−2)[𝐴. sin(𝑡) + 𝐵. cos(𝑡)]
= −2. 𝑍(𝑧). 𝑇(𝑡) 

𝑍′′(𝑧) +
𝑚𝐿22

AE
𝑍(𝑧) = 0 

𝑓𝑜𝑟 𝛼2 =
𝑚𝐿22

AE
  𝑍′′(𝑧) + 𝛼2𝑍(𝑧) = 0     (8) 

The characteristic equation and the solution of (8) 
is given as follows as D being d/dz: 

𝐷2 + 𝛼2 = 0   →     𝐷1,2 = ±𝑖𝛼       (9) 

𝑍(𝑧) = 𝐶1. sin(𝛼𝑧) + 𝐶2. cos(𝛼𝑧)      0 ≤ 𝑧 ≤ 1   (10) 

(10) gives the dimensionless shape function of the 
axially vibrating beam due to the dimensionless 
displacement variable, z. Therefore, from (7), the 
dimensionless displacement function of the axially 
vibrating beam has the form of (11). 

𝑢(𝑧, 𝑡) = [𝐶1. sin(𝛼𝑧) + 𝐶2. cos(𝛼𝑧)]. 𝑇(𝑡)    (11) 

III. BONDARY CONDITIONS 

Two boundary conditions have to be written for 
each of the three beams considered in this study since 
two integration constants (C1, C2) are obtained in the 
solution of second order differential equation of motion. 
The dimensional boundary conditions written for the 
fixed and the free ends of axially vibrating beam are 
given, respectively, as [8] 

for 0 ≤ x ≤ L 

𝑢(𝑥, 𝑡) = 0    𝑁(𝑥, 𝑡) = 𝐴𝐸
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
= 𝐴𝐸𝑢′(𝑥, 𝑡) = 0 (12) 

where N(z,t) being the axial force. Thus, the 
dimensionless boundary conditions for the same ends 
are obtained from (12) as in (13). 

for 0 ≤ z ≤ 1 

𝑢(𝑧, 𝑡) = 0    𝑁(𝑧, 𝑡) = 𝐴𝐸
𝜕𝑢(𝑧,𝑡)

𝜕𝑧.𝐿
=

𝐴𝐸

𝐿
𝑢′(𝑧, 𝑡) = 0 (13) 

A. Fixed Beam 

 

 Fig. 2. Fixed beam with the distributed mass m, the length 
L, the modulus of elasticity E, the cross-section area A and 
the axial rigidity AE. 

The dimensional boundary conditions of the fixed 
beam given in Fig. 2 can be written from (13) as 

𝑢(𝑧 = 0, 𝑡) = 0   𝑎𝑛𝑑   𝑢(𝑧 = 1, 𝑡) = 0    (14) 

Thus, one gets the same natural angular frequency 
equation, that is valid in the dimensional analysis also, 
using (14) for the fixed beam as in the following. 

𝜔 = 𝑛𝑖
𝜋

𝐿
√

𝐴𝐸

m
       (15) 

where ni is the number of mode. 

B. Cantilever Beam 

 

 Fig. 3. Cantilever beam with the distributed mass m, the 
length L, the modulus of elasticity E, the cross-section area A 
and the axial rigidity AE. 

The dimensional boundary conditions of the 
cantilever beam given in Fig. 3 can be written from 
(13) as 

𝑢(𝑧 = 0, 𝑡) = 0   𝑎𝑛𝑑   𝑢′(𝑧 = 1, 𝑡) = 0    (16) 

Thus, one gets the same natural angular frequency 
equation, that is valid in the dimensional analysis also, 
using (16) for the cantilever beam as in the following. 

𝜔 =
(2𝑛𝑖−1)𝜋

2𝐿
√

𝐴𝐸

m
       (17) 

where ni is the number of mode. 

C. Free Beam 

 

 Fig. 4. Free beam with the distributed mass m, the length 
L, the modulus of elasticity E, the cross-section area A and 
the axial rigidity AE. 

The dimensional boundary conditions of the free 
beam given in Fig. 4 can be written from (13) as 

𝑢′(𝑧 = 0, 𝑡) = 0   𝑎𝑛𝑑   𝑢′(𝑧 = 1, 𝑡) = 0    (18) 

Thus, one gets the same natural angular frequency 
equation, that is valid in the dimensional analysis also, 
using (14) for the free beam as in the following. 

𝜔 = 𝑛𝑖
𝜋

𝐿
√

𝐴𝐸

m
       (19) 

where ni is the number of mode. 

IV. NATURAL FREQUENCIES 

After the natural frequency equations valid in both 
the dimensional and the dimensionless vibration 
analysis are obtained for the first five vibration modes 
of, respectively, the fixed, the cantilever and the free 
beams. The IPB 1000 profile is chosen with distributed 
mass of m=0,32 kNsec

2
/m

2
, elasticity modulus of 

 

m, L, AE 

z=0 z=1 
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E=210000000 kN/m
2
 and cross-section area of A=0,04 

m
2
. The free vibration analysis is made for the beam 

lengths, L, of 1, 3, 5 and 8 meters. The first five mode 
natural frequencies of the fixed, the cantilever and the 
free beams are given in, respectively, Tables I, II and 
III. 

TABLE I.  NATURAL FREQUENCIES OF THE FIXED BEAM 

Modes 

Natural Frequensies (rad/sec) 

L=1 m L=3 m L=5 m L=8 m 

1 16095,872624 5365,290875 3219,174525 2011,984078 

2 32191,745248 10730,581750 6438,349050 4023,968156 

3 48287,617872 16095,872624 9657,523575 6035,952234 

4 64383,490496 21461,163500 12876,698100 8047,936312 

5 80479,363120 26826,454373 16095,872624 10059,920390 

TABLE II.  NATURAL FREQUENCIES OF THE CANTILEVER BEAM 

Modes 

Natural Frequensies (rad/sec) 

L=1 m L=3 m L=5 m L=8 m 

1 8047,936312 2682,645437 1609,587262 1005,992039 

2 24143,808936 8047,936311 4828,761786 3017,976117 

3 40239,681560 13413,227185 8047,936310 5029,960195 

4 56335,554184 18778,518059 11267,110834 7041,944273 

5 72431,426808 24143,808933 14486,285358 9053,928351 

TABLE III.  NATURAL FREQUENCIES OF THE FREE BEAM 

Modes 

Natural Frequensies (rad/sec) 

L=1 m L=3 m L=5 m L=8 m 

1 16095,872624 5365,290875 3219,174525 2011,984078 

2 32191,745248 10730,581750 6438,349050 4023,968156 

3 48287,617872 16095,872624 9657,523575 6035,952234 

4 64383,490496 21461,163500 12876,698100 8047,936312 

5 80479,363120 26826,454373 16095,872624 10059,920390 

V. CONCLUSIONS 

In this study, free axial vibration analysis of a beam 
with different supporting conditions is made. The 
governing differential equation of motion is solved, 
firstly, in dimensional form and the frequency 
equations of the beams with different support 

conditions are obtained. Secondly, the equation of 
motion in dimensionless form is solved and the same 
frequency equations are obtained for the considering 
beams. It is concluded, therefore, that for the single 
span beams, as considered in this study, there is no 
need to solve the equation of motion in dimensionless 
form for the free vibration of axially vibrating beam 
since same frequency equation that is related to the 
length of beam, L, is obtained in both dimensional and 
dimensionless vibration analysis. 

It can be seen from the Tables I, II and III that the 
frequency values decreases as the length of beam 
increases since L is at the denominator of the 
frequency equation. 
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