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Abstract— The problem of critical velocity of 
fluid-conveying pipes resting on a Winkler 
foundation with elastically supported of the pipe 
is studied in this paper. The aim of this work is 
deriving a new analytical model to perform a 
general study to investigate the dynamic behavior 
of a pipe under general boundary conditions by 
considering the supports as compliant material 
with linear and rotational springs, and study the 
effect of foundation and stiffness values on the 
critical velocity. This model describes both the 
classical (simply support, free, built, guide) and 
the restrained boundary condition and it is not 
required to derive a new critical velocity equation 
if the boundary conditions is changed ,also the 
result will be near to reality by knowing the 
physical parameters for the compliant material 
and the pipe. The cases studied in this work are 
flexible support of the ends pipe with or without 
intermediate restrain support, and pipe resting on 
Winkler foundation. . The general theoretical 
conclusions are that the supports and foundation 
values have significant effects on the dynamic 
characteristics of the pipe. 

Keywords— Pipe conveying fluid, Critical 
velocity, Elastic support, Winkler foundation. 

I.  INTRODUCTION . 

The study of the dynamic behavior of a fluid conveying 
pipe, started in 1950, despite the great importance of 
this subject in pumps, heat exchanger, discharge lines, 
marines risers, etc.., the first observation of this 
phenomena was made by Ashley and Havilland [1], 
when examining the above ground Trans-Arabian oil 
pipe line. They considered the problem as a simply 
supported pipe. Housner[2] used an approximate 
power series for solving the governing equation but 
neglected the effect of internal pressure. Noirdson[3] 
studied the stability for straight pipe simply supported 
with steady flow and he reached to the same 
conclusions which were made by the above authors, 
that the natural frequency for a system reduces with 
the increase in the fluid flow velocity, and the system 
losses stability by buckling.  Long [4] obtained the 
solution of the equation of motion using power series 
approximation. He studied the problem of fixed-free 

ended pipes as well for simply supported pipe. The 
vibration of simply and clamped ends infinitely pipe, 
also including the effect pressure was studied by 
Change and Shia [5]. The effect of fluid friction on the 
dynamics of the pipe was considered for the first time 
by Benjamin [6], he also studied the instability of a 
cantilever pipe both theoretically and experimentally. A 
theoretical and experimental investigation in to the 
instability of cantilever pipe was performed by Gregory 
and Paidoussis[7] and concluded, as did Benjamin, 
that the cantilever pipe loses its stability at a certain 
flow velocity by flutter rather than buckling. Doare and 
Langre [8] studied instability of fluid conveying pipes 
on Winkler type foundation. The focus in their paper 
was on instability of infinitely long fluid conveying pipes 
using wave propagation approach, wherein results are 
interpreted in terms of static neutrality as criteria for 
pinned–pinned, clamped– clamped ends and dynamic 
neutrality for clamped–free ends. Lilkova-Markova and 
Lolov [9] investigated the influence of the transverse 
force at the free end of the dynamic stability of a 
cantilevered pipe placed on a Winkler elastic 
foundation. Lottati and Kornecki [10] found that the 
critical flow velocity of a fluid conveying pipe on 
Winkler foundation is higher than the critical flow 
velocity of that pipe without foundation. In this manner, 
the Winkler foundation is proved to have a stabilizing 
effect on the pipe. Hauger and Vetter [11] studied the 
dynamic stability of axially compressed rods on 
variable elastic foundations. They found that some 
kinds of foundations have stabilizing effect on the rod 
(the critical load is increased), while the other ones can 
destabilize the rod (the critical load is decreased).  
Chen [12] investigated the steady flow and pulsating 
flow for simply supported pipe conveying fluid, and 
used Hsu’s Bolotin’s approximate method to find the 
stability zones for pulsating flow. Formatter will need to 
create these components, incorporating the applicable 
criteria that follow. 

II. THEORETICAL APPROACH 

A. Equation of motion. 

Consider a straight uniform pipe conveying fluid of 
length L. The      following assumptions are considered 
in the analysis of the system under consideration [13]: 

1. Neglecting the effect of gravity. 
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2. The pipe considered to be horizontal. 

3. Neglecting the material damping. 

4. The pipe is inextensible.  

5. Neglecting the shear deformation and rotary 
inertia. 

6. All motion considered small. 

7. Neglecting the velocity distribution through the 
cross- section of the pipe. 

Derivation of the equation of motion for straight 
pipe with steady flow are available in the literature 
Ref.[14].For a single-span pipe conveying fluid, the 
equation based on beam theory is given by, 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + (𝑀𝑓𝑈2 + 𝑝𝐴)
𝜕2𝑦

𝜕𝑥2 + 2𝑀𝑓𝑈
𝜕2𝑦

𝜕𝑥𝜕𝑡
+ (𝑀𝑓 +

𝑀𝑝)
𝜕2𝑦

𝜕𝑡2 = 0                                                                        

(1)  
where 𝐹(𝑥, 𝑡):  is the external harmonic force being 

applied normally to the pipe axis in the 𝑦- direction.  

𝐸𝐼
𝜕4𝑦

𝜕𝑥4: Stiffness term 

(𝑀𝑓𝑈2 + 𝑝𝐴)
𝜕2𝑦

𝜕𝑥2: Curvature term 

2𝑀𝑓𝑈
𝜕2𝑦

𝜕𝑥𝜕𝑡
: Coriolis force term 

(𝑀𝑓 + 𝑀𝑝)
𝜕2𝑦

𝜕𝑡2: Inertia force term  

The Coriolis force is a result of the rotation of the 
system element due to the system lateral motion, 
since each point in the span rotates with angular 
velocity [15]. 
The equation of motion Eq.(1) can be written in the 
following non-dimensional form: 

𝒀𝒊𝒗 + (𝒖𝟐 + 𝜸)𝒀′′ + 𝟐𝜷𝑼�̇�′ + �̈� = 𝟎                          (2)                                                                           
Where, 
𝑋 = 𝑥/𝐿 
𝑌 = 𝑦/𝐿    

𝑌𝑖𝑣 =
𝜕4𝑦

𝜕𝑥4 ,  𝑌′′ = 
𝜕2𝑦

𝜕𝑥2  , �̇�′ =
𝜕2𝑦

𝜕𝑥𝜕𝑡
 ,  �̈� =

𝜕2𝑦

𝜕𝑡2  , 

 𝜏 = √𝐸𝐼/(𝑀𝑓 + 𝑀𝑝)(
𝑡

𝐿2). 

𝛽 = √𝑀𝑓/(𝑀𝑓 + 𝑀𝑝) , 𝑢 = 𝑈𝐿√(𝑀𝑓/𝐸𝐼) 

𝛾 = (
𝑝𝐴𝑝

𝐸𝐼
)𝐿2 

𝛽: Non-dimensional mass ratio. 
𝛾: Non-dimensional fluid pressure. 
The natural frequencies for steady flow decrease with 
increasing the fluid flow velocity. If the natural 
frequencies of the pipe reach to zero, the flow velocity 
in this case is called critical flow velocity. When the 
flow velocity is equal to the critical velocity the pipe 
bows out and buckles, because the forces required to 
make the fluid deform to the pipe curvature are 
greater than the stiffness of the pipe.  
Therefore the mechanism underlying instability may 
be illustrated by static method [6], so deleting time 
dependent term from equation (2) yields:           

𝑌𝑖𝑣 + (𝑢2 + 𝛾)𝑌′′ = 0                                                (3)                                                                               
Whose its solution takes the form: 
𝑌(𝑋) = 𝐶1 + 𝐶2𝑋 + 𝐶3 sin(𝛼 𝑋) +   𝐶4 cos(𝛼 𝑋)                                          

Where 𝛼 = √𝛾 + 𝑢𝑐𝑟
2   and 𝐶1 ,𝐶2 ,𝐶3 ,𝐶4 ,  are constant 

and can be evaluated by using the boundary 
conditions. 
 In order to investigate the influence of the Winkler 
foundation on the free vibration characteristics of pipe 
conveying fluid, we assumed that the pipe is divided 
to twenty spans, and intermediate linear springs are at 
ends of the spans as shown in Figure(1). The method 
of continuity of boundary condition (equilibrium) is 
used in order to account for different support 
locations. 
To solve the problem of free vibration for a structure, 
first its boundary conditions must be known. The 
method of solution consists of formulating the support 
condition of ends pipe in terms of the compliant 
boundary material. The parameter of this material will 
be represented by linear and rotational spring. To 
describe the classical boundary conditions impedance 
values are taken to be zero or infinity values. 
 
B. Evaluating Critical Velocity. 
Assumed that the pipe is divided to twenty spans, and 
intermediate linear springs are at ends of the spans as 
shown in Figure (1), where  𝑡𝑖  and 𝑟𝑖  are the 
translational and rotational spring constant, it will be 
considered that the pipe is supported at the two end 
points, and  c represent the distance between springs 
at along the pipe. 
 
 
 
 
 
 
 
 

Figure (1) Pipe conveying fluid resting on Winkler 
foundation. 

 
The method of continuity of boundary condition 
(equilibrium) is used in order to account for different 
support locations as following: 
1- at x=0, 𝑟1𝑙𝑦′(0, 𝜏) = 𝐸𝐼𝑦′′(0, 𝜏) 

𝑟1𝑙[𝐶2 + 𝐶3𝛼] = −𝐸𝐼𝐶4𝛼2 
𝑅1𝐶2 + 𝑅1𝛼𝐶3 + 𝐶4𝛼2 = 0 
Where  𝑅1 = (𝑟1𝑙/𝐸𝐼) : dimensionless rotational 
stiffness at x=0. 
2-at x=0, 𝑡1𝑦(0, 𝜏) = −𝐸𝐼𝑦′′′(0, 𝜏) 

𝑡1𝑙3[𝐶1 + 𝐶4] = −𝐸𝐼[−𝐶3𝛼3]  
𝑇1𝐶1−𝛼3𝐶3 + 𝑇1𝐶4 = 0. 
Where  𝑇1 = (𝑡1𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=0 

3-at x=c, 𝑟𝑐
𝜕𝑦(𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(𝑐+,𝑡)

𝜕𝑥2
) , 𝑟𝑐 = 0 

−𝛼2 sin(𝛼𝑐) 𝐶3 − 𝛼2 cos(𝛼𝑐) 𝐶4 + 𝛼2 sin(𝛼𝑐) 𝐶7

+  𝛼2 cos(𝛼𝑐) 𝐶8  = 0 

4-at x=c, 𝑡𝑐𝑙3𝑦(𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(𝑐+,𝑡)

𝜕𝑥3
). 

𝑡1𝑙3[𝐶1 + 𝑐𝐶2 + sin(𝛼𝑐) 𝐶3 + cos(𝛼𝑐) 𝐶4] =
EI[−α3 cos(αc) C3 + α3 sin(αc) C4 + α3 cos(αc) C7 −
α3 sin(αc) C8 = 0.  
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𝑇𝑐𝐶1 + 𝑐𝑇𝑐𝐶2 + [𝑇𝑐 sin(𝛼𝑐) + 𝛼3 cos(𝛼𝑐)]𝐶3 +
[𝑇𝑐 cos(𝛼𝑐) − 𝛼3 sin(𝛼𝑐)]𝐶4 − 𝛼3 cos(𝛼𝑐) 𝐶7 +
𝛼3 sin(𝛼𝑐) 𝐶8=0. 
Where  𝑇𝑐 = (𝑡𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=c 
5-at x=c, 𝑦(𝑐−, 𝑡) = 𝑦(𝑐+, 𝑡). 

𝐶1 + 𝑐𝐶2 + sin(𝛼𝑐) 𝐶3 + cos(𝛼𝑐)  𝐶4 
  −  𝐶5 −  𝑐𝐶6 − sin(𝛼𝑐) 𝐶7 − cos(𝛼𝑐) 𝐶8 

= 0.  

6- at x=c, 
𝜕𝑦(𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(𝑐+,𝑡)

𝜕𝑥
. 

𝐶2 + 𝛼 cos(𝛼𝑐) 𝐶3 − 𝛼 sin(𝛼𝑐) 𝐶4−𝐶6 − 𝛼 cos(𝛼𝑐) 𝐶7 +
𝛼 sin(𝛼𝑐) 𝐶8 = 0  

7-at x=2c,𝑟2𝑐
𝜕𝑦(2𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(2𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(2𝑐+,𝑡)

𝜕𝑥2
),𝑟2𝑐 =

0 

 −𝛼2 sin(𝛼𝑐) 𝐶7 − 𝛼2 cos(𝛼𝑐) 𝐶8 + 𝛼2 sin(𝛼𝑐) 𝐶11 +
𝛼2 cos(𝛼𝑐) 𝐶12 

8-at x=2c, 𝑡2𝑐𝑙3𝑦(𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(2𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(2𝑐+,𝑡)

𝜕𝑥3
). 

𝑇2𝑐 𝐶5 + 𝑐𝑇𝑐𝐶6 + [𝑇2𝑐 sin(𝛼𝑐) + 𝛼3 cos(𝛼𝑐)]𝐶7 +
[𝑇2𝑐 cos(𝛼𝑐) − 𝛼3 sin(𝛼𝑐)]𝐶8 − 𝛼3 cos(𝛼𝑐) 𝐶11 +
𝛼3 sin(𝛼𝑐) 𝐶12=0. 
Where  𝑇2𝑐 = (𝑡2𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=2c. 
9-at x=2c, 𝑦(2𝑐− , 𝑡) = 𝑦(2𝑐+ , 𝑡). 

𝐶5 + 2𝑐𝐶6 + sin(2𝛼𝑐) 𝐶7 + cos(2𝛼𝑐) 𝐶8−𝐶9 − 2𝑐𝐶10 −
sin(2𝛼𝑐) 𝐶11 − cos(2𝛼𝑐) 𝐶12 = 0.  

10- at x=2c, 
𝜕𝑦(2𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(2𝑐+,𝑡)

𝜕𝑥
. 

𝐶6 + 𝛼 cos(𝛼𝑐) 𝐶7 − 𝛼 sin(𝛼𝑐) 𝐶8−𝐶10 − 𝛼 cos(𝛼𝑐) 𝐶11 +
𝛼 sin(𝛼𝑐) 𝐶12 = 0  
11-at 

x=3c,𝑟3𝑐
𝜕𝑦(3𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(3𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(3𝑐+,𝑡)

𝜕𝑥2
),𝑟3𝑐 = 0 

 

−𝛼2 sin(3𝛼𝑐) 𝐶11 − 𝛼2 cos(3𝛼𝑐) 𝐶12 + 𝛼2 sin(3𝛼𝑐) 𝐶15 +
𝛼2 cos(3𝛼𝑐) 𝐶16 

12-at x=3c, 𝑡3𝑐𝑙3𝑦(3𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(3𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(3𝑐+,𝑡)

𝜕𝑥3
). 

𝑇3𝑐 𝐶9 + 3𝑐𝑇3𝑐 𝐶10 + [𝑇3𝑐 sin(3𝛼𝑐) + 𝛼3 cos(3𝛼𝑐)]𝐶11 +
[𝑇3𝑐 cos(3𝛼𝑐) − 𝛼3 sin(𝛼𝑐)]𝐶12 − 𝛼3 cos(3𝛼𝑐) 𝐶15 +
𝛼3 sin(3𝛼𝑐) 𝐶16=0. 
Where  𝑇3𝑐 = (𝑡3𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=3c 
13-at x=3c, 𝑦(3𝑐− , 𝑡) = 𝑦(3𝑐+, 𝑡). 
𝐶9 + 3𝑐𝐶10 + sin(3𝛼𝑐) 𝐶11 + cos(3𝛼𝑐) 𝐶12−𝐶13 −
3𝑐𝐶14 − sin(3𝛼𝑐) 𝐶15 − cos(3𝛼𝑐) 𝐶16 = 0.  

14- at x=3c, 
𝜕𝑦(3𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(3𝑐+,𝑡)

𝜕𝑥
. 

𝐶10 + 𝛼 cos(3𝛼𝑐) 𝐶11 − 𝛼 sin(3𝛼𝑐) 𝐶12− 𝐶14 −
𝛼 cos(3𝛼𝑐)   𝐶15 + 𝛼 sin(3𝛼𝑐) 𝐶16 = 0  
15-at 

x=4c, 𝑟4𝑐
𝜕𝑦(4𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(4𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(4𝑐+,𝑡)

𝜕𝑥2
) , 𝑟4𝑐 = 0 

−𝛼2 sin(4𝛼𝑐) 𝐶15 − 𝛼2 cos(4𝛼𝑐) 𝐶16 + 𝛼2 sin(4𝛼𝑐) 𝐶19 +
𝛼2 cos(4𝛼𝑐) 𝐶20 

16-at x=4c, 𝑡4𝑐𝑙3𝑦(4𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(4𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(4𝑐+,𝑡)

𝜕𝑥3
). 

𝑇4𝑐𝐶13 + 4𝑐𝑇4𝑐𝐶14 + [𝑇4𝑐 sin(4𝛼𝑐) + 𝛼3 cos(4𝛼𝑐)]𝐶15 +
[𝑇4𝑐 cos(4𝛼𝑐) − 𝛼3 sin(4𝛼𝑐)]𝐶16 − 𝛼3 cos(4𝛼𝑐) 𝐶19 +
𝛼3 sin(4𝛼𝑐) 𝐶20=0. 
Where  𝑇4𝑐 = (𝑡4𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=4c 

17-at x=4c, 𝑦(3𝑐− , 𝑡) = 𝑦(4𝑐+, 𝑡). 

𝐶13 + 4𝑐𝐶14 + sin(4𝛼𝑐) 𝐶15 + cos(4𝛼𝑐) 𝐶16−𝐶17 −
𝑐𝐶18 − sin(4𝛼𝑐) 𝐶19 − cos(4𝛼𝑐) 𝐶20 = 0.  

18- at x=4c, 
𝜕𝑦(4𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(4𝑐+,𝑡)

𝜕𝑥
. 

𝐶14 + 𝛼 cos(4𝛼𝑐) 𝐶15 − 𝛼 sin(4𝛼𝑐) 𝐶16−𝐶18 −
𝛼 cos(4𝛼𝑐) 𝐶19 + 𝛼 sin(4𝛼𝑐) 𝐶20 = 0. 
19-at 

x=5c,𝑟5𝑐
𝜕𝑦(5𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(5𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(5𝑐+,𝑡)

𝜕𝑥2
),𝑟5𝑐 = 0 

 

−𝛼2 sin(5𝛼𝑐) 𝐶19 − 𝛼2 cos(5𝛼𝑐) 𝐶20 + 𝛼2 sin(5𝛼𝑐) 𝐶23 +
𝛼2 cos(5𝛼𝑐) 𝐶24 

20-at x=5c, 𝑡5𝑐𝑙3𝑦(5𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(5𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(5𝑐+,𝑡)

𝜕𝑥3
). 

𝑇5𝑐𝐶17 + 5𝑐𝑇5𝑐𝐶18 + [𝑇5𝑐 sin(5𝛼𝑐) + 𝛼3 cos(5𝛼𝑐)]𝐶19 +
[𝑇5𝑐 cos(5𝛼𝑐) − 𝛼3 sin(5𝛼𝑐)]𝐶20 − 𝛼3 cos(5𝛼𝑐) 𝐶23 +
𝛼3 sin(5𝛼𝑐) 𝐶24=0. 
Where  𝑇5𝑐 = (𝑡5𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=5c 
21-at x=5c, 𝑦(5𝑐− , 𝑡) = 𝑦(5𝑐+, 𝑡). 

𝐶17 + 5𝑐𝐶18 + sin(5𝛼𝑐) 𝐶19 + cos(5𝛼𝑐) 𝐶20−𝐶21 −
5𝑐𝐶22 − sin(5𝛼𝑐) 𝐶23 − cos(5𝛼𝑐) 𝐶24 = 0.  

22- at x=5c, 
𝜕𝑦(5𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(5𝑐+,𝑡)

𝜕𝑥
. 

𝐶18 + 𝛼 cos(5𝛼𝑐) 𝐶19 − 𝛼 sin(5𝛼𝑐)   𝐶20 
−𝐶22 − 𝛼 cos(5𝛼𝑐) 𝐶23 + 𝛼 sin(5𝛼𝑐) 𝐶24 

= 0. 
23-at 

x=6c,𝑟6𝑐
𝜕𝑦(6𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(6𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(6𝑐+,𝑡)

𝜕𝑥2
),𝑟6𝑐 = 0 

 

−𝛼2 sin(6𝛼𝑐) 𝐶23 − 𝛼2 cos(6𝛼𝑐) 𝐶24 + 𝛼2 sin(6𝛼𝑐) 𝐶27 +
𝛼2 cos(6𝛼𝑐) 𝐶28 

24-at x=6c, 𝑡6𝑐𝑙3𝑦(6𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(6𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(6𝑐+,𝑡)

𝜕𝑥3
). 

𝑇6𝑐 𝐶21 + 6𝑐𝑇6𝑐𝐶22 + [𝑇6𝑐 sin(6𝛼𝑐) + 𝛼3 cos(6𝛼𝑐)]𝐶23 +
[𝑇6𝑐 cos(6𝛼𝑐) − 𝛼3 sin(6𝛼𝑐)]𝐶24 − 𝛼3 cos(6𝛼𝑐) 𝐶27 +
𝛼3 sin(6𝛼𝑐) 𝐶28=0. 
Where  𝑇6𝑐 = (𝑡6𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=6c 
25-at x=6c, 𝑦(6𝑐− , 𝑡) = 𝑦(6𝑐+, 𝑡). 

𝐶21 + 6𝑐𝐶22 + sin(6𝛼𝑐) 𝐶23 + cos(6𝛼𝑐) 𝐶24−𝐶25 −
6𝑐𝐶26 − sin(6𝛼𝑐) 𝐶27 − cos(6𝛼𝑐) 𝐶28 = 0.  

26- at x=6c, 
𝜕𝑦(6𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(6𝑐+,𝑡)

𝜕𝑥
. 

𝐶22 + 𝛼 cos(6𝛼𝑐) 𝐶23 − 𝛼 sin(6𝛼𝑐) 𝐶24−𝐶26 −
𝛼 cos(6𝛼𝑐) 𝐶27 + 𝛼 sin(6𝛼𝑐) 𝐶28 = 0. 
27-at 

x=7c,𝑟7𝑐
𝜕𝑦(7𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(7𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(7𝑐+,𝑡)

𝜕𝑥2
),𝑟7𝑐 = 0 

 

−𝛼2 sin(7𝛼𝑐) 𝐶27 − 𝛼2 cos(7𝛼𝑐) 𝐶28 + 𝛼2 sin(7𝛼𝑐) 𝐶31 +
𝛼2 cos(7𝛼𝑐) 𝐶32 

28-at x=7c, 𝑡7𝑐𝑙3𝑦(7𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(7𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(7𝑐+,𝑡)

𝜕𝑥3
). 

𝑇7𝑐 𝐶25 + 7𝑐𝑇6𝑐𝐶26 + [𝑇7𝑐 sin(7𝛼𝑐) + 𝛼3 cos(7𝛼𝑐)]𝐶27 +
[𝑇7𝑐 cos(7𝛼𝑐) − 𝛼3 sin(7𝛼𝑐)]𝐶28 − 𝛼3 cos(7𝛼𝑐) 𝐶31 +
𝛼3 sin(7𝛼𝑐) 𝐶32=0. 
Where  𝑇7𝑐 = (𝑡7𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=7c 
29-at x=7c, 𝑦(7𝑐− , 𝑡) = 𝑦(7𝑐+, 𝑡). 

𝐶25 + 7𝑐𝐶26 + sin(7𝛼𝑐) 𝐶27 + cos(7𝛼𝑐) 𝐶28−𝐶29 −
7𝑐𝐶30 − sin(7𝛼𝑐) 𝐶31 − cos(7𝛼𝑐) 𝐶32 = 0.  
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30- at x=7c, 
𝜕𝑦(7𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(7𝑐+,𝑡)

𝜕𝑥
. 

𝐶26 + 𝛼 cos(7𝛼𝑐) 𝐶27 − 𝛼 sin(7𝛼𝑐) 𝐶28−𝐶30

− 𝛼 cos(7𝛼𝑐) 𝐶31 + 𝛼 sin(7𝛼𝑐) 𝐶32 = 0 
. 
31-at 

x=8c,𝑟8𝑐
𝜕𝑦(8𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(8𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(8𝑐+,𝑡)

𝜕𝑥2
),𝑟8𝑐 = 0 

 

−𝛼2 sin(8𝛼𝑐) 𝐶31 − 𝛼2 cos(8𝛼𝑐) 𝐶32 + 𝛼2 sin(8𝛼𝑐) 𝐶35 +
𝛼2 cos(8𝛼𝑐) 𝐶36 

32-at x=8c, 𝑡8𝑐𝑙3𝑦(8𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(8𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(8𝑐+,𝑡)

𝜕𝑥3
). 

𝑇8𝑐 𝐶29 + 8𝑐𝑇8𝑐𝐶30 + [𝑇8𝑐 sin(8𝛼𝑐) + 𝛼3 cos(8𝛼𝑐)]𝐶31 +
[𝑇7𝑐 cos(8𝛼𝑐) − 𝛼3 sin(8𝛼𝑐)]𝐶32 − 𝛼3 cos(8𝛼𝑐) 𝐶35 +
𝛼3 sin(8𝛼𝑐) 𝐶36=0. 
Where  𝑇8𝑐 = (𝑡8𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=8c 
33-at x=8c, 𝑦(8𝑐− , 𝑡) = 𝑦(8𝑐+, 𝑡). 
𝐶29 + 8𝑐𝐶30 + sin(8𝛼𝑐) 𝐶31 + cos(8𝛼𝑐) 𝐶32−𝐶33 −
8𝑐𝐶34 − sin(8𝛼𝑐) 𝐶35 − cos(8𝛼𝑐) 𝐶36 = 0.  

34- at x=8c, 
𝜕𝑦(8𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(8𝑐+,𝑡)

𝜕𝑥
. 

𝐶30 + 𝛼 cos(8𝛼𝑐) 𝐶31 − 𝛼 sin(8𝛼𝑐) 𝐶32−𝐶34 −
𝛼 cos(8𝛼𝑐) 𝐶35 + 𝛼 sin(8𝛼𝑐) 𝐶36 = 0 . 
35-at 

x=9c,𝑟9𝑐
𝜕𝑦(9𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(9𝑐−,𝑡)

𝜕𝑥2 +
𝜕2𝑦(9𝑐+,𝑡)

𝜕𝑥2
),𝑟9𝑐 = 0 

 

−𝛼2 sin(9𝛼𝑐) 𝐶35 − 𝛼2 cos(9𝛼𝑐) 𝐶36 + 𝛼2 sin(9𝛼𝑐) 𝐶39 +
𝛼2 cos(9𝛼𝑐) 𝐶40 

36-at x=9c, 𝑡8𝑐𝑙3𝑦(9𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(9𝑐−,𝑡)

𝜕𝑥3 −
𝜕3𝑦(9𝑐+,𝑡)

𝜕𝑥3
). 

𝑇9𝑐 𝐶33 + 9𝑐𝑇9𝑐 𝐶34 + [𝑇9𝑐 sin(9𝛼𝑐) + 𝛼3 cos(9𝛼𝑐)]𝐶35 +
[𝑇9𝑐 cos(9𝛼𝑐) − 𝛼3 sin(9𝛼𝑐)]𝐶36 − 𝛼3 cos(9𝛼𝑐) 𝐶39 +
𝛼3 sin(9𝛼𝑐) 𝐶40=0. 
Where  𝑇9𝑐 = (𝑡9𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=9c 
37-at x=9c,𝑦(9𝑐−, 𝑡) = 𝑦(9𝑐+, 𝑡). 

𝐶33 + 9𝑐𝐶34 + sin(9𝛼𝑐) 𝐶35 + cos(9𝛼𝑐) 𝐶36−𝐶37 −
9𝑐𝐶38 − sin(9𝛼𝑐) 𝐶39 − cos(9𝛼𝑐) 𝐶40 = 0.  

38- at x=9c, 
𝜕𝑦(9𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(9𝑐+,𝑡)

𝜕𝑥
. 

𝐶34 + 𝛼 cos(9𝛼𝑐) 𝐶35 − 𝛼 sin(9𝛼𝑐) 𝐶36−𝐶38 −
𝛼 cos(9𝛼𝑐) 𝐶39 + 𝛼 sin(9𝛼𝑐) 𝐶40 = 0. 

39-at x=10c, 𝑟10𝑐
𝜕𝑦(10𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(10𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(10𝑐+,𝑡)

𝜕𝑥2
),𝑟10𝑐 = 0  

−𝛼2 sin(10𝛼𝑐) 𝐶39 − 𝛼2 cos(10𝛼𝑐) 𝐶40 +
𝛼2 sin(10𝛼𝑐) 𝐶43 + 𝛼2 cos(10𝛼𝑐) 𝐶44  

40-at x=10c,  𝑡8𝑐𝑙3𝑦(10𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(10𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(10𝑐+,𝑡)

𝜕𝑥3
). 

𝑇10𝑐 𝐶37 + 10𝑐𝑇9𝑐𝐶38 +
[𝑇10𝑐 sin(10𝛼𝑐) + 𝛼3 cos(10𝛼𝑐)]𝐶39 + [𝑇10𝑐 cos(10𝛼𝑐) −
𝛼3 sin(10𝛼𝑐)]𝐶40 − 𝛼3 cos(10𝛼𝑐) 𝐶41 +
𝛼3 sin(10𝛼𝑐) 𝐶44=0. 
where  𝑇10𝑐 = (𝑡10𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=10c 
41-at x=10c, 𝑦(10𝑐−, 𝑡) = 𝑦(10𝑐+, 𝑡). 

𝐶37 + 10𝑐𝐶38 + sin(10𝛼𝑐) 𝐶39 + cos(10𝛼𝑐) 𝐶40−𝐶41 −
10𝑐𝐶42 − sin(10𝛼𝑐) 𝐶43 − cos(10𝛼𝑐) 𝐶44 = 0.  

42- at x=10c, 
𝜕𝑦(10𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(10𝑐+,𝑡)

𝜕𝑥
. 

𝐶38 + 𝛼 cos(10𝛼𝑐) 𝐶39 − 𝛼 sin(10𝛼𝑐) 𝐶40−𝐶42 −
𝛼 cos(10𝛼𝑐) 𝐶43 + 𝛼 sin(10𝛼𝑐) 𝐶44 = 0. 

43-at x=11c, 𝑟11𝑐
𝜕𝑦(11𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(11𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(11𝑐+,𝑡)

𝜕𝑥2
) , 𝑟11𝑐 = 0 

−𝛼2 sin(11𝛼𝑐) 𝐶43 − 𝛼2 cos(11𝛼𝑐) 𝐶44 +
𝛼2 sin(11𝛼𝑐) 𝐶47 + 𝛼2 cos(11𝛼𝑐) 𝐶48 

44-at x=11c,  𝑡11𝑐𝑙3𝑦(11𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(11𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(11𝑐+,𝑡)

𝜕𝑥3
). 

𝑇11𝑐 𝐶41 + 11𝑐𝑇9𝑐𝐶42 +
[𝑇11𝑐 sin(11𝛼𝑐) + 𝛼3 cos(11𝛼𝑐)]𝐶43 + [𝑇11𝑐 cos(11𝛼𝑐) −
𝛼3 sin(11𝛼𝑐)]𝐶44 − 𝛼3 cos(11𝛼𝑐) 𝐶45 +
𝛼3 sin(11𝛼𝑐) 𝐶48=0. 
Where  𝑇11𝑐 = (𝑡11𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=11c 
45-at x=11c, 𝑦(11𝑐−, 𝑡) = 𝑦(11𝑐+, 𝑡). 

𝐶41 + 11𝑐𝐶42 + sin(11𝛼𝑐) 𝐶43 + cos(11𝛼𝑐) 𝐶44−𝐶45 −
11𝑐𝐶46 − sin(11𝛼𝑐) 𝐶47 − cos(11𝛼𝑐) 𝐶48 = 0.  

46- at x=11c, 
𝜕𝑦(11𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(11𝑐+,𝑡)

𝜕𝑥
. 

𝐶42 + 𝛼 cos(11𝛼𝑐) 𝐶43 − 𝛼 sin(11𝛼𝑐) 𝐶44−𝐶46 −
𝛼 cos(11𝛼𝑐) 𝐶47 + 𝛼 sin(11𝛼𝑐) 𝐶48 = 0. 

47-at x=12c, 𝑟12𝑐
𝜕𝑦(12𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(12𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(12𝑐+,𝑡)

𝜕𝑥2
) , 𝑟12𝑐 = 0 

−𝛼2 sin(12𝛼𝑐) 𝐶47 − 𝛼2 cos(12𝛼𝑐) 𝐶48 +
𝛼2 sin(12𝛼𝑐) 𝐶51 + 𝛼2 cos(12𝛼𝑐) 𝐶52 

48-at x=12c,  𝑡12𝑐𝑙3𝑦(12𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(12𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(12𝑐+,𝑡)

𝜕𝑥3
). 

𝑇12𝑐 𝐶45 + 12𝑐𝑇12𝑐𝐶46 +
[𝑇12𝑐 sin(12𝛼𝑐) + 𝛼3 cos(12𝛼𝑐)]𝐶47 + [𝑇12𝑐 cos(12𝛼𝑐) −
𝛼3 sin(12𝛼𝑐)]𝐶48 − 𝛼3 cos(12𝛼𝑐) 𝐶49 +
𝛼3 sin(12𝛼𝑐) 𝐶52=0. 
Where  𝑇12𝑐 = (𝑡12𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=12c 
49-at x=12c, 𝑦(12𝑐−, 𝑡) = 𝑦(12𝑐+, 𝑡). 

𝐶45 + 12𝑐𝐶46 + sin(12𝛼𝑐) 𝐶47 + cos(12𝛼𝑐) 𝐶48−𝐶49 −
12𝑐𝐶50 − sin(12𝛼𝑐) 𝐶51 − cos(12𝛼𝑐) 𝐶52 = 0.  

50- at x=12c, 
𝜕𝑦(12𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(12𝑐+,𝑡)

𝜕𝑥
. 

𝐶46 + 𝛼 cos(12𝛼𝑐) 𝐶47 − 𝛼 sin(12𝛼𝑐) 𝐶48−𝐶50 −
𝛼 cos(12𝛼𝑐) 𝐶51 + 𝛼 sin(12𝛼𝑐) 𝐶52 = 0. 

51-at x=13c, 𝑟13𝑐
𝜕𝑦(13𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(13𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(13𝑐+,𝑡)

𝜕𝑥2
) , 𝑟13𝑐 = 0 

−𝛼2 sin(13𝛼𝑐) 𝐶51 − 𝛼2 cos(13𝛼𝑐) 𝐶52 +
𝛼2 sin(13𝛼𝑐) 𝐶55 + 𝛼2 cos(13𝛼𝑐) 𝐶56 

52-at x=13c,  𝑡13𝑐𝑙3𝑦(13𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(13𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(13𝑐+,𝑡)

𝜕𝑥3
). 

𝑇13𝑐 𝐶49 + 13𝑐𝑇13𝑐𝐶50 +
[𝑇13𝑐 sin(13𝛼𝑐) + 𝛼3 cos(13𝛼𝑐)]𝐶51 + [𝑇13𝑐 cos(13𝛼𝑐) −
𝛼3 sin(13𝛼𝑐)]𝐶52 − 𝛼3 cos(13𝛼𝑐) 𝐶53 +
𝛼3 sin(13𝛼𝑐) 𝐶56=0. 
Where  𝑇13𝑐 = (𝑡13𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=13c 
53-at x=13c, 𝑦(13𝑐−, 𝑡) = 𝑦(13𝑐+, 𝑡). 
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𝐶49 + 13𝑐𝐶50 + sin(13𝛼𝑐) 𝐶51 + cos(13𝛼𝑐) 𝐶52−𝐶53 −
13𝑐𝐶54 − sin(13𝛼𝑐) 𝐶55 − cos(13𝛼𝑐) 𝐶56 = 0.  

54- at x=13c, 
𝜕𝑦(13𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(13𝑐+,𝑡)

𝜕𝑥
. 

𝐶50 + 𝛼 cos(13𝛼𝑐) 𝐶51 − 𝛼 sin(13𝛼𝑐) 𝐶52−𝐶54 −
𝛼 cos(13𝛼𝑐) 𝐶55 + 𝛼 sin(13𝛼𝑐) 𝐶56 = 0. 

55-at x=14c, 𝑟14𝑐
𝜕𝑦(14𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(14𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(14𝑐+,𝑡)

𝜕𝑥2
) , 𝑟14𝑐 = 0 

−𝛼2 sin(14𝛼𝑐) 𝐶55 − 𝛼2 cos(14𝛼𝑐) 𝐶56 +
𝛼2 sin(14𝛼𝑐) 𝐶59 + 𝛼2 cos(14𝛼𝑐) 𝐶60 

56-at x=14c,  𝑡14𝑐𝑙3𝑦(14𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(14𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(14𝑐+,𝑡)

𝜕𝑥3
). 

𝑇14𝑐 𝐶53 + 14𝑐𝑇14𝑐𝐶54 +
[𝑇14𝑐 sin(14𝛼𝑐) + 𝛼3 cos(14𝛼𝑐)]𝐶55 + [𝑇14𝑐 cos(14𝛼𝑐) −
𝛼3 sin(14𝛼𝑐)]𝐶56 − 𝛼3 cos(14𝛼𝑐) 𝐶57 +
𝛼3 sin(14𝛼𝑐) 𝐶60=0. 
Where  𝑇14𝑐 = (𝑡14𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=13c 
57-at x=14c, 𝑦(14𝑐−, 𝑡) = 𝑦(14𝑐+, 𝑡). 

𝐶53 + 14𝑐𝐶54 + sin(14𝛼𝑐) 𝐶55 + cos(14𝛼𝑐) 𝐶56−𝐶57 −
14𝑐𝐶58 − sin(14𝛼𝑐) 𝐶59 − cos(14𝛼𝑐) 𝐶60 = 0.  

58- at x=14c, 
𝜕𝑦(14𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(14𝑐+,𝑡)

𝜕𝑥
. 

𝐶54 + 𝛼 cos(14𝛼𝑐) 𝐶55 − 𝛼 sin(14𝛼𝑐) 𝐶56−𝐶58 −
𝛼 cos(14𝛼𝑐) 𝐶59 + 𝛼 sin(14𝛼𝑐) 𝐶60 = 0. 

59-at x=15c, 𝑟15𝑐
𝜕𝑦(15𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(15𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(15𝑐+,𝑡)

𝜕𝑥2
) , 𝑟15𝑐 = 0 

−𝛼2 sin(15𝛼𝑐) 𝐶59 − 𝛼2 cos(15𝛼𝑐) 𝐶60 +
𝛼2 sin(15𝛼𝑐) 𝐶61 + 𝛼2 cos(15𝛼𝑐) 𝐶64 

60-at x=15c,  𝑡15𝑐𝑙3𝑦(15𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(15𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(15𝑐+,𝑡)

𝜕𝑥3
). 

𝑇15𝑐𝐶57 + 15𝑐𝑇15𝑐𝐶58 +
[𝑇15𝑐 sin(15𝛼𝑐) + 𝛼3 cos(15𝛼𝑐)]𝐶59 + [𝑇15𝑐 cos(15𝛼𝑐) −
𝛼3 sin(15𝛼𝑐)]𝐶60 − 𝛼3 cos(15𝛼𝑐) 𝐶61 +
𝛼3 sin(15𝛼𝑐) 𝐶64=0. 
Where  𝑇15𝑐 = (𝑡15𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=15c 
61-at x=15c, 𝑦(15𝑐−, 𝑡) = 𝑦(15𝑐+, 𝑡). 

𝐶57 + 15𝑐𝐶58 + sin(15𝛼𝑐) 𝐶59 + cos(15𝛼𝑐) 𝐶60−𝐶61 −
15𝑐𝐶62 − sin(15𝛼𝑐) 𝐶63 − cos(15𝛼𝑐) 𝐶64 = 0.  

62- at x=15c, 
𝜕𝑦(15𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(15𝑐+,𝑡)

𝜕𝑥
. 

𝐶58 + 𝛼 cos(15𝛼𝑐) 𝐶59 − 𝛼 sin(15𝛼𝑐) 𝐶60−𝐶62 −
𝛼 cos(15𝛼𝑐) 𝐶63 + 𝛼 sin(15𝛼𝑐) 𝐶64 = 0. 

63-at x=16c, 𝑟16𝑐
𝜕𝑦(16𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(16𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(16𝑐+,𝑡)

𝜕𝑥2
) , 𝑟16𝑐 = 0 

−𝛼2 sin(16𝛼𝑐) 𝐶63 − 𝛼2 cos(16𝛼𝑐) 𝐶64 +
𝛼2 sin(16𝛼𝑐) 𝐶65 + 𝛼2 cos(16𝛼𝑐) 𝐶68 

64-at x=16c,  𝑡16𝑐𝑙3𝑦(16𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(16𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(16𝑐+,𝑡)

𝜕𝑥3
). 

𝑇16𝑐 𝐶61 + 16𝑐𝑇16𝑐𝐶62 +
[𝑇16𝑐 sin(16𝛼𝑐) + 𝛼3 cos(16𝛼𝑐)]𝐶63 + [𝑇16𝑐 cos(16𝛼𝑐) −
𝛼3 sin(16𝛼𝑐)]𝐶64 − 𝛼3 cos(16𝛼𝑐) 𝐶65 +
𝛼3 sin(16𝛼𝑐) 𝐶68=0. 

Where  𝑇16𝑐 = (𝑡16𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=16c 
65-at x=16c, 𝑦(16𝑐−, 𝑡) = 𝑦(16𝑐+, 𝑡). 

𝐶61 + 16𝑐𝐶62 + sin(16𝛼𝑐) 𝐶63 + cos(16𝛼𝑐) 𝐶64−𝐶65 −
16𝑐𝐶66 − sin(16𝛼𝑐) 𝐶67 − cos(16𝛼𝑐) 𝐶68 = 0.  

66- at x=16c, 
𝜕𝑦(16𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(16𝑐+,𝑡)

𝜕𝑥
. 

𝐶62 + 𝛼 cos(16𝛼𝑐) 𝐶63 − 𝛼 sin(16𝛼𝑐) 𝐶64−𝐶66 −
𝛼 cos(16𝛼𝑐) 𝐶67 + 𝛼 sin(16𝛼𝑐) 𝐶68 = 0. 

67-at x=17c, 𝑟17𝑐
𝜕𝑦(17𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(17𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(17𝑐+,𝑡)

𝜕𝑥2
) , 𝑟17𝑐 = 0 

−𝛼2 sin(17𝛼𝑐) 𝐶67 − 𝛼2 cos(17𝛼𝑐) 𝐶68 +
𝛼2 sin(17𝛼𝑐) 𝐶69 + 𝛼2 cos(17𝛼𝑐) 𝐶72 

68-at x=17c,  𝑡17𝑐𝑙3𝑦(17𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(17𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(17𝑐+,𝑡)

𝜕𝑥3
). 

𝑇17𝑐 𝐶65 + 17𝑐𝑇17𝑐𝐶66 +
[𝑇17𝑐 sin(17𝛼𝑐) + 𝛼3 cos(17𝛼𝑐)]𝐶67 + [𝑇17𝑐 cos(17𝛼𝑐) −
𝛼3 sin(17𝛼𝑐)]𝐶68 − 𝛼3 cos(17𝛼𝑐) 𝐶69 +
𝛼3 sin(17𝛼𝑐) 𝐶72=0. 
Where  𝑇17𝑐 = (𝑡17𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=17c 
69-at x=17c, 𝑦(17𝑐−, 𝑡) = 𝑦(17𝑐+, 𝑡). 

𝐶65 + 17𝑐𝐶66 + sin(17𝛼𝑐) 𝐶67 + cos(17𝛼𝑐) 𝐶68−𝐶69 −
17𝑐𝐶70 − sin(17𝛼𝑐) 𝐶71 − cos(17𝛼𝑐) 𝐶72 = 0.  

70- at x=17c, 
𝜕𝑦(17𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(17𝑐+,𝑡)

𝜕𝑥
. 

𝐶66 + 𝛼 cos(17𝛼𝑐) 𝐶67 − 𝛼 sin(17𝛼𝑐) 𝐶68−𝐶70 −
𝛼 cos(17𝛼𝑐) 𝐶71 + 𝛼 sin(17𝛼𝑐) 𝐶72 = 0. 

71-at x=18c, 𝑟18𝑐
𝜕𝑦(18𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(18𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(18𝑐+,𝑡)

𝜕𝑥2
) , 𝑟18𝑐 = 0 

−𝛼2 sin(18𝛼𝑐) 𝐶71 − 𝛼2 cos(18𝛼𝑐) 𝐶72 +
𝛼2 sin(18𝛼𝑐) 𝐶73 + 𝛼2 cos(18𝛼𝑐) 𝐶76 

72-at x=18c,  𝑡18𝑐𝑙3𝑦(18𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(18𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(18𝑐+,𝑡)

𝜕𝑥3
). 

𝑇18𝑐 𝐶69 + 18𝑐𝑇18𝑐𝐶70 +
[𝑇18𝑐 sin(18𝛼𝑐) + 𝛼3 cos(18𝛼𝑐)]𝐶71 + [𝑇18𝑐 cos(18𝛼𝑐) −
𝛼3 sin(18𝛼𝑐)]𝐶72 − 𝛼3 cos(18𝛼𝑐) 𝐶73 +
𝛼3 sin(18𝛼𝑐) 𝐶76=0. 
Where  𝑇18𝑐 = (𝑡18𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=18c 
73-at x=18c, 𝑦(18𝑐−, 𝑡) = 𝑦(18𝑐+, 𝑡). 

𝐶69 + 18𝑐𝐶70 + sin(18𝛼𝑐) 𝐶71 + cos(18𝛼𝑐) 𝐶72−𝐶73 −
18𝑐𝐶74 − sin(18𝛼𝑐) 𝐶75 − cos(18𝛼𝑐) 𝐶76 = 0.  

74- at x=18c, 
𝜕𝑦(18𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(18𝑐+,𝑡)

𝜕𝑥
. 

𝐶70 + 𝛼 cos(18𝛼𝑐) 𝐶71 − 𝛼 sin(18𝛼𝑐) 𝐶72−𝐶74 −
𝛼 cos(18𝛼𝑐) 𝐶75 + 𝛼 sin(18𝛼𝑐) 𝐶76 = 0. 

75-at x=19c, 𝑟19𝑐
𝜕𝑦(19𝑐,𝑡)

𝜕𝑥
= 𝐸𝐼 (−

𝜕2𝑦(19𝑐−,𝑡)

𝜕𝑥2 +

𝜕2𝑦(19𝑐+,𝑡)

𝜕𝑥2
) , 𝑟19𝑐 = 0 

−𝛼2 sin(19𝛼𝑐) 𝐶75 − 𝛼2 cos(19𝛼𝑐) 𝐶76 +
𝛼2 sin(19𝛼𝑐) 𝐶77 + 𝛼2 cos(19𝛼𝑐) 𝐶80 

76-at x=19c,  𝑡19𝑐𝑙3𝑦(19𝑐, 𝑡) =  𝐸𝐼 (
𝜕3𝑦(19𝑐−,𝑡)

𝜕𝑥3 −

𝜕3𝑦(19𝑐+,𝑡)

𝜕𝑥3
). 

𝑇19𝑐 𝐶73 + 19𝑐𝑇19𝑐 𝐶74 +
[𝑇19𝑐 sin(19𝛼𝑐) + 𝛼3 cos(19𝛼𝑐)]𝐶75 + [𝑇19𝑐 cos(19𝛼𝑐) −
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𝛼3 sin(19𝛼𝑐)]𝐶76 − 𝛼3 cos(19𝛼𝑐) 𝐶77 +
𝛼3 sin(19𝛼𝑐) 𝐶80=0. 
Where  𝑇19𝑐 = (𝑡19𝑐𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x=19c 
77-at x=18c, 𝑦(18𝑐−, 𝑡) = 𝑦(18𝑐+, 𝑡). 

𝐶73 + 19𝑐𝐶74 + sin(19𝛼𝑐) 𝐶75 + cos(19𝛼𝑐) 𝐶76−𝐶77 −
19𝑐𝐶78 − sin(19𝛼𝑐) 𝐶79 − cos(19𝛼𝑐) 𝐶80 = 0.  

78- at x=19c, 
𝜕𝑦(19𝑐−,𝑡)

𝜕𝑥
=

𝜕𝑦(19𝑐+,𝑡)

𝜕𝑥
. 

𝐶74 + 𝛼 cos(19𝛼𝑐) 𝐶75 − 𝛼 sin(19𝛼𝑐) 𝐶76−𝐶78 −
𝛼 cos(19𝛼𝑐) 𝐶79 + 𝛼 sin(19𝛼𝑐) 𝐶80 = 0. 

79-at x=l,  𝑟2𝑙
𝜕𝑦(𝑙,𝑡)

𝜕𝑥
= −𝐸𝐼

𝜕2𝑦(𝑙,𝑡)

𝜕𝑥2 ,  

𝑅2𝐶78 + (𝛼𝑅2 cos(𝛼) − 𝛼2 sin(𝛼))𝐶79 + (−𝛼𝑅2 sin(𝛼) −
𝛼2 cos(𝛼))𝐶80 = 0  
Where  𝑅2 = (𝑟2𝑙/𝐸𝐼) : dimensionless rotational 
stiffness at x= 𝑙 

80-atx=l, 𝑡2𝑙3𝑦(𝑙, 𝑡) = 𝐸𝐼
𝜕3𝑦(𝑙,𝑡)

𝜕𝑥3 , 

𝑡2𝑙3[𝐶77 + 𝐶78 + 𝐶79 sin(𝛼) + 𝐶80 cos(𝛼) =
𝐸𝐼[−𝐶79 𝛼3 cos(𝛼) + 𝐶80𝛼3 sin(𝛼)]  
𝑇2𝐶77 + 𝑇2𝐶78 + (𝑇2 sin(𝛼) + 𝛼3 cos(𝛼))𝐶79 +
(𝑇2 cos(𝛼) − 𝛼3 sin(𝛼))𝐶80 = 0  
Where  𝑇2 = (𝑡2𝑙3/𝐸𝐼) : dimensionless longitudinal 
stiffness at x= 𝑙. 
These (80) equations can be written in matrix form as 
follows: 
      [𝑊𝑖, 𝑗]{𝐶𝑗} = 0   
       ∆= |Wi, j| 
  Where   𝑖, 𝑗=1, 2, 3, 4 …etc. 
Trial and error procedure is used to find the value of   
(𝛼)   that makes the determinant |Wi, j|  Vanish. 

From  (𝛼 = √𝛾 + 𝑢𝑐𝑟
2)  the non-dimensional critical 

velocity (𝑢𝑐𝑟)is obtained. 

 
III.Results and Discussions. 
The natural frequencies for steady flow decreases 
with increasing the fluid flow velocity. If the natural 
frequencies of the pipe reach to zero, the flow velocity 
in this case is called critical flow velocity. When the 
flow velocity equals the critical velocity the pipe bows 
out and buckles, because the forces required to make 
the fluid deform to the pipe curvature are greater than 
the stiffness of the pipe. The effects of the transverse 
parameter related to the Winkler model on the critical 
flow velocity are studied based on the numerical 
results obtained for various pipe end conditions. From 
the results obtained, it is observed that the instability 
caused by the fluid flow velocity is effectively 
countered by the foundation and the fluid conveying 
pipe is stabilized by an appropriate choice of the 
stiffness parameters of the Winkler foundation. A 
detailed study is made on the influence of Winkler 
foundation on the critical flow velocity and interesting 
conclusions are drawn from the numerical results 
presented for pipes under different boundary 
conditions. 
        Results have been obtained for critical flow 
velocity condition, where     Ω1 = 0 . This condition 
constitutes a pipe on elastic foundation.  
 
 

 
In Figure (2), the critical flow velocity parameter 𝑢𝑐𝑟 is 
plotted against Winkler foundation parameter 𝛾1 , for 
the pinned-pinned case. The results show that the 
critical flow velocity increases appreciably for values 
of 𝛾1  greater than 1000. Figures (3) and (4) show the 
results for the clamped-pinned and the clamped-
clamped boundary conditions respectively. Here, too, 
the trend is similar. 

 

 

Figure (2) Influence of γ1on ucr for Pinned-Pinned 
pipe. 

 

 

Figure (3) Influence of γ1on ucr for Clamped-Pinned 
pipe. 

 

Figure (4) Influence of γ1on ucr for Clamped-Clamped 
pipe. 
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New results for pipe conveying fluid on Winkler 
parameter elastic foundation under flexible boundary 
condition have been presented.  Figure (5) show the 
effect of changing the linear impedance value on the 
critical velocity with different foundation parameter, 
and same rotational impedance value (𝑅1 = 𝑅2 = 𝑅 =
50) . The results show that the critical flow velocity 
increases for values of linear stiffness increasing. This 
increasing vanishes with arrived the foundation value 
to 10000 because of the effect of foundation 
parameter on the critical velocity greater than the 
effect of linear stiffness in this point. 

 

 

Figure(5) Effect of linear impedance (T1 = T1 = T ) and 
foundation parameter(γ1) values on the critical velocity 

. 

Figers(6,7,8) shows some representative values of 𝑢𝑐𝑟  
for different values of the Winkler foundation 
parameter 𝛾1  for all the three flexible boundary 
conditions. Figure. (6) shows the plot of 𝑢𝑐𝑟  versus 𝛾1 
for type ( 𝑇1 = 100 ,  𝑅1 = 10 ,  𝑇2 = 10 ,  𝑅2 = 100 ) 
boundary condition. The Winkler foundation has a 
stabilizing effect in the pipe and increasing values of 
𝛾1  tend to increase the critical flow velocity. Figures 
(7) and (8) shows the plots for type (𝑇1 = 110, 𝑅1 =
25, 𝑇2 = 130 ,  𝑅2 = 15) and the type (𝑇1 = 750,  𝑅1 =
180, 𝑇2 = 450, 𝑅2 = 250) cases respectively. A similar 
trend is noticed in these cases also. This new results 
are very accurate and may be useful to other 
researchers so as compare their result. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure (6) Influence of γ1on ucr for type (T1 =
100, R1 = 10, T2 = 10, R2 = 100.) pipe conveying 

fluid. 

 

Figure (7) Influence of γ1on ucr for type (T1 = 110, R1 =
25, T2 = 130, R2 = 15.) pipe conveying fluid. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure (8) Influence of 𝛾1on 𝑢𝑐𝑟 for type (𝑇1 =
750, 𝑅1 = 180, 𝑇2 = 450, 𝑅2 = 250.) pipe conveying 

fluid. 
 

V. Conclusions. 
Following the main summarized conclusions raised by 
this research: 
1-The technique used for modeling the compliant 
boundary material in terms  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 8, August - 2015 

www.jmest.org 
JMESTN42350971 2106 

of linear and rotational impedance allows the designer 
to describe both the classical and restrained boundary 
conditions. 
4- The critical velocity increase with increasing the 
value of the Winkler foundation. 
3-The instability caused by the fluid flow velocity is 
effectively countered by the foundation and the fluid 
conveying pipe is stabilized by an appropriate choice 
of the stiffness parameters of the Winkler foundation. 
5-The mass ratio has no effect on the critical velocity. 
6- The critical flow velocity increases for values of 
linear impedance increasing. This increasing vanishes 
with arrived the foundation value to 10000 because of 
the effect of foundation parameter on the critical 
velocity greater than the effect of linear stiffness in this 
point. 
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