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Abstract— Analytical solutions to earlier 
models by Chen and Lin [1] concerning elastic 
analysis of functionally graded cylindrical and 
spherical pressure vessels are obtained and 
presented. 
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I.  INTRODUCTION  

Recently, Chen and Lin [1] have developed 
numerical models to investigate mechanical response 
of functionally graded cylindrical and spherical 
pressure vessels in the elastic state of stress. They 
have proposed that the modulus of elasticity   of the 
vessel vary radially according to 

 ( )        *
 (   )

   
+                                               ( ) 

where    is the value of   at the inner surface,   the 

radial coordinate,   and   the inner and outer radii, 
respectively, and   the grading parameter. Using basic 
equations of elasticity in cylindrical and spherical 
coordinates, they have obtained governing differential 
equations in terms of appropriately selected stress 
functions. These equations have then been solved 
numerically to obtain elastic behavior of the cylindrical 
and spherical vessels in turn subjected to either 
internal pressure or external pressure. 

 The governing equations as the outcome of the 
models by Chen and Lin [1] have both been second 
order, homogeneous, linear ordinary differential 
equations with variable coefficients. It is known that, 
although a little tedious, such equations can be solved 
analytically by power series method. In the present 
work accepting considerable help from the computer 
algebra systems Maple and Mathematica, analytical 
solutions to these equations are obtained. Meanwhile, 
the solution of a non-rotating annular disk is also 
obtained and presented in the Appendix Section. 

  The research on the prediction of stresses in basic 
mechanical structures like disks, cylinders, tubes, 
spherical shells, plates under different loading 
conditions has never ceased because of the 

importance of these structures in numerous civil, 
mechanical, electrical and computer engineering 
applications. In recent years extensive effort by 
researchers has also been spent for the mechanical 
analysis of basic structures made of functionally 
graded materials [1], [3]-[17]. A functionally graded 
material (FGM) is nonhomogeneous in its composition 
so that its properties like modulus of elasticity, 
modulus of rigidity, Poisson's ratio, and coefficient of 
thermal expansion may vary continuously throughout 
the material. This nonhomogeneity in the material may 
accompany lower stresses and as a result higher 
strength of the structure. The interested reader may 
acquire useful information on the subject matter from 
the list of most recent publications cited in this article. 

 

II. FUNCTIONALLY GRADED CYLINDRICAL PRESSURE 

VESSEL 

A. Formulation 

The equation of equilibrium 

   
  

 
     
 

                                                               ( ) 

the compatibility relation 

 

  
(   )                                                                     ( ) 

the equations of generalized Hooke's Law 

   
 

 
[    (     )]                                                 ( ) 
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form the basis for the solution [2]. In these equations 
  ,    and    represent the normal stress components, 
  ,    and    the normal strain components, and   the 
Poisson's ratio. In case of plane strain, the axial strain 
vanishes, i.e.      , and hence the axial stress is 

determined to be     (     ) . The radial and 
circumferential strains then take the forms 
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Introducing a stress function of the form  ( )     , 
one can write with the help of (2) 

   
 

 
                     

  

  
                                           ( ) 

 

and as a result, the stress function   satisfies the 

equation of equilibrium. In terms of  , elastic strains 
can be rewritten as 
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The governing differential equation in terms of  ( ) is 
obtained by substituting the strains from (10) and (11) 
into the compatibility equation. The result is 
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B. Analytical Solution 

Note that with the form by (1) we determine 
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hence the governing equation takes the form 
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or 
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where 

  
 

   
                      

 

(   )(   )
 (  ) 

 

This is a homogeneous second order linear differential 
equation with variable coefficients. Its analytical 
solution is obtained by power series method and can 
be displayed in the form 

 ( )     ( )     ( )                                               (  ) 

where    and     are arbitrary integration constants 
and the rest are 
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The series in (18) simplifies significantly if the 
Poisson's ratio is assigned to a numerical value. As an 
example, for        it simplifies to 
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The rapid convergent nature of the solution can be 
observed here as        always. 

    The function   ( ) is determined by first expanding 
the integrand into MacLaurin's series and then 
performing the integration. For        first few terms 
of the result simplify to 
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C. Evaluation of Integration Constants 

In case of a cylinder subjected to internal pressure, 
   , the boundary conditions read   ( )        and 
  ( )   , then the constants    and     are 
determined to be 

    
     ( ) 

 ( ) ( )   ( ) ( )
  

    
 ( )

                (  ) 
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since  ( )    by (20). If the cylinder is subjected to 
external pressure,    , boundary conditions become 

  ( )   , and   ( )       , then the unknown 
constants turn out 

                 
    
 ( )

                                                (  ) 

III. FUNCTIONALLY GRADED SPHERICAL PRESSURE 

VESSEL 

A. Formulation 

The equation of equilibrium 

   
  

 
 (     )

 
                                                      (  ) 

the compatibility relation given by (3) above and the 
equations of generalized Hooke's Law 

   
 

 
[       ]                                                          (  ) 

   
 

 
[(   )      ]                                              (  ) 

are the basic equations [2]. If we use a stress function 

of the form  ( )      , then we find from the equation 
of equilibrium 

   
 

  

  

  
                                                                        (  ) 

so that the equation of equilibrium is satisfied by  ( ) 
and meanwhile the elastic strains take the forms 
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Substitution of elastic strains into the compatibility 
equation, (3), leads to the governing equation for the 
spherical vessel 
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Here we note the misprint in (28) of [1]. The term      
there should have been      . 

 

B. Analytical Solution 

 With the substitution of   (   )  in place of 

          the governing equation becomes 
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or after a rearrangement 
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where 
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The power series solution of (34) can be cast into the 
compact form 

 ( )     ( )     ( )                                               (  ) 

where 
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Further simplification for  ( )  is possible upon 
substitution of numerical value for  . The result for 

       is 

 ( )      *  
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The integral   ( ) is determined as in the case of a 
cylinder. 

C. Evaluation of Integration Constants 

We note again that  ( )   . When the vessel is 

subjected to internal pressure     the boundary 

conditions are   ( )          and   ( )     
Accordingly the unknown constants are determined as 

    
     
 ( )

                
      ( )

 ( ) ( )
                         (  ) 

In case of a vessel under external pressure boundary 
conditions read   ( )      and   ( )          then the 
constants are evaluated as 

                     
     
 ( )

                                           (  ) 
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IV. PRESENTATION OF RESULTS 

A. Cylindrical Pressure Vessel 

In all of the following calculations           . 
Furthermore, the results are presented in terms of the 
following dimensionless variables: radial coordinate 

 ̅  
   

   
                                                                           (  ) 

radial stress component 

 ̅   
 

   
                                                                        (  ) 

and circumferential stress component 

 ̅  
  

  

 

  
                                                                        (  ) 

where    represents either internal or external 
pressure. First, the pressure vessel with a relative wall 
thickness         which is subjected to internal 
pressure is considered. The dimensionless stresses 
are calculated for the values of the grading parameter 
  used in [1]. The results of these calculations are 
tabulated in Tables 1 and 2. In Table 1 analytical 
values of  ̅  to 8-significant figures are tabulated clash 
with the numerical results of Chen and Lin [1], while 
Table 2 does the same for the results of  ̅ . 

 Using   as a parameter, calculations are also 

performed for a wall thickness of        . The vessel 
is under internal pressure. The results of these 
calculations are depicted in Fig. 1 and Fig. 2. Fig. 1 
shows the distributions of  ̅   and Fig. 2  ̅  for different 

  values. In these figures dots come from the work of 
Chen and Lin [1] and represent numerical counterpart 
of the present solutions. 

B. Spherical Pressure Vessel 

In this case the nondimensional variables are 

 ̅   
 

    
                  ̅  

 

  

  

  

 

  
                    (  ) 

A spherical pressure vessel of wall thickness         
subjected to internal pressure is taken into 
consideration. Calculations are performed for different 
values of grading parameter  . The results of these 
calculations are plotted in Fig. 3 and Fig. 4. Fig. 3 
shows the variation of  ̅  in the vessel while Fig. 4 
shows  ̅ . Dots represent the results of the numerical 
solution by Chen and Lin. 

 Next, a spherical pressure vessel of wall thickness 
        subjected to external pressure is 
considered. The results of the calculations for this case 
are plotted in Fig. 5 and Fig. 6. As before dots in these 
figures come from the numerical solution of Chen and 
Lin [1]. The distribution of  ̅  and  ̅  for different values 

of   can be visualized in these figures, respectively. 

 

 

Figure 1. Variation of dimensionless radial stress in a cylindrical pressure 

vessel of a/b = 0.9 subjected to internal pressure for different values of β. 

 

Figure 2. Variation of dimensionless circumferential stress in a cylindrical 

pressure vessel of a/b = 0.9 subjected to internal pressure for different 
values of β. 
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Figure 3. Variation of dimensionless radial stress in a spherical pressure 

vessel of a/b = 0.5 subjected to internal pressure for different values of β. 

 

 

Figure 4. Variation of dimensionless circumferential stress in a spherical 

pressure vessel of a/b = 0.5 subjected to internal pressure for different 
values of β. 

 
 

Figure 5. Variation of dimensionless radial stress in a spherical pressure 

vessel of a/b = 0.5 subjected to external pressure for different values of β. 

 

 

Figure 6. Variation of dimensionless circumferential stress in a spherical 

pressure vessel of a/b = 0.5 subjected to external pressure for different 

values of β. 
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Table 1.   ̅  vs   for         using   as a parameter. Analytical and numerical [1] results. 

 

 
Table 2.  ̅  vs r for         using   as a parameter. Analytical and numerical [1] results. 

  
 ̅            

 
 ̅           

  
  ̅          

 
  ̅          

 
  ̅          

 

  ̅  Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical 

0.0 3.3699069 3.370 2.4699608 2.470 1.6666667 1.667 1.0007634 1.001 0.4975766 0.498 

0.1 2.3821340 2.382 1.9259313 1.926 1.4352617 1.435 0.9576049 0.958 0.5428856 0.543 

0.2 1.7087768 1.709 1.5262081 1.526 1.2592593 1.259 0.9369132 0.937 0.6065827 0.607 

0.3 1.2412574 1.241 1.2263143 1.226 1.1222880 1.122 0.9328087 0.933 0.6879382 0.688 

0.4 0.9116622 0.912 0.9973463 0.997 1.0136054 1.014 0.9415295 0.942 0.7874116 0.787 

0.5 0.6762864 0.676 0.8199113 0.820 0.9259259 0.926 0.9606168 0.961 0.9063597 0.906 

0.6 0.5063291 0.506 0.6806403 0.681 0.8541667 0.854 0.9884465 0.988 1.0469030 1.047 

0.7 0.3824267 0.382 0.5701008 0.570 0.7946943 0.795 1.0239492 1.024 1.2118854 1.212 

0.8 0.2913360 0.291 0.4815027 0.482 0.7448560 0.745 1.0664364 1.066 1.4048932 1.405 

0.9 0.2238652 0.224 0.4098711 0.410 0.7026777 0.703 1.1154907 1.115 1.6303192 1.630 

1.0 0.1735525 0.174 0.3515051 0.352 0.6666667 0.667 1.1708939 1.171 1.8934617 1.893 

 

 

APPENDIX  

Analytical Solution to Annular Disk 

 For a stationary (non-rotating) annular disk of inner 
radius  , outer radius   the two basic equations are 
those given by (2) and (3). In a state of plane stress, 
    , hence the equations of the generalized 
Hooke's law read 

   
 

 
[      ]                                                            (  ) 

   
 

 
[      ]                                                            (  ) 

where   has been defined by (1). Using a stress 
function as in (9), the elastic strains can be put into the 
forms 
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]                                                           (  ) 

Substitution of elastic strains into the compatibility 
relation, (3), leads to the governing differential 
equation for disk geometry 
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             (  ) 

The general solution is 

 ( )     ( )     ( )                                               (  ) 

where 
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 ̅            
 

 ̅           
  

  ̅          
 

  ̅          
 

  ̅          
 

 ̅  Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical 

0.0 1.0000000 1.000 1.0000000 1.000 1.0000000 1.000 1.0000000 1.000 1.0000000 1.000 

0.1 0.6505686 0.651 0.7105925 0.711 0.7685950 0.769 0.8202738 0.820 0.8619429 0.862 

0.2 0.4276402 0.428 0.5083599 0.508 0.5925926 0.593 0.6731116 0.673 0.7423432 0.742 

0.3 0.2823479 0.282 0.3639224 0.364 0.4556213 0.456 0.5495138 0.550 0.6355641 0.636 

0.4 0.1859609 0.186 0.2588679 0.259 0.3469388 0.347 0.4433901 0.443 0.5375866 0.538 

0.5 0.1210635 0.121 0.1812791 0.181 0.2592593 0.259 0.3504783 0.350 0.4454018 0.445 

0.6 0.0768235 0.077 0.1232281 0.123 0.1875000 0.188 0.2677075 0.268 0.3566439 0.357 

0.7 0.0463535 0.046 0.0793152 0.079 0.1280277 0.128 0.1928075 0.193 0.2693578 0.269 

0.8 0.0251905 0.025 0.0457863 0.046 0.0781893 0.078 0.1240609 0.124 0.1818444 0.182 

0.9 0.0103944 0.010 0.0199848 0.020 0.0360111 0.036 0.0601404 0.060 0.0925526 0.093 

1.0 0.0000000 0.000 0.0000000 0.000 0.0000000 0.000 0.0000000 0.000 0.0000000 0.000 
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