Application Of Munich Chain Ladder For An Albanian DMTPL Portfolio

Kleida HAXHI

Department of Mathematics, Mathematical and Physical Engineering Faculty, Polytechnic University of Tirana Tirana, Albania kleida_haxhi@yahoo.com

Abstract—The most used method for the estimation of claims reserve is the Chain Ladder method. The actuaries apply the chain ladder method independently to the paid claims and to the incurred claims triangles. The Munich Chain Ladder method combine both triangles, by taking the paid-incurred ratios into account in projections.

Keywords—Munich Chain Ladder; Standard Chain Ladder; Run-off triangle; Claims reserving; Incurred Claims, Paid Claims; P/I ratios

I. INTRODUCTION

Using the Standard Chain Ladder (SCL) method the claims reserve is calculated based on the run-off triangles of paid claims and on the run-off triangles of the incurred claims. Many times the projections based on the paid claims are different that the projections based on the incurred claims. The solution for this problem is the Munich Chain Ladder (MCL) method. We apply MCL to an Albanian DMTPL portfolio. The paid (P) claims triangle and the incurred (I) claims triangle cover ten accident years and also ten development years. The values are in Albanian currency.

II. MUNICH CHAIN LADDER METHOD

A. Mack Chain Ladder Model

We denote $n \in N$ the number of accident years and T= {1,2,...m} the development years, $m \in N$ and generally $m=n; P_i = (P_{i,t})_{t \in T}$ and $I_i = (I_{i,t})_{t \in T}$ denote respectively the paid claims process and the incurred claims process. The processes P_i and I_i describe the development of the paid and the incurred claims.

 $P_i(s) = \{P_{i,1}, \dots, P_{i,s}\}$ represent the condition that the paid development of accident *i* is given until the end of development year *s* and $I_i(s) = \{I_{i,1}, \dots, I_{i,s}\}$ for the condition that the incurred development of accident *i* is given up to and including *s*. [2]

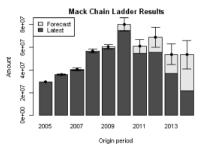
The assumptions for the paid processes are:

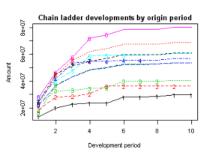
- Expectation assumption PE
- Variance assumption PV
- Independence assumption PU, that means the accident years are stochastically independent

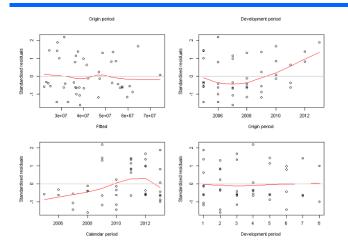
The assumptions for the incurred processes are:

Bledar BAHOLLI

Department of Mathematics, Mathematical and Physical Engineering Faculty, Polytechnic University of Tirana Tirana, Albania


- Expectation assumption IE
- Variance assumption IV
- Independence assumption IU, that means the accident years are stochastically independent


These assumptions does not say anything about the relationships between paid and incurred processes. If we knows the paid run-off triangle and the incurred run-off triangle, we can make projections based on the conditional expectations [2]


$$E\left(\frac{P_{i,t}}{P_{i,s}}|\mathcal{B}_{i}(s)\right)$$
 and $E\left(\frac{I_{i,t}}{I_{i,s}}|\mathcal{B}_{i}(s)\right)$

where $\mathcal{B}_{i}(s) = \{P_{i,1}, \dots, P_{i,s}; I_{i,1}, \dots, I_{i,s}\}$ stand for the fact of the development of both processes up to the end of development year *s*.

	0	1	2	3		4	5	6	7	8	
2005	13,247,635	19,871,794	22,514,448	23,425,701	23,425,7	01 28,034,	921 28,034	,921 28,534	4,921 29,6	27,617	29,627,
2006	18,545,283	28,096,622	28,505,022	30,384,866	36,210,2	97 36,210,	297 36,210	,297 36,210	0,297 36,2	10,297	
2007	22,805,548	32,677,287	33,056,967	34,544,398	34,901,0	48 39,901,	048 39,901	,048 39,90	1,048		
2008	25,061,272	41,450,112	53,532,128	54,632,128	54,632,1	28 55,482,	000 55,482	,000,			
2009	27,800,292	39,885,124	47,736,642	58,826,959	59,226,9	59 59,226,	959				
2010	28,171,203	46,485,088	57,877,529	72,033,666	74,682,8	50					
2011	24,747,420	45,051,323	51,535,064	54,831,028	5						
2012	22,311,896	44,679,545	55,642,105								
2013	16,811,300	36,981,386									
2014	21,903,227										
C	Cumulative Incu	rred									
	0	1	2	3	4	5	6	7	8		9
2005	43,855,985	48,981,761	49,781,761	49,781,761	49,781,761	49,781,761	49,781,761	49,781,761	49,781,761	49,781	,761
2006	35,549,677	39,261,019	47,261,019	47,261,019	47,638,070	47,638,070	47,638,070	47,638,070	47,638,070	1	
2007	34,563,960	61,123,045	61,123,045	62,748,791	62,748,791	62,748,791	62,748,791	62,748,791			
2008	39,563,188	61,731,322			91,255,164	91,255,164	91,421,764				
2009	39,467,409	58,680,818			67,412,109	67,412,109					
2010	43,035,761	69,523,122			88,216,570						
2011	43,195,291	67,457,014	76,275,810	76,325,810							
2012	41,495,136	54,703,915	58,893,154								
2013	40,571,725	40,571,725									
2014	53,596,544										

B. Munich Chain Ladder Model

In the MCL model we use PIU [1] instead of PU and IU. We denote the P/I process as

$$Q_i = \frac{P_i}{I_i} = \left(\frac{P_{i,t}}{I_{i,t}}\right)_{t \in I}$$

If X is a random variable, C a condition and the conditional standard deviation of X given C is $\sigma(X|C)$, we call the conditional residual of X given C

$$Res(X|C) = \frac{X - E(X|C)}{\sigma(X|C)}$$

The standardization of the conditional residual is

The assumptions for the MCL model:

• The conditional expectations for the paid development factors and their residuals are

$$Res\left(\frac{P_{i,t}}{P_{i,s}}|\mathcal{P}_i(s)\right)$$

• The conditional expectations for the incurred development factors and their residuals are

$$Res\left(\frac{I_{i,t}}{I_{i,s}}|\mathbb{I}_i(s)\right)$$

Hence we have

$$E\left(Res\left(\frac{P_{i,t}}{P_{i,s}}|\mathcal{P}_i(s)\right)|\mathcal{B}_i(s)\right)$$

and

$$E\left(Res\left(\frac{I_{i,t}}{I_{i,s}}|\mathbb{I}_{i}(s)\right)|\mathcal{B}_{i}(s)\right)$$

 Linear dependence of the expectations on the residuals of (P/I) or (I/P) ratios into an mathematical equation

$$Res(Q_{i,s}|\mathbb{I}_i(s))$$
 or $Res(Q_{i,s}^{-1}|\mathcal{P}_i(s))$

PQ – there exist a constant θ^P such that for all s, t *ε*T with t=s+1 and i=1,2,...,n

$$E\left(Res\left(\frac{P_{i,t}}{P_{i,s}}|\mathcal{P}_i(s)\right)|\mathcal{B}_i(s)\right)$$

= $\theta^P Res\left(Q_{i,s}^{-1}|\mathcal{P}_i(s)\right)$

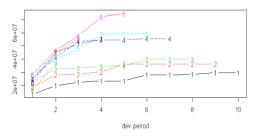
 IQ - there exist a constant θ^l such that for all s, t *ε*T with t=s+1 and i=1,2,...,n

$$E\left(Res\left(\frac{I_{i,t}}{I_{i,s}}|\mathbb{I}_{i}(s)\right)|\mathcal{B}_{i}(s)\right) = \theta^{I} Res(Q_{i,s}|\mathbb{I}_{i}(s))$$

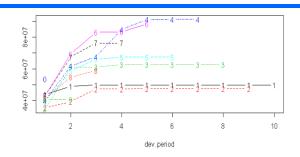
The parameters θ^{P} and θ^{I} represent the slopes of the regression lines in the residuals plots and are not independent on development year *s*.

III. ANALYSIS OF THE MCL MODEL

The factor θ^{I} is the coefficient of correlation of the residuals of the development factors and the residuals of the P/I ratios. The factor θ^{P} is the coefficient of correlation of the residuals of the development factors and the residuals of the I/P ratios. The values of factors θ^{I} and θ^{P} are between 0 and 1. The correlation parameters θ^{I} and θ^{P} represent the link between the incurred and the paid triangles.

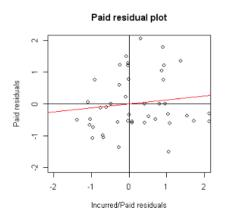

$$\begin{split} \theta^{P} &= corr\left(Q_{i,s}^{-1}, \frac{P_{i,t}}{P_{i,s}} | \mathcal{P}_{i}(s)\right) \\ \theta^{I} &= corr\left(Q_{i,s}, \frac{I_{i,t}}{I_{i,s}} | \mathbb{I}_{i}(s)\right) \end{split}$$

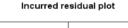
For the conditional correlation coefficients

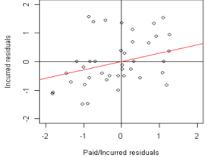

$$\begin{aligned} \theta^{P} &= corr\left(Res\left(Q_{i,s}^{-1}|\mathcal{P}_{i}(s)\right), Res\left(\frac{P_{i,t}}{P_{i,s}}|\mathcal{P}_{i}(s)\right)\right)\\ \theta^{I} &= corr\left(Res(Q_{i,s}|\mathbb{I}_{i}(s)), Res\left(\frac{I_{i,t}}{I_{i,s}}|\mathbb{I}_{i}(s)\right)\right)\end{aligned}$$

A. Estimation of claims reserve using MCL

The appearance of the paid claims before the application of MCL


The appearance of the incurred claims before the application of $\ensuremath{\mathsf{MCL}}$



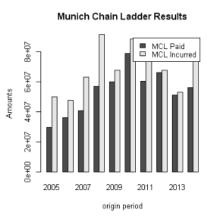

Using MCL method we can project the total claims reserve and also the paid and incurred triangles.

Totals	Claims							
TOLAIS	Paid	Incurred	P/I Ratio					
Latest	464488517	636606298	0.7296323					
Ultimate	534960659	687394853	0.7782436					

The incurred residual plot shows a correlation of 58% and the paid residuals shows a correlation of 26%. The regression lines for the two plots are flat.

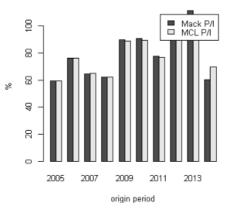
B. Results of projections

The results of the projection are the paid and the incurred quadrangle.


The projections for paid claims

> MC	L Paid									
	0	1	2	3	4	5	6	7	8	9
2005	13247635	19871794	22514448	23425701	23425701	28034921	28034921			
						36210297			36210297	36182431
		32677287				39901048				
		41450112				55482000				
	27800292					59226959				
		46485088				77926334				
	24747420					59392062				
	22311896 16811300									
2013	21903227	27527000	42304331	4/220/14	40403700	50401215	50401215	50462506	50371343	50000303
2014	21903227	21221300	44040000	50250104	52077655	54640556	24040220	22000200	55942015	00002420

The projections for incurred claims


> MCL Incurred					
0 1	2 3	4 5	6	7	8 9
2005 43855985 48981761	49781761 49781761	49781761 49781761	49781761 4	49781761 49781	761 49781761
2006 35549677 39261019	47261019 47261019	47638070 47638070	47638070 4	47638070 47638	070 47638070
2007 34563960 61123045	61123045 62748791	62748791 62748791	62748791 (62748791 62748	791 62748791
2008 39563188 61731322					
2009 39467409 58680818	66055173 67412109	67412109 67412109	67485979 (67485979 67485	979 67485979
2010 43035761 69523122	83069602 83319602	88216570 88216570	88314186	88314186 88314	186 88314186
2011 43195291 67457014	76275810 76325810	78675472 78675472	78739749	78739749 78739	749 78739749
2012 41495136 54703915	58893154 64522884	67536952 67536952	67624301 (67624301 67624	301 67624301
2013 40571725 40571725	46405079 50658890	52968438 52968438	53035191	53035191 53035	191 53035191
2014 53596544 70682877	76622566 78563956	80552705 80552705	80605061	80605061 80605	061 80605061

The Munich Chain Ladder results

The comparison of level of concurrence between paid and incurred projections by comparing the ultimate P/I ratios calculated using the Standard Chain Ladder and the Munich Chain Ladder.

Munich Chain Ladder vs. Standard Chain Ladde

IV. CONCLUSIONS

The standards chain ladder method don't consider the correlation between paid claims and incurred claims. The Munich chain ladder seeks to resolve the differences that arise between the standard paid claims and the incurred chain ladder indications. MCL provides separate estimations for paid and incurred, but they are closer to one another. In the cases where the correlations are not significant the MCL method provides the same results as the SCL method. The implementation of MCL method is more complex that the other reserving methods. It may be not respond very well to the small data and sometimes the parameters may need smoothing or extrapolation.

REFERENCES

- Quarg, G.; Mack, T. [2008] Munich Chain Ladder: A Reserving Method that Reduces the Gap between IBNR Projections Based on Paid Losses and IBNR Projections Based on Incurred Losses. In: CAS, Volume 2, Issue 2, pp. 266 -299
- [2] Mack, T. [1993] Distribution–free calculation of the standard error of chain–ladder reserve estimates. ASTIN Bull. 23, 213–225.
- [3] Mack, T. [1997] Measuring the variability of chain– ladder reserve estimates. In: Claims Reserving Manual, vol. 2. London: Institute of Actuaries.