
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1608

Fig. 1: Conceptual view of the Persistent Sensor
Storage Architecture

A Sensor Fusion Architecture For Human-
Centric Sensing Applications

Sanjay K. Boddhu

Synthos Technologies, A
division of Qbase LLC

Dayton, Ohio, USA
sboddhu@qbase.com

Robert L. Williams
Discovery Labs, U.S. Air Force

Research Labs
Wright Patterson AFB, Ohio,

USA
robert.williams@wpafb.af.mil

Xiao-Guang Yue
School Resources and

Environmental Engineering,
Wuhan University of Technology

Wuhan, China
xgyue@whut.edu.cn

Abstract—The recent advances in smart devices
technology and their profuse availability have
made the prospective of human-centric sensing
and computing paradigms a viable reality. There
already exist various operational intelligent
systems in different domains like defense,
healthcare, energy and disaster management that
have been developed by employing human-centric
sensing as their backbone. But, to support
building more complex or novel human-centric
based systems that have to integrate with existing
sensors/devices and possible future sensors,
there exists practical issue like accommodating
disparate data formats, modality and connectivity
interfaces. These low-level issues make
integration of different sensing devices and fusion
of sensed data a challenge and time consuming
process, delaying the high-level implications,
which can be targeted towards solving real world
problems. In this paper, a generic sensor fusion
architecture has been presented that has been
developed to solve the mentioned challenges and
support seamless integration and development of
human-centric sensing devices and also
platforms.

Keywords—Situational Awareness, Human
Centric Sensing, Situational Understanding,
Sensor Fusion Architecture

I. INTRODUCTION

Human-centric sensing (HCS) provides a new
perspective and understanding to the real world
sensing problems like situational awareness,
environmental monitoring, health care, over various
traditional sensing processes, by collecting grass-root
level data thru the smart devices carried by humans.
These HCS can be participatory or opportunistic in
nature, but the genuine value of the human centric
sensing platform can be possible only thru a real-time
forensic data processing with near real-time
collaborative human validation that also leverages
archived information for a given sensing task at hand.
The real-time collaborative constraint on the human
centric sensing requires deployment of a scalable and
adaptive communications framework that can provide
a composable fusion of standard internet and hybrid
intranet communication networks.

Further, as one can perceive, the type of data
collected thru smart devices can vary dramatically from
simple unstructured data (text, image, video, etc…)
powered thru social media networks or complex multi
modal data (like heart rate, ECG, Pulse rate, CO2
levels, etc…) powered by custom developed
connectivity frameworks, based on the situational
analysis and prediction tasks in a given domain, and
this data can grow astronomically in certain
applications. Thus, the smart devices participating in
the HCS systems would require a unified interface that
is agnostic to their modality, collection rate and
connectivity and provide seamless mechanisms to
amass massive amounts raw data from the smart
devices, process the data in real-time and
disseminate the data to all the involved stack holders
in a collaborative fashion. The data storage and
forensic data mining has to reside in a secured
internet/intranet or hybrid environments, as currently
the storage and computing on massive data is not
practical on hand held smart devices. There already
exist various successful HCS based applications that
are custom and proprietary built for specific vision and
mission [6] [7] but building a generic architecture that
can provide a platform to seamlessly develop and
deploy HCS based applications is still an active
research area that has to address the aforementioned

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1609

Fig. 2: Logical view of the Persistent Sensor Storage Architecture

Persistent Sensor Storage Architecture

Ingestion

Services

Application Services Data Services Dissemination

Services

Core Services

Image Frame

Ingestor

Satellite Scene

Ingestor

Video

Ingestor

RSS Feed

Ingestor

Exploitation

Algorithms
OGC

WMS / WFS

Media Streaming

Services

Cataloging

Service

Search

Notification

Service

Management

Services

Service Registry

Directory

Services

Configuration

Services

System

Management

Services

Scheduler

Service

Storage Services

· Metadata

· Spatial

· Temporal

· Relational

· Text

OpenLST

PocketLST

(Android, iPhone)

Web and Rich Clients

UAVs

LandSat 5

Video Surveillance

Cameras

GeoRSS

UAV Ground

Station

LandSat

Server

Misc. Service

Provider

Proxies

External

Gateways

Media Data

Services

Internal Data

Services

challenges. In recent years, the researchers at AFRL
Discovery Lab have been working on developing a
scalable and “plug-n-play” generic architecture called
Persistent Surveillance and Storage Architecture
(PSSA), that can normalize disparate sensor data and
provide a unified and seamless sensor data fusion,
processing and storage capabilities for persistence
surveillance and situational awareness problems
related to defense and homeland security domains.
Recently, the efforts to extend the architecture with
smart devices and smart phone integration capabilities
over heterogeneous networks employing the core
components of the architecture as yielded in promising
implications to serve as a generic architecture for
Human Centric Sensing applications.

In this vein, this paper provides the logical and
conceptual views of PSSA, followed by PSSA SDK
and PSSA’s scalability implications towards building
HCS applications. Finally the discussion focusing on
the brief description of successfully developed and
deployed HCS applications will be presented.

II. PERSISTANCE SURVEILLANCE AND

STORAGE ARCHITECTURE

A. Conceptual View

The PSSA supports persistent surveillance and
human centric sensing activities by providing a
platform for storing, processing, and disseminating
data captured via remote sensors. As depicted in Fig.
1, storage is central to our architecture. The storage
subsystem provides a scalable, high performance,
fault- tolerant and flexible repository for all of the
sensor data ingested into the system. The ring around
the storage subsystem represents a messaging
capability that allows sensor data to be simultaneously
communicated synchronously or asynchronously to all
of the other services surrounding the storage
subsystem.

Services can be “plugged” into this event-based
backbone (or cloud) as needed to support new
sensors, smart devices and respective sensor
processing without having to rebuild or even shut down
the system. Services defined as part of the PSSA
provide the means for sensor data to be ingested,
exploited, stored and retrieved. Although storage is
central to the PSSA, the other services are optional
and can be plugged into or removed from the PSSA
system without affecting any other service or requiring
shutdown or restart of the system. Acquisition and
Visualization Services can be developed for specific
sensor applications and connected directly to the
PSSA cloud and communicate with the system via
standard or customized Ingestion and Retrieval
services.

B. Logical View

From a logical perspective, the PSSA consists of
four customizable software layers: Ingestion Services,
Application Services, Data Services, and
Dissemination Services as shown in Fig. 2. In addition,
the PSSA includes a common Core Services layer
which is responsible for providing the infrastructure
required to support the integration of the components
in the customizable software layers. The PSSA SDK
provides access to the services provided by the Core
Services layer. The diagram below provides a logical
view of these software layers and examples of some of
the components that might be present in these
software layers.

Although the Fig. 2, only shows four types of
sensor sources, the PSSA is designed to support the
storage and exploitation of data from any sensor
source by “plugging” in new ingestion services.
Similarly, the PSSA is designed to support the
distribution of sensor data and related exploitation data
to any visualization platform by “plugging” in standards
based and custom built dissemination services.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1610

Fig. 3: Key components of the Persistent Sensor Storage

Architecture

Published

Event

Ingestion

Service
Sensor

Data
Sensor

Application

Service

Subscribed

Event

Published

Event

Subscribed

Event

Dissemination

Service

Subscribed

Event

Local Data and

File Server
External Gateway

Data

Data

Service

Control

Channel

Control

Channel

Control

Channel

Control

Channel

PSSA Cloud

Node

Manager
System

Manager

Configuration

Manager

Directory

Service

Scheduler

Service

The PSSA is designed to allow components in the
customizable software layers to be added or removed
from the system, dynamically, without interrupting the
operation of other components of the system. This is
accomplished through the use of a message bus
approach. The PSSA message bus provides the
following messaging modes:

 Publish/Subscribe: Source components publish
messages on the PSSA message bus as “topics”. Sink
components subscribe to “topics” to receive messages
in which they are interested. Filters can be applied by
sink components to reduce the number of messages
received by the component. Any number of sink
components can subscribe to the same “topic”. This is
the typical communication mode for pluggable
components as it allows them to be completely
decoupled from one another.

Request/Response: A sink component issues a
data request to a source component and the source
component sends its response back to the sink
component. This process is typically how components
communicate with core services that are guaranteed to
be present and external gateways that are used to
retrieve data from external systems.

Stream Request/Response: A sink component
requests streaming data from a source component.
The source component sends the requested data
stream to the sink component until the request is
satisfied or the sink component tells the source
component to stop streaming. This process is typically
used by visualization components that want to display
live or recorded streaming media.

By decoupling the components from each other
using the message bus architecture, four important
goals are achieved:

1. Operators and developers can add and remove
components from the system dynamically without
impacting other components of the system (“plug and
play”)

2. Data is “broadcast” to several components at the
same time allowing processing of the data to take
place in parallel

3. Processing is distributed across multiple
compute nodes providing virtually unlimited horizontal
scaling of the system

4. Sensor data becomes available for visualization
as soon as it is ingested by the system, without waiting
for it to be stored and indexed

The Fig. 3 summarizes the key components and
types of services that comprise the PSSA along with
the typical flow of data into and out of the PSSA
messaging system which we refer to as the PSSA or
PSSA Cloud (represented by the cloud in the center of
the Fig. 3). The reason we refer to the PSSA
messaging system as the “Cloud” is because it hides
the internal implementation of the core services and
integration mechanisms from the user developed
components of the system. Developers of PSSA
components need only know the public interfaces
exposed by the PSSA SDK in order to participate in

the event collaboration model of integration used by a
PSSA-based system.

A brief description of each of the software layers
and their functions is provided below:

Ingestion Services – Receive or retrieve sensor
data from external sensors and bring the data (sensor
readings and associated metadata) into the PSS
system. The main responsibilities of these components
are to communicate with the external sensors or
sensor systems and to make the data available to
other components of the system, via the PSSA
message bus. The PSSA reference implementation
provides several different types of ingestion
components that can be used as examples for creating
custom ingestion components.

Application Services – Exploit one or more sensor
data stream or exploitation data stream and, optionally,
external data sources to turn the sensed data into
useful information (e.g. identify anomalies or other
data of interest, analyze the quality of the data,
improve the quality of the data, etc.). These
components do not need to know how to communicate
with the sensors, but they do need to understand the
semantics of the data generated by the sensors in
order to exploit it. Application service components
implement algorithms to exploit data to which it is
subscribed on the PSSA message bus. Results of the
exploitation processing are published to the message
bus and are thus available to be stored, further
exploited or displayed using a visualization tool. The
PSSA reference implementation includes several
examples of application service components that can
be used as examples for creating new components
using the PSSA SDK.

Data Services – Store and retrieve data from the
PSSA internal data stores and/or external systems for
use by other components of the system. A data service
component encapsulates the access to data by
providing high-level message based interfaces to the

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1611

Fig. 5: Pictorial representation of PSSA SDK Interface

 PSSA SDK

 API Interface

PSSA Cloud

Directory Service

PSSA SDK

API Interface

Consumer

(Publisher, Subscriber,

Service…)

Consumer

(Publisher, Subscriber,

Service…)

Low-level SDK modules

(Publisher, Service

Provider and the

Subscriber)

Individual PSSA SDK

context created for each

low-level modules

{

 "sensorID": "camer001",

 "ipAddress": "172.04.13.15",

 "sensorDescription": "Camera onboard patrol

vehicel",

 "location": {

 "lat": 38.898556,

 "long": -77.037852,

 "datum": "WGS84"

 },

 "topic": "videoImage",

 "time": "2016-04-21T20: 00",

 "timeZone": "AST",

 "eventData": {

 "type": "encodedImage",

 "data":

"R0lGODlhUAAPAKIAAAsLav///88PD9WqsYmApmZ

mZtZfYmdakyH5BAQUAP8ALAAAAABQAA8AAAPb

WLrc/jDKSVe4OOvNu/9gqARDSRBHegyGMahqO4R0

bQcjIQ8E4BMCQc930JluyGRmdAAcdiigMLVrApTYW

y5FKM1IQe+Mp+L4rphz+qIOBAUYeCY4p2tGrJZeH9

y79mZsawFoaIRxF3JyiYxuHiMGb5KTkpFvZj4ZbYeCi

XaOiKBwnxh4fnt9e3ktgZyHhrChinONs3cFAShFF2Jhv

CZlG5uchYNun5eedRxMAF15XEFRXgZWWdciuM8G

CmdSQ84lLQfY5R14wDB5Lyon4ubwS7jx9NcV9/j5+g4J

ADs=",

 "height": 15,

 "width": 80,

 "encoding": "base64"

 }

}

Fig. 4: Event schema for the mongoDB document,
which can support spatial and temporal queries, filtered
by the event topics for better event aggregation and
situational understanding.

data. This allows the consumer of the data to focus on
how to use the data rather than on how to get the data.
It is the responsibility of the Data service component to
fulfill the data request of the other component making
the data request. Data service components hide the
details of communicating with internal and external
databases and with other sensor storage systems from
PSSA components that require the data to do their
processing. The PSSA message interface to retrieve
data from a data service component will typically be a
request/response message. For storing data, data
service components subscribe to the message topic
for which they are responsible and perform whatever
processing is required to store the data. As a reference
implementation, mongodb [8] is employed with
sharded cluster architecture for horizontal scalability to
handle massive amounts of sensor event data.
Further, a low-level event document schema has been
built to transform the messages published to the PSSA
cloud for archival purposes. A sample reference event
schema of the document is provided in Fig. 4. The
data services supports range queries that can span
across spatial and temporal context of the archived
events, with filters across the topics of the events. This
feature and provide aftermath analysis of any events
that can contribute to better understanding of the
scenarios in the context and thus better situational
understanding.

Dissemination Services – Provide standard and
custom built interfaces to provide access to data
ingested by and/or stored within the PSSA system to
users or external systems. A PSSA dissemination
component can either push the data to a remote
system or wait for the remote system to request the
data. The PSSA reference implementation includes
several examples of PSSA dissemination components
use the PSSA message bus to subscribe to topics
generated by other components of the system.
Typically, the interfaces provided by these components
utilize a synchronous request/response message
mode to send data from the PSSA based system to
other systems. However, some dissemination
components support the retrieval of live data as well as
previously stored data using the stream
request/response message mode. In addition, a
dissemination component can be developed to provide
event notifications or alerts asynchronously when
certain events occur.

Core Services – Provide the infrastructure required
to connect the other components of the system
together and to store the data ingested by the system.
This infrastructure includes a directory service that
allows sensor processing components to be
dynamically added to and removed from the system; a
scheduling service to ensure optimal use of the
computing resources by load balancing and
sequencing tasks; a message bus for moving data
between components of the system; a configuration
and management service to allow processing
components and compute nodes to be added and
removed from the system; and a storage service to
provide storage, indexing, and association of data
required by the system.

III. PSSA SDK & EVENT FORMAT

A. PSSA SDK

As part of the effort to design and develop the
PSSA reference implementation to ingest, exploit,
store and visualize disparate real-time sensor data, a
software development kit (SDK) has been developed
in C++ language, using a light-weight messaging
middleware library called ZeroMQ. This developed
PSS SDK aptly provides the required API interfaces for
any consumer of the PSSA architecture, to build low-

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1612

(A) (B)

Fig. 6: PSSA sky Architecture Overview. (A)Integration of multiple PSSA clouds (B) Multi-cloud connectivity

PSSA Sky

PSSA Cloud #1 PSSA Cloud #2

PSSA Cloud #3 PSSA Cloud #4

Publisher

Subscriber

Directory

Entry List

Asynchronous Updates

Directory

Entry List

Directory

Entry List

Asynchronous Updates

Global Directory

Updates

(Asynchronously

aggregates all the Cloud

Directory Lists)

Cloud

Publisher

Directory Service

Observer (cloud

#1)

Directory Service

Directory Entry
(Publisher

Information)

Directory

Entry List

Event

Subscriber

Directory

Entry List

Asynchronous Updates

PSSA Cloud#1

Cloud
Directory Service

PSSA Cloud#2

Directory Service

Observer (cloud

#2)

Directory

Entry List

Asynchronous Updates

Event

Subscriber

Publisher

Directory Entry
(Publisher

Information)

level PSSA modules like Publisher, Subscriber and
Service Provider. These low-level PSSA modules can
be grouped (according to the custom business logic) to
build high level customized components like sensor
data Ingestor, Exploitation service, Data Storage
service and any helper services to interact with third
party services (on heterogeneous networks) by
bridging it to PSSA instance. Further, the PSSA SDK
has been design to effectively abstract the architecture
and communication (along with few media processing
routines) complexity from the consumer and aid
him/her in building the high-level business logic
components that can effectively leverage the PSSA
framework.

The PSSA SDK was originally developed in C++,
with pertinent classes and structures, later wrapped
with C “DLL” procedures to make it cross-language
compatible. Further, the JAVA and C#
bindings/wrappers are also available for the present
version of the PSSA SDK. The PSSA SDK has proven
to be beneficial to develop PSSA components in
JAVA, MATLAB and C# languages for various
capability demonstrations (discussed in this report).
This sub-section will provide the functional description
of the APIs that are available as part of the C-DLL
interfaces which reasonably extrapolates into the other
language bindings. Fig. 5 is a pictorial representation
of employing PSSA SDK API interfaces to build
customized (Business Logic) components. The
developed PSSA SDK provides the required API
interfaces for any consumer of the PSSA Cloud
architecture, to build low-level PSSA components like
Publisher, Subscriber and Service Provider. These
low-level components can be grouped (for building
Exploitation algorithms that would require Subscriber

and Publisher components in them) appropriately to
build customized components like mobile Ingestor,
Video ingestor, Media Storage Service and other
Exploitation Algorithm Services (discussed in detail in;
[5]).

B. PSSA Event Formats

For the reference implementation of the PSSA
system, we defined the event message to be a multi-
part mime that includes a header and one or more
mime data segments to transmit the sensor data. The
header is comprised of a context section that contains
the common data described above and a content
section that contains metadata associated with the
subsequent mime data segments. This works very well
within the context of our messaging system.

In brief, PSSA event message consists of two main
elements in it; Event Data (data section) and Event
Topic (context section). Event data can be any binary
or xml encoded data packet that can be customized for
given sensor and its processing and subscribed
components and an event message can have multiple
data parts in it to accommodate a multi-modal sensors.
The same can be applied to the event topic (containing
metadata of the real data) defined by the component
developer(s) to meet the processing needs of the
component. But, based on the prior evaluation and
standards, common metadata elements included in the
context section of all event topics that is required by
the PSSA-based system to index, correlate and query
data across disparate sensors in a common manner.
This common metadata contained in the Event context
header includes the following data elements:

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1613

PSSA Cloud

Android/Iphone Clients
(With PinPoint, Cooperative

GPS and IStream Apps)

PocketLSTs
(PSSA Enabled)

Spatial/Temporal
Events

Processing Services
(For Pinpoint/Cooperative GPS)

Spatial/Temporal
Events

OpenLST (PSSA Enabled)

Media Storage/Streaming
Service

(For IStream)

Media Storage/Streaming
Service

(For IStream)
Spatial/Temporal

Events

Fig. 7 : A conceptual view of a deployed PSSA cloud architecture along with processing services like PinPoint, Cooperative
GPS and Media streaming services , subscribing and publishing spatio-temporal events like chat, information and media, from
smartphone sensors, installed with PocketLST applications (I.E. PinPoint, Cooperative GPS, IStream and Guardian Angel
apps). The PSSA enabled OpenLST and smartphone applications can register as dissemination and ingestion service
simultaneously and collaborate among all the involved modules in cloud by communicating the live data and also the data
generated by the services in near real-time fashion, thus enhancing the situational awareness and understanding of a given
mission and demonstrating the feasibility of employing PSSA to support seamless development of Human Centric Sensing
systems.

Producer: The unique identifier of the component
generating the event. This data is automatically
supplied in the context header by the PSSA SDK.

Reference Sensor ID: The unique identifier of the
sensor from which the sensor reading or derived
information originated. This could include multiple
sensors if the payload of the event contains
information derived from multiple sensors.

Presentation Time: The Universal Time
Coordinated (UTC) time index of the data contained in
the event payload. This is represented as a TimePoint
structure which includes a point in time (in UTC) and
the precision associated with the time (+/-) based on
where the time originated. This is the time by which all
of the data associated with the event will be indexed.
The method of determining this time may be different
for every ingestion component. In some cases the
sensor may have a highly accurate time included with
the metadata it generates for each reading. In other
cases, the sensor may have no time data at all and the
ingestion component must provide an educated guess
as to the time the data was acquired based on the
current system time.

Acquisition Time: The time that the data contained
in the event was received or generated by the system.
Ingestion components capture the time at which the
sensor data was read/detected by the system (e.g. for

a polling component, this is the time at which the
request returned with the data, for an asynchronous
component, this is the time at which the data was
received, for a file detection, this is the time at which
the new file was detected). Exploitation components
that generate new data use the latest acquisition time
contained within the events that were used to generate
the new data (e.g. some exploitation events may
require multiple frames of data to identify an object or
they may use data from one or more different types of
events). All other exploitation components leave the
acquisition time unchanged.

Event Time: This is the time that the event was
published by the component (automatically inserted by
the PSSA SDK).

Processing Duration: This is the amount of time it
took for the component to process the data to generate
the event (automatically inserted by the PSSA SDK).

Sensor Location: This represents the (point)
location at which the sensor was located when the
sensor reading was captured. Commonly this will be
provided as metadata with the sensor reading. If the
sensor is attached to a non-moving platform, the
location data may be part of the configuration data for
the sensor. In either case, the event message must
contain location information for indexing purposes in
the database.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1614

Sensor Location Accuracy (Optional): If known, this
is included as part of the common event data.
Downstream exploitation components may be able to
improve the location accuracy or, if the accuracy is
unknown, it may be possible to estimate the accuracy
of the sensor location metadata using historical data or
data from other sources. If this is the case, a new
event will be published with the corrected location
metadata and/or accuracy information.

Footprint (Optional): This represents the coverage
area of the sensor. For some types of sensors this
information may not be known at ingestion time and
may be calculated by downstream exploitation
algorithms. In other cases, the footprint might be
calculated to some degree of accuracy by the sensor
or sensor ground-station and included in the metadata
received by the ingestion component.

Footprint Accuracy (Optional): If known, this is
included as part of the common event data.
Downstream exploitation components may be able to
improve the footprint accuracy or, if the accuracy is
unknown, it may be possible to estimate the accuracy
of the sensor footprint metadata using historical data
or data from other sources. If this is the case, a new
event will be published with the corrected footprint
metadata and/or accuracy information.

IV. PSSA SCALABILITY

A PSSA cloud instance is defined by its core
services, which are intrinsically characterized by the
“Plug & Play” capabilities. This flexible feature of the
PSSA architecture facilities the possibility to further
group multiple individual PSSA clouds in a higher level
“Plug & Play” sky architecture shown in Fig. 6(A). This
sky architecture is possible by extending the
functionality of the currently existing directory service
(one of the core services in a PSSA cloud instance) to
register itself (when it becomes available) with a global
directory service (which defines the sky instance) and
also asynchronously push its local directory updates of
publishers and services (registered with it) into the
sky‘s directory services. Multiple PSSA clouds be
grouped to build a PSSA sky architecture, which
allows the possibility to make an Ingestion Service (i.e.
Publisher) information and events from one instance of
the cloud in the sky, available to the exploitation
service (i.e. Subscriber) from another cloud in the
same sky.

Additionally, the Sky‘s global directory service is
responsible to push all the aggregated updates (from
all the clouds) back to all the clouds (which will have
duplicate elimination process in it) present in the Sky.
Thus, an exploitation service registered with one of the
clouds in the sky would have information to subscribe
to the PSSA sensor events that are being published in
another instance of the cloud in the same sky. Further,
from implementation perspective the PSSA SDK
provides API calls to build the low-level communication
modules (like Publisher, Subscriber, Directory Service
Observer and the service provider) which are
independent of each other in any given PSSA
component (a PSSA-based application). Hence, it is
also possible to build complex Multi-Cloud PSSA

components that can be part of more than one PSSA
cloud at any given time, like as shown in Fig. 6(B). By
leveraging the flexibility of the PSSA and using current
PSSA SDK, it is possible to build complex Multi-Cloud
PSSA components that can be part of more than one
cloud. This flexibility makes PSSA architecture an ideal
candidate to employ in developing and deploying
Human Centric Sensing Applications.

V. PSSA ENABLED HCS APLLICATIONS &

DISCUSSION

In last two years, the collaborative teams at AFRL
discovery lab undertake research projects that were
aimed at evaluating two interesting concepts in
enhancing the situational awareness that are directly
related to Human Centric Sensing;(1) To employ
smartphone’s display capabilities to effectively
communicate information from command center to the
personnel in the field and (2) To employ smartphone’s
existing sensors or further enhance them with external
sensors to build human augmented sensors in the field
(I.E. enabling the personnel/soldier/first responder as
a sensor, communicating the data back to the
command center) . As part this effort PSSA mobile
engine service was developed based on robust
presence protocol that can span across varied forms of
connectivity, (internet, intranet, Bluetooth, cellular) that
can manage dynamic registration , ingestion and
subscription of smartphone devices as virtual sensors
with multi-modal data capture capabilities. This
developed mobile engine complies with PSSA
conceptual view and provides “plug-n-play” capabilities
[1] [2] [5]. Further, the OpenLST (Open Layered
Sensing Test bed) is a dissemination platform
developed to provide visualization of various in-field
and experimental sensors being developed at the
facility.

These PSSA enabled smartphone real-time
collaborative smartphone applications called
PocketLSTs (a mobile version of OpenLST), have
been field tested and the real-time operational
integration of these smartphone sensors with the
PSSA could architecture demonstrated that the
achievability of above two Human Centric Sensing
concepts has indeed enhanced the overall success of
a mission in the context [1] [2]. Continuing to
demonstrate the effectiveness of these two concepts,
research teams have employed smartphones and built
various HCS based smart applications, to tackle real-
world scenarios, with PSSA as the event centric
backbone architecture, as pictorial represented in Fig.
7. Some of the major projects included; (1) PinPoint- A
collaborative smart application that uses a network of
three smartphones and their audio sensors to perform
sound localization., (2) IStream- A smart application
that uses the camera sensor on the smartphone and
streams the camera feed to a localized video server
for archival and real-time streaming to Layered
Sensing Visualization platforms (like OpenLST
command center)., (3) Cooperative GPS- A
collaborative smart application that uses the GPS
sensor on the smartphone along with external sensor
hardware to accurately determine a more precise GPS
location [4] .,(4) Guardian Angel - A collaborative smart

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 6, June - 2015

www.jmest.org

JMESTN42350872 1615

application that uses the GPS, Accelerometer, camera
sensors on the smartphone to accurately monitor and
predict path of a hostile or unidentified drone in a given
air space [3] .

Thus, because of the flexibility introduced in the
PSSA cloud design, an instance of the PSSA cloud
can be deployed with minimal resources using
commodity machines or can be extended over multiple
enterprise grade servers, depending on the data size
and processing requirements. This flexibility along with
unified and customizable data normalization provision
makes PSSA an ideal option for developing and
deploying Human Centric Sensing applications.

REFERENCES

[1] Boddhu S. K. (2013). “Increasing Situational
Awareness Using Smartphones”. Ground/Air
Multisensor Interoperability, Integration, and
Networking for Persistent ISR III, SPIE’s Defense,
Security and Sensing Conference.

[2] Boddhu, S. K., McCartney, M., Ceccopieri, O., &
Williams,R. L. (2013, May). A collaborative
smartphone sensing platform for detecting and
tracking hostile drones. In SPIE Defense,
Security, and Sensing (pp. 874211-874211).
International Society for Optics and Photonics.

[3] Boddhu, S. K., Dave, R. P., McCartney, M., West,

J. A., & Williams, R. L. (2013, May). Context-
aware event detection smartphone application for

first responders. In SPIE Defense, Security, and
Sensing (pp. 874213-874213). International
Society for Optics and Photonics.

[4] Feitshans, T. (2013). “Smartphones for Distributed
Multi-Mode Sensing: Biological & Environmental
Sensing and Analysis”. Ground/Air Multisensor
Interoperability, Integration, and Networking for
Persistent ISR IV, SPIE’s Defense, Security and
Sensing Conference.

[5] Wasser E., Boddhu S. K., Kode N., Berkey T.
Analyst Performance Measures, Volume I:
Persistent Surveillance Data Processing, Storage
and Retrieval, Final contract report, AFRL-RH-
WP-TR-2012-0094, available at www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA567802.

[6] D. Lymberopoulos, A. Bamis and A. Savvides
(2013), “Extracting Spatiotemporal Human Activity
Patterns in Assisted Living using a Home Sensor
Network”, UAIS 2011.

[7] D. De, S. Tang, W.-Z. Song, D. J. Cook, S. K. Das

(2012), “ActiSen: Activity-aware Sensor Network
in Smart Environments, Pervasive and Mobile
Computing”, Vol. 8, No. 5, pp. 711-731, Oct 2012.

[8] Membrey, Peter, Eelco Plugge, and Tim Hawkins.

The definitive guide to MongoDB: the noSQL
database for cloud and desktop computing.
Apress,2010.

http://www.jmest.org/
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA567802
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA567802

