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 Abstract—Time series similarity is a recent 
theme in research field. Many algorithm which use 
a wide range of similarity measure are introduced. 
In our previous work we have built an algorithm to 
find similar subsequences in time series. The 
proposed algorithm has been subjected to 
numerous tests to understand his kindness in 
discover similar subsequence. A considerable 
number of time series is tested. We have tried to 
improve the effectiveness of our algorithm by 
increasing efficiency in quality, number of 
detected subsequence as well as reducing the 
time of execution. Here we introduce a 
modification of CID distance which was first 
proposed by Batista et al. The complexity of 
classic CID and modified CID is analyzed. The 
modification is applied as a similarity measure in 
Chouakria index proposed by D. Chouakria et al. 
The algorithm was modified to support the 
proposed similarity measure. Tests on execution 
time and on number of similar subsequence were 
performed and are presented at the end of this 
work.  

Keywords—time series, distance, Chouakria 
index, CID, algorithm, R 

I.  INTRODUCTION AND MOTIVATION 

Techniques for detecting particles similarities in the 
time series are of interest for many researchers in 
recent years. These techniques are based in 
measurements of similarity or dissimilarity. Some of 
these similarity measures are widely known in the 
literature such as the classic Euclidean distance. 
Euclidean distance is at the basis of most of the 
algorithms built with the purpose of clustering 
similarity subsequences. A similarity measure gives a 
numerical value that indicates how similar the two 
sequences are; on other hand a dissimilarity measure 
gives a numerical value that indicates how much the 
two sequences differ. In the first case we request to 

maximize the value and in the second case to 
minimize it. Many similarity measures are proposed in 
recent years and also algorithms for detecting similar 
subsequence are numerous in time series literature 
[1][2][3][4][5][6]. In a previous work we have presented 
a new algorithm for detecting similar subsequences in 
time series with presence of invariance complexity [7]. 
We have compared the efficiency of CID distance 
(Complexity Invariant Distance) with the Euclidean 
distance in time series with complexity. The algorithm 
was tested on simulated and real time series data. In 
both cases CID provide satisfactory results compared 
to the Euclidean distance. Latter on we have tested 
CID efficiency with Chouakria index [8][9] and 
obtained satisfactory numerical and graphical results. 
A large data set of time series of different nature 
(engineering, meteorology, medicine, demography, 
and many others) were tested and we realize the 
advantages of Chouakria index compared to CID 
distance. We also arrive at the conclusion that: 
combination of the properties of CID with Chouakria 
index (with CID distance) provides more satisfactory 
results than CID alone. 

In this work we have modified our algorithm [7] 
considering a modification in CID and combining it 
with Chouakria index. 

II. DEFINITIONS ON SIMILARITY AND DISTANCES 

SELECTING A TEMPLATE (HEADING 2) 

Some useful definitions on time series and 
similarity measure are listed below. 

Definition 1A time series Q of length n is an 

ordered sequence of real numbers { } 

Definition 2A time series subsequence Qi, j = {

} is a continuous subsequence 
of Q which start at position i and has a length m. 

1 2 3, , ,..., nq q q q

1 2 1, , ,...,i i i i mq q q q   
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max( ( ), ( ))
( , )

min( ( ), ( ))

CE Q CE P
CF Q P

CE Q CE P


( , ) ( , )* ( , )ECID Q P d Q P CF Q P

Definition 3A motif (Qi, m; Q j, m) of length m is the 
most repeated subsequence along the time series 
which has significant meanings in a time series. 

Definition 4ε –Range Query: Given a time series 
query T of length m, a time series database (DataTS), 
a (dis)similarity measure and a threshold ε, find the 
set of subsequences that are within distance ε from T. 

Definition 5 In this work we will refer as the first 
subsequence that subsequence having the highest 
number of repetitions along the time series.  

Definition 6Temporal correlation coefficient 
(CORT) between two subsequences Q and P of 
length m is defined as: 

1 1

1

2 2

1 1

1 1

( )( )

( , )

( ) ( )

m

i i i i

i

m m

i i i i

i i

q q p p

CORT Q P

q q p p

 



 

 

 



 



 

 (1) 

Correlation coefficient is a standard statistical 
measure of similarity. it takes values between -1 and 
1. A value of it close to -1 indicates that the two 
subsequences exhibit opposite behavior, and a value 
close to 1 indicates that the two subsequences exhibit 
similar behavior.  

It is important to note that in our algorithm the time 
series which are compared are standardized to 
achieve scale and offset invariance. Given that 
modified CID gave comparable results with classic 
CID we tested the performance of them in Chouakria 
index. Tests were done on 88 time series and many 
executions on different length of subsequences. Some 
of the time series, are: cmort, AirPassengers, milk, 
unemp, souvenir, tea, birth, etc. 

III. CLASSIC CID, MODIFIED CID AND CHOUAKRIA 

INDEX WITH MODIFIED CID 

A. Classic CID 

CID was first proposed by Batista and Keogh [6]. It 
was presented as a distance which can deal with the 
complexity of a time series. The classic CID distance 
is based on Euclidean distance so it can be applied 
only on subsequences with equal length. An 
adjustment factor (CF) and a complexity measure 
(CE) are used to calculate the CID between two 
subsequences P and Q: 

 

                                                                       (2) 

The complexity measure is calculated for each 
subsequence: 

2

1

2

( ) ( )
m

i i

i

CE Q q q 



 

2

1

2

( ) ( )
m

i i

i

CE P p p 



   

and classic CID is calculated by: 

                                                                          (3) 

The adjustment factor (CF) is obviously larger than 
1. When the two time series have the same value of 
complexity measure then CF=1 and CID is the 
Euclidean distance.  

If CF(Q,P) tends to have large values, this is due to 
high complexity between the time series. This might 
be a sign to stop further test with these time series. 
Additional tests should be performed to determine 
whether CID is suitable for comparison of these time 
series. 

B. Modified CID 

In classic CID the complexity measure of a time 
series is calculated as the square root of the sum of 
the differences between consecutive observations 
squared. In our proposal we take into consideration 
the square root of the sum of differences between 
observation and the mean of the time series. So, we 
calculate the complexity measure for each 
subsequence (respectively P and Q with length m) 
using the following formula: 

 
2

1

( )
m

M i

i

CE P p P


 
and

 
2

1

( )
m

M i

i

CE Q q Q


 
                                      (4) 

Letter M as the index of CE stands for Modification. 
Another way to obtain the proposed complexity 
measure is by using the standard deviation of the 
subsequence P multiplying by m or (m-1). After finding 
these complexity measure for each of the two 
subsequences the correction factor (CF(P,Q)) may be 
calculated by the formula: 

max[ ( ), ( )]
( , )

max[ ( ), ( )]
M

sd P sd Q
CF P Q

sd P sd Q


                   (5) 

and modifed CID is calculated by: 

( , ) ( , )* ( , )M E MCID P Q d P Q CF P Q            (6) 

It is easy to show that modified CID does not 
satisfy all conditions of being a distance. It satisfies 
only the property of transition and symmetry. It can be 
seen as a similarity measure when used in algorithms. 

C. C.Chouakria index  

Chouakria proximity measure (also referred in this 
paper as Chouakria index) proposed by A. D. 
Chouakria et al in [7] uses the cost function and is 
calculated as below:  
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  (7)

For different values of k we get different behavior of 

the distance. According to the importance that we give 
to the form and the importance that we give to the 
behavior, in our tests we decided to use k=2. 

Replacing CID and modified CID respectively in 
Chouakria index we obtain the following formula: 

2* ( , )

2
( , ) * ( , )

1 e
CID CORT P Q

Chou P Q CID P Q


(8) 

_ 2* ( , )

2
( , ) * ( , )

1 e
CID M MCORT P Q

Chou P Q CID P Q


(9) 

D. Complexity of classic CID, modified CID and 
Chouakria index with CID and modified CID 

Our algorithm was created in R environment and 
all calculation and tests with time series were made in 
R. Below are the R code for the classic CID, modified 
CID and Chouakria index with modified CID. 

Classic CID code in R 

CID=function(Q,P){ 

CE_Q=sqrt(sum(diff(Q)^2)) 

CE_P= sqrt(sum(diff(P)^2)) 

CID=sqrt(sum((Q-
P)^2)*(max(CE_Q,CE_P)/min(CE_Q,CE_P)) 

print(CID)} 

Modified CID code in R 

CID_mod=function(Q,P){ 

CE_Q=sqrt((m-1)*var(Q)) 

CE_P= sqrt((m-1)*var(P)) 

CID=sqrt(sum((Q-
P)^2)*(max(sd(P),sd(Q))/min(sd(P),sd(Q)) 

print(CID_mod)} 

Chouakria index with modified CID code in R 

CID_mod_Chou=function(P,Q,K) 

{ 

#P, Q two subsequences  

#K a parameter defined by the user, recommended 
K=2 

f=sum(diff(P)*(diff(Q))/sqrt((sum(diff(P)^2)*sum(diff
(Q)^2)))) 

CE_Q=sqrt((m-1)*var(Q)) 

CE_P=sqrt((m-1)*var(P)) 

d=sqrt(sum((P-
Q)^2))*max(CE_Q,CE_P)/min(CE_P,CE_Q) 

dist=2*d/(1+exp(K*f)) 

return(dist) 

} 

The algorithm proposed by Dhamo (Gjika) et al. in 
[7] and modified latter in [10] is tested in R 
environment, an outline of the algorithm in general 
steps is shown in Table 1. 

TABLE I.  AN OUTLINE OF THE ALGORITHM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To understand if the distance that will be used for 
the detection of similarities may be CID, CID modified 
or other, the algorithm calculates in step 2 the 
fluctuations of the time series. A formula to calculate 
the fluctuations of a time series is proposed by [11].  

1
2

1

1

1
(T) ( )

1

n

i i

i

Fluctuation T T
n







 



      (10) 

As it can be seen this is a variant of the complexity 
coefficient in CID distance. A large value of 
fluctuations means that CID or its modification may 
not be an appropriate distance so the user may 
choose between other known distances (such as, 
Euclidean or Chouakria with Euclidean distance). 

In step 4, all subsequences are standardized with 
mean zero and standard deviation 1. 

In step 5, we decide to consider the best 
confidence interval the one that shows satisfactory 
results in terms of overcoming the trends difficulties. 
Which means that the algorithm finds similar 
subsequences independently of the location. Also we 
have removed from classification as similar those 
subsequences extending in positions less than (m-1) 
units apart from each other (where m-motif length). 

The confidence interval for the similarity between 
two subsequences is based on the minimum distance 
between two subsequences and an error 

( )
1.96 *

sd Q

m
  , where Q is the query subsequence 

 
1.Declare the time series vector (T) and subsequence  
length (m) 
2.Calculate the fluctuations in time series  
3. Decide on the similarity measure (CID, modified  
CID or other) 
4.Standardize all subsequences of length m  
5.Calculate the confidence interval  for similarity 
measure 
6.Slide along the time series and find subsequences  
who have distance  within the confidence interval  
(store information about all the subsequences that  
meet the conditions) 
7.Display numerically and  graphically the results for 
the first subsequence  with the larger number of   
repetitions.  

 

Algorithm Finding Subsequence of length m in a 
time series 

(using CID or Modified CID) 
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with length m, sd(Q) is the standard deviation of the 
subsequence Q (which is equal to 1 because we have 
standardized the subsequences).  

At this point of modifications we have calculated 
the complexity of the modified distances. 

For the calculation of the classic CID (3) for a 

sequence of m elements we need (6 4)m  

operations (among them we have 2 comparisons, 
which we have calculate as a common operation). 

For the calculation of modified CID (6) for a 

sequence of m elements we need 8m  operation. 

These distances are implemented to the Chouakria 
index (Eq.7), producing respectively Eq.8 which needs 

(13 3)m  operations plus one function evaluation 

(exponential of a value), and for Eq.9 we need 

(15 1)m  plus one function evaluation. 

As given from the results we observe that the 
distance calucated by Eq.9 increases the number of 
operations, but remaining linear with respect to m.  

IV. EXPERIMENTAL RESULTS BETWEEN CLASSIC CID, 
MODIFIED CID AND THEIR INVOLVEMENT IN CHOUAKRIA 

INDEX 

Here we present the goodness of modified CID. 
Many tests where conducted in a considerable 
number of time series with different nature, obtaining 
interesting results. Further we tested the use of the 
modified CID in Chouakria index to increase the 
quality of the algorithm on finding similar 
subsequences. The results obtained in this case were 
also impressive. 

Figure 1 shows the results of our algorithm in tea 
time series using the classic CID and modified CID. 

 

 

Fig. 1. Classic CID and modified CID results (offices 
time serie) 

The time series has an apparent complexity and as 
seen from the graphical results the modified CID 

reveals more motifs and also it expand his search in a 
wider area than classic CID. 

Figure 2 below shows the performance of classic 
CID, modified CID based on (a) the number of similar 
subsequences discovered and (b) average time of 
finding the first subsequence. 

 

a) Number of similar subsequences 
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b) Average time (in sec) for finding similar 
subsequences with first subsequence 

Fig. 2. Efficiency of classic CID, modified CID and 
use in Chouakria index 

Each point on the graph shows one database 
which has as coordinates the number of subsequence 
similar to first subsequence detected by each 
similarity measure. The part of the graph below the 
line y=x shows the area where the similarity 
corresponding to x-axis performs better than the 
similarity corresponding to y-axis. It is the same for 
the section on the upper part of the line y = x which 
indicates the area where the distance represented in 
the y axis perform better. 

In Figures 1. (b) the interpretation of points in the 
area is the opposite, the area that has more points 
spends more time in detecting similar subsequence 
with first subsequence. 

Observing Figure 2 (a.1) it is evident that the 
performance of modified CID and classic CID is 
almost the same. Here we must emphases that 
modified CID has priority on classic CID in cases 
when the series appeared to have high complexity. 

Comparing the average time of detection of the 
most repeated motif (Figure 2, b.1), even here in the 
case of time series with high complexity, modified CID 
has priority on classic CID. Chouakria index with 
Euclidean distance spends more time on finding 
similar subsequences compared to Chouakria index 
with CID. Also applied on Chouakria index with classic 
CID the average time is higher than the average time 
of Chouakria index with modified CID. Which makes 
the modified CID a better similarity measure used 
together with the Chouakria index. 

We have also compared the elapsed time of 
classic CID, modified CID taking into consideration the 
length (n) of time series and length of subsequence 
(m). 

 

Fig. 3. Execution time of classic CID and modified 
CID in motif discovery algorithm 

  

The average elapsed time of classic CID and 
modified CID differ clearly. The modified CID has an 
elapsed time nearly 20% lower than the classic CID.  

V. RESULTS 

In this work we have presented a modification of 
the Complexity Invariant Distance (CID) and tested its 
efficiency in a wide set of time series (engineering, 
meteorology, medicine, demography). Using the 
algorithm proposed by [7] which was modified in the 
work of [10] and in this work was adopted to the 
modified CID. The algorithm provides detailed 
information on the subsequence with higher repetition, 
including information on starting and ending indices of 
subsequence similar to test subsequence, numerical 
values of each of them, confidence interval for 
similarity calculated based on previously defined 
criteria. Graphical presentations are not missing, a 
graphic of all similar subsequence with the test 
subsequence along the time series and a special 
graphic with all subsequence similar to the first 
subsequence to understand more clearly the 
effectiveness of the algorithm and distance used.  
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Except the numerical results and graphical view in 
each case we also use as a comparative measure 
between these distances the number of motifs 
discovered by each of them and the execution time. 
We want to emphasize that these results are obtained 
from the work we have done with time series that 
have been available to us. 

Tests show that modified CID offers satisfied 
results if it is combined with Chouakria index 
compared to modified CID.  
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