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Abstract—In work the intense and deformable 
condition of in parallel located cylindrical pipes 
with liquid is considered. The task is solved in 
Bicylindrical coordinates at influence of 
harmonious waves. The analytical decision in 
Bessel and Henkel’s special functions and also 
numerical results is received. The parametrical 
analysis of dynamic factor of tension is carried 
out. 
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Some main ratios of the theory of elasticity 
 
 In this paragraph some main equations of the 
theory of elasticity are given in curvilinear 
coordinates. It is known that from the static theory of 
elasticity the equation to the Lama in a vector form 
looks like [1, 2, 3]: 

 

0=fQ+urotrot-u  )2(
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 divgrad                      (1) 

Where  and  - the factors to the Lama determined 
by formulas 
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vector of mass forces. The operators entering into the 
equation [1], for the right system of curvilinear 
orthogonal coordinates, are defined as follows 
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Where i - curvilinear coordinates (i-1,3), ijq - the 

components of a metric tenzor determined by a 

formula:
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coordinates (k=1,3), q- Jacobean’s  square of 
transformation of the Cartesian system of coordinates 
and curvilinear system of coordinates. Thus for 
orthogonal curvilinear coordinates only diagonal 

members of a matrix of a tenzor of ijq  are not equal 

to zero. In this case 



3

1i

iiqq , and the main 

differential quadric quantic is determined by a 
formula: 
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For definition of a tension of soil and statement of the 
mixed boundary conditions it is necessary to have the 
formulas expressing tension through moving. We use 
the geometrical equations deduced by Novitsky V. 
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Besides, we use the condition equation (Guk's law) 
[2] 
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Having substituted (2) in (3), we will receive 
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Where
iii qh 2 . Now we will set the task of the linear 

theory of elasticity for settlement schemes in 

cylindrical coordinates of r,  and z.  
As the use of unknowns components of the 
displacement vector 

uur ,  и 
zu .   

The cylindrical coordinate system is related to the 

Cartesian coordinate system by the following 

relationships: 

x=rcos;   y=rsin, z=z, 

ds
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Using equation (5), we obtain
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 As coordinates  i (i=1,3) apply: 

1=r, 2=, 3=z  (6) 

 Substituting (5) and (6) (1), and the resulting 

expression into the formula (4) and taking into 

account the following system of  Lame equations in 

cylindrical coordinates: 
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Where the indices r,  и z, for brackets denote partial 

derivatives with corresponding coordinates. The 

boundary conditions on the outer surface of the pipe - 

a condition of perfect contact with the ground, the 

internal surface is free: 
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where the subscripts "1" and "2" denote the 

materials and the environment of the pipe. The 

boundary conditions to ensure equality of the normal 

components of the velocity of the liquid and the shell 

are 
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Where   v


- the rate of fluid particles; 

n - surface 

normal at r=a, w- radial movement of the shell. To 
fully close the statement of the problem, it is 
necessary for the conditions (8) and (9) to add 

conditions at infinity  

u 0 

At    R x y z    2 2 2  , (10) 
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Filled with some conditions on radiation. 

 For the time-dependent problems as 

conditions of radiation required to fulfill the principle 

of causality, and environment should be no 

movement outside the region bounded by the leading 

edge of the waves from vibration sources. 

  

 

 

 

 

 

 

 

 

 

 

 

I. FIG. 1. CALCULATED SCHEME 

 

Consider the dynamical theory of linear elasticity of 

the impact of seismic waves on the pipe, laid in a 

high mound in two lines and filled with an ideal 

compressible liquid. Here consider the case where 

the wave is incident perpendicular to the axis 

connecting the centers of the pipes, and to the 

longitudinal axis of the pipe. Design scheme 

presented in Figure 1. Bicylindrical coordinate system 

is related to the Cartesian coordinate system by the 

following relationships: 

 x=(asin)/(ch-cos),   y=(ash)/(ch cos)

 , z=z                 (11)         where: а 

- half the distance between points =- и =. 

Then, presenting (11) (5.6), and the resulting 

expression (6) takes the following form:
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Assuming that: 1=, 2=, 3=z  and 

substituting (12) and (13) (1) - (11), and, given that 

the task is flat, we obtain the following equation 

Helmholtz bipolar coordinates:
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Equation (14), after some transformation reduces to a 
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Solution of the equation (14) will be sought in the 

form of a series:
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Substituting (17) into (16) and equate the coefficients 

of the corresponding harmonics, we obtain the 

following ordinary differential equation: 
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Standard replacement 

v z tn ( ) ( )   , t=exp() 

Reduce (18) to the Bessel equation of the form 
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which has a particular solution in the form of a 

cylindrical function z(2ake
-), and the solution of the 

Helmholtz equation takes the following form: 
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 Now put the boundary conditions. To do this, 

use the condition (20), replace r= и =. Taking into 

account the above relations, we seek a solution of 

the boundary value problem for the case of two 

underground pipes Р - compression wave and SV- 

shear wave is perpendicular to the axis y. Wave 

potential wave is

   ( ) .i i x iwtAe                          (21). 

 

For the representation (21) as (20), write (21) through 

(12) in the bipolar cylindrical coordinates.
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Expanding the second factor of (22) in a Fourier 

series (integrated form), and after some 

transformations we obtain the final expression for the 

potential of the incident P - wave:
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Where  =2aexp(  )and for the potential of the 

incident SV- wave: 

Other potential (20), by analogy with (23) 

have the form:
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Dynamic VAT expressed in terms of the potentials 1 

and  2: 
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Substituting (24) and (25) (8), we obtain the 

final solution of problems of the fall, respectively  Р- 

and  SV - waves in two underground pipes. The 

arbitrary constants An, Bn, Cn et al. are determined 

from the system of algebraic equations with complex 

coefficients 

[C]{q}={} 

Where С - determinant (12x12) - order the elements 

of which are a function of Bessel and Henkel 1st 2nd 

kind of n-th order, q - column vector of unknowns,  - 

right hand side vector. 

 The system of algebraic equations with 

complex coefficients is solved by Gauss with the 

release of the main element. Dynamic VAT in case of 

fall - the shear wave into two underground pipes 

recorded in bipolar coordinates in the asymptotic 

form: 
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 As the boundary conditions of use condition 

(23) and replacing r = n. The final solution of the 

problem of falls for SH - wave on the two pipes is:
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Uncertain factors   An,Bn,Cn  determined by the 

boundary conditions. 

 Consider the definition of dynamic stress-

strain state of a cylindrical tube under the influence of 

harmonic waves. 

 To solve this problem apply the addition 

theorem. Addition theorems for cylindrical wave 

functions are derived in [4, 5,  6]. Suppose there are 

two different polar coordinate system  (rg,g) and  

(rk,k)  (3), in which the polar axis of the same 

direction. Coordinate pole k в q system will Rkq, kq, 

so that the equality 

Z R e Zg kg

i

k
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Equation (28) makes it possible to convert the 

solution of the wave equation (1) from one coordinate 

system to another. Consider the calculation of the 

extended multi-line underground pipeline on the 

seismic action in the framework of the plane problem 

of the dynamic theory of elasticity. In this study the 

case of the stationary diffraction of plane waves on a 

number of periodically arranged cavities, backed 

rings with an ideal compressible liquid inside. The 

solution of the problem of implementing the method 

of potentials. The boundary conditions have the form 

(8). Do not change the form and potential of the 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 7, July - 2015 

www.jmest.org 
JMESTN42350848 1681 

incident. The potentials of the reflected waves from 

the tube after applying the addition theorem, and 

taking into account the frequency of the task will be:
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where: =kcos, - the distance between the center 

of the pipe. 

Potentials of refracted waves in the pipes can be 

written as 

      
2

1
1

2
2
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 
 
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n n n n n
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n

( ) ( ) ( ) ( )( ) ( ) ,  
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2 1

2
2

0

 
 





e E E H r F H r ei m w
n n n n n

in

n

( ) (1) ( ) ( )( ) ( ) ,          (31) 

and the velocity potential in perfect shape 

compressible fluid

    
3 3

0

 
 





e E G J r ei m w
n n n

in

n

( ) ( )( ) ,

                     (32) 

 The unknown coefficients An-Gn defined 

staging (29) - (32) (8). The result is an infinite set of 

linear equations which is solved by the method of 

approximate reduction, with the proviso that the ratio 

is not satisfied 

nk  2)cos1(     

  A general characteristic of the 

program is designed for multi-line pipes in the mound 

for the case of seismic wave’s perpendicular to the 

axis passing through the center of the pipe.

  

 

 

 

                                                

 

 

 

FIG. 2. SCHEME FOR THE ADDITION THEOREM. 

 
The input information includes the minimum 

necessary information: the elastic characteristics (E 

and v ) soil embankments and pipes; the density of 

the soil, pipe and fluid filling her; inner and outer radii 

of the tube; the predominant period of vibration of the 

soil particles; coordinates of the point in which the 
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VAT; seismic coefficient. With the help of special tags 

can count tubes filled with an ideal compressible 

liquid and empty. Calculation of cylindrical Bessel 

and Hankel functions performed by the known 

formulas. Solving systems of linear equations by 

Gauss made with the release of the main member. 

 

 

 

Effect of distance between pipes. Table 1 shows 

the values of          

     max max( / ( ) rr A2 2
 

maximum radial earth pressure on the pipe at a 

different distance d between them in the event of a P 

- wave. It was assumed the wave number of P - wave 

r=1,0: the inner and outer radius of the tube R0=0,8 

m and R=1,0 m: the predominant period of vibration 

of the soil particles Т=0,2 s. Characteristics of soil 

mound: Lame constants 1=8,9-MPa; 1=4,34 MPa; 

density 1=1,74Кн s
2
/m

4
. Характеристики 

материала трубы 2=8690 MPa; 2=12930 MPa; 

2=2,55 Кн s
2
/m

4
. 

 

 

)( tkxiАе   Figure 3. Estimated scheme. 

                                                                                                               

Table 4.1: The coefficient of dynamic concentration at different distances between the pipes for the case of 

P - wave 

D/d  0,5  1,0  2,0  4,0 

max  1,68  1,76  1,61  1,60 

 

From Table 1 it follows that initially when the 

distance between tubes 0,5d/D1,0 coefficient max 

slightly increased by 5%, with a further increase in 

d/D>1,0 decreases more sharply by 10%. At d/D>2,0 

value max stabilized, i.e. virtually unchanged, while  

l4,0 close to the value  max  for single pipe 

according to the calculations. Consequently, the 

mutual influence of concrete pipes installation of a 

multi-occurs when the distance between them 

d4,0D and increases the maximum dynamic soil 

pressure on them compared with a single tube. The 

effect of increasing the coefficient  max associated 

with the combination of waves reflected more 

surfaces of a multi-tube. This non-monotonic 

increase in the coefficient max with decreasing 

distance between the pipes d/D due in our opinion to 

the phenomenon of interference imposed upon 

reflection waves. This phenomenon is extremely 

important for the practice of seismic design of 

underground pipelines multiline since It allows you to 

choose the optimal distance between the tubes, in 
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which the dynamic pressure under seismic impact is 

minimal. For example, in Table 1 in such a distance 

d=0,5D. It is known, be noted for comparison that in 

the case of the static effects the opposite is true: the 

pressure on the soil of a multi-tube smaller than a 

single. In addition to the above, to analyze the effect 

of the distance between the tubes on their VAT must 

consider the relation (28) (so-called "slip point") at 

which there is a significant increase in the dynamic 

stresses in the vicinity of the tube - resonance. This 

phenomenon is well known from optics called Wood's 

anomaly is a feature of a multi-conduit and can not 

occur in a pipe arranged in a single thread. In terms 

of design practice, it is necessary to know how far 

you can stack the pipes to dangerous resonance 

phenomenon did not occur. The answer to this 

question is given by equation (27).  

We analyze this relation in the case of the impact of 

P - and SV - seismic waves on the underground 

pipeline. Table 2 shows the dependence of the 

maximum distance between the centers of the light 

pipe dmax, wherein no resonance occurs, the angle of 

incidence of the seismic waves .

Table 2 The dependence of the distance Dmax angle of incidence . 

. hail  0 30 45 60 70 80  90 

          
Dmax,M  5,0 5,36 5,86 6,66 7,45 8,52  10,0 

 

From Table 2, it follows that the smaller the angle of 

incidence of the seismic wave on the pipe, the closer 

to each other is necessary to lay the pipe. Thus, the 

appearance of a multi-resonance pipes can be 

avoided by selecting an appropriate distance 

between them and thereby provide earthquake 

resistance of a pipeline. Influence of the type of the 

seismic action (P, SV-or SH-wave). Table 3 shows 

the values max maximum radial pressure on the soil 

in case of a fall pipe P- and SV - seismic waves at 

varying distances d between the pipes. It was 

assumed r=2. Analysis of the data table. 3 shows 

that when d/D<4,0 values of max values coefficient 

P-wave and SV-like are in antiphrasis, i.e. at  l/D=1,0 

seismic impact maximum P-wave is 27% higher than 

that of SV - wavelength at d/D=2,0 below 7%, while 

d/D=4,0 Again above, but only by 1%. With 

increasing distance between the tubes difference in 

these effects is reduced and d/D=4,0 virtually 

disappears altogether. In addition, we note that under 

the influence of SV - wave values max at various 

distances between the tubes is 2.5 times the variation 

(25%) than when exposed P - wave (10%). Thus, the 

phenomenon of "local resonance" appears more 

strongly to the seismic action as SV- wave.

Table 3 The coefficient max under seismic actions as P - and SV - waves at various distances d between 

the tubes 

    d/D 
max 

  

 P – wave  SV - wave 

    

1,0 1,76  1,29 

    

2,0 1,61  1,72 

    

4,0 1,60  1,51 
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Influence of fluid filling the pipe. Table 4 

shows the values of the coefficient max in the case of 

the fall of P - waves on empty and water-filled tube at 

different distances d between the pipes. Liquid 

density assumed to be equal  3=0,102  Кн. s
2
/m

4
.

Table 4 The coefficient max for the case of P - waves on empty and water-filled pipe 

    d/D max 

 P - wave SV - wave 

   

1,0 1,76 1,89 

   

2,0 1,61 1,78 

4,0 1,60 1,90 

From Table 4 it follows that the presence of 

water in the pipes increases seismic influence on 

them compared to empty tubes. Obviously, this is 

due to an increase in weight of the pipeline. The 

maximum dynamic pressure of soil on the pipe 

increases. For example: if d/D=1,0 the difference in 

the values of the coefficient d/D=2,0-10%, at 

d/D=4,0-19%. 

 In addition, we note that the coefficient of 

variation values max at various distances d tubes 

filled with water less (7%) than in the empty pipes 

(10%). 

 Effect of the length of the incident seismic 

waves.  Table 4 shows the values of coefficient max 

different lengths l0/l0-2/, р - wave incident on the 

tube blank located in the region  l=1,0D from each 

other.

 

Table 5 The values of the coefficient max  for different lengths l0 P - wave. 

l0/D 3,0  5,0  10,0 

max 1,76  1,52  1,20 

  

From Table. 5 that the greater the length of the 

incident seismic wave; the denser the soil mound, the 

lower coefficient max. For reference, that relation 

l0/D=5,0 – not a bulk sand, sandy and loamy soils; 

l0/D=10,0 - clayey soils. Thus, the type of soil, and in 

particular its density significantly affects its dynamic 

pressure tube under seismic impact. It follows that in 

the construction of the embankment above the pipe 

must be carefully compacted backfill. Interestingly, 

good compaction and reduces the static pressure on 

the pipe. In addition, the calculations show that 

l0>10,0D dynamic problem reduces to the quasi-

static, which greatly simplifies the solution. Hence the 

important conclusion that the quasi-static approach is 

not applicable to the calculation of seismic impact on 

culverts. 

 Effect of pipe wall thickness. Table 6 

shows the values of the coefficient max for a variety 

of wall thickness t of reinforced concrete pipe in the 

event of a P - waves on empty multiline pipes 

stacked multi-line pipe, arranged at a distance d=0,5. 

Table 6 The coefficient max for varying the wall thickness t 

d/D  0,08 0,1  0,15  0,2 

        

max  1,60 1,66  1,66  1,68 
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     From Table 6 it follows that the range of the wall 

thickness, virtually no effect on the dynamic 

pressure does not soil the pipes. This is apparently 

due to the fact that the harmonic wave does not 

pass into the concrete pipe sufficient stiffness to 

force the tube. 

Conclusions. 

1. When the seismic action the mutual influence of 
concrete pipes installation of a multi-occurs when the 
distance between them d>4,0D and increases the 
maximum dynamic earth pressure on them compared 
with a single pipe (the phenomenon of local 
resonance) 5-10%. 
 2.Poyavlenie multiline resonance pipes can 
be avoided by choosing the distance between the 
non-multiple seismic wave length of the incident. This 
resonance phenomenon is a characteristic of a multi-
conduit and cannot  occur in a pipe arranged in a 
single thread. 
3.Yavlenie local resonance manifests itself more 
strongly to the seismic action in the form SV - waves 
than P - wave. 
4.Nalichie water in the pipes increases seismic 
influence on them by 10-20%. 

 5.Chem denser soil mound, the lower the 
seismic impact on underground pipes. At l>10D 
dynamic problem reduces to the quasi-static. 
6. Changes in wall thickness and concrete class does 
not affect the dynamic pressure on the ground 
reinforced concrete pipe under seismic impacts. 

Also built a similar dependence when =0. It is 
interesting to note that in this problem, increasing the 
concentration of stress due to the proximity of other 
field gap is much larger when the wave falls from the 

side (i.e.=0) , that wave falls from above (i. e. =/2). 
 7. The maximum dynamic pressure of the 

soil max pipes, arranged in two lines in the region 
d<3,0D from each other by more than a single tube. 
This excess is 15%. 
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