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Abstract—This paper considers the vibrations 

of cylindrical shells when exposed internal 

explosive loads. Explosive load applied to the 

axis of symmetry of the cylindrical body. The 

problem is reduced to the study of the bending 

of the transverse oscillations relative to the 

element sheath. An analytical expression for 

the radial displacement and the corresponding 

numerical results. 
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    Introduction 

 The study sewn construction in the form of rods 

and shells is considered in [1,2]. Calculation sewn 

construction is often based on field and laboratory 

experiments [3]. 

    In this paper we consider the cylindrical 

protective structures [4]. Under dynamic stress in 

the wall of the cylindrical protective structure having 

transverse vibrations of bending. Explosive load 

applied to the axis of symmetry of the cylindrical 

body. The problem is reduced to the study of the 

bending of the transverse oscillations relative to the 

element sheath. 

Statement of the problem. 

    Fig. 1 shows an element with the current in it 

internally. The figure shows the bending moments 

along the generator shell  Мх,, annular  Мφ, normal 

ring of force Nφ  and transverse forces  Qx., and 

the directions of the axes of coordinates and the 

corresponding displacement. The equilibrium 

equation shell element is the sum of the projections 

of all efforts on the axis Z. It can be written in the 

form.
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 We denote by риh  ,,  circumferential 

compressive stress, respectively, wall thickness, 

density, and external pressure; then the equation of 

the transverse vibrations can be written as:  
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where Nxφ = Nφx; the torques Mxφ = Mφx in both 

sections are zero.  

By the same reason, annular an effort Мφ and 

Nφ must be the same along the entire perimeter shell; 

w - transverse movements; Мx - bending moment 

along the generator shell; Nφ - normal ring force, m - 

mass per unit length; р(х,t) - external load, which is 

attached inside the cylindrical body;   - the Poisson 

coefficient. 
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From (2) we obtain  x ; Substituting 

this into (3) and taking into account that  = - w/ r0, 

have  

 N  w
r

Eh

0

           (4) 

Because of symmetry conditions can be seen 

that the curvature of the circumference of the 

enclosure should be constant. Then it follows from 

the theory of plates, that: 
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Substituting the expressions (4) and (5) into 

equation (1), we obtain the equation of forced 

vibrations of a closed cylindrical shell [4, 5]. 

  DtxpwwwIV /4 1

24   ,      (6) 

 

where                      
 

  gD

hEh
D

hEDR

Eh 





 





 2

2

3

22

2

2

4 ;
112

;
13

4
 

     

./;/ 22441 twwxww v   

D - Cylindrical rigidity; ν - the Poisson coefficient; R - 

radius of the middle surface; h - thickness of the shell 

wall; g=980 см/сек
2
 - acceleration of gravity; w  - 

radial movement the shell wall. 

Equation (6) differs from equation shell 

deformation under static loading [1] member w 2 , 

introduced to account for the inertial forces mass 

shell wall at a dynamic pressure is applied. This 

equation, as well as the equations studied [2], does 

not account for the effect of the rotational inertia of 

the cross sections and shear forces. Consider a finite 

shell length L (Figure 2). Influence consolidate all 

shell will take into account the appropriate boundary 

conditions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.      FIG.1. SETTLEMENT SCHEME ELEMENTARY AREA OF A CLOSED CYLINDRICAL SHELL WITH TRANSVERSE 

VIBRATIONS 

 

As the origin of time t will take the start of the 

deformation. Thus, the problem of deformation of the 

cylindrical shell of the explosion is reduced to finding 

the solution of equation (6) satisfying the zero initial 

conditions and the corresponding boundary 

conditions. The solution of this problem is reduced to 

the determination w (x, t), since the forces and 

stresses after determining w (x, t) are located. 

With all the variety of loads, resulting in the 

explosion, the nature of deformation of the shell 
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provided with stiffening rings, can be found by solving 

for a single load instantly attached at a distance х = 

Lо (Fig. 2.a).

 

 

 

 

 

 

 

 

 

 

 

                        

                      

 

 

 Fig. 2. Settlement scheme of a cylindrical shell 

 

Let us find the solution, ie, define the 

movement of the shell wall at the instantaneous 

application of a load of the form                           
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The solution of equation (7) at the right side 

of (7) in the form of a number of 
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where W (βк, х) - fundamental functions satisfying the 

equation 
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and appropriate boundary conditions; )(tк - 

unknown coefficients to be determined. As is 

known, the function Uк  for the boundary conditions 

Wk = W
1

к  = 0    at    х = 0 and x = L have the 

following form; 
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where к  - the roots of the transcendental 

equation. 

1cos LLCh kk           (10)  

Several numerical values of the solutions of 

equations (10): 

 

β1L = 4,73;  β2L = 7.8542;  β3L = 10,9956,  at   к > 3  ,     .
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Figure 3. Settlement scheme. Cylindrical protective structure 

 

For the boundary conditions  Wк = W


к  = 0 at  х = 0   

and   х = L,  

                  ,sin x
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2. 3,…. 

We expand the unit load (1) in a series of 

fundamental functions Wk. To do this, we will 

consider it as the ultimate load (Fig. 2) 
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To find the unknown coefficients Ак series 

(8), in the form we are looking for solution of the 

problem, put the number as well as the expression 

(11) in equation (1). As a result of this substitution, 

taking into account the equality (11) we obtain the 

following differential equation for Вк  
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A solution of these equations for zero initial 

conditions the following  
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Thus, the solution of equation (1) we have the 

following form: 
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Wake assume that  t = TB load removed. 

Solution for   t > TB we find the principle of 

superposition, suggesting that at the time t1 applied to 
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the system unit load directed in the opposite 

direction. In this case the decision is determined by 

the formula 
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The last formula can be obtained movement 

caused by the instantaneous unit impulse, i.e. when 

t1 → 0 PT = 1
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Now consider the load P (t)  as a set of 

pulses. The action of the force F (t) at time T for a 

short time interval dt can be considered as a pulse R 

(T) dT. Moving the shell wall at time t (t> T), caused 

by this pulse is equal to
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Moving all of the pulses applied during the time interval 

0 ÷ T  will   
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Thus, we obtain a formula for finding the 

moving wall of the sheath when the load is applied at 

the point Х = l0 , varies according to an arbitrary law P 

(t). Formula (13), (14) and (15) can be used for 

constructing solutions in all cases, with the explosion 

of the shell of loading. 

 Let us consider some particular cases: 

1. Pressure P (x) = P = const. Pressure is 

applied instantaneously, and act on the membrane 

for a time t1. At the time    t1   pressure 

instantaneously is removed. We find the solution for 

the given case load applied to the sheath having 

boundary conditions   W = W′ = 0   at  х = 0   and   х 

= l. 

For time interval  0 ÷ t1, Using (13) we obtain 
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at   t < T. Introduced here the notation  
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Accordingly at  t > t1, Using (14) we obtain 
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2. The pressure Р (х) = 0,084 х + 0,72х
2
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applied to the shell and is valid within the time time 

interval T. For 0 ÷ T using (14) we obtain              
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instantaneously and is valid for the time 0 ÷ T.  At 

time Т1 pressure instantaneously withdrawn. We find 

the solution for the given case load, taking boundary 

conditions W = W" = 0   at   х = 0   and х = L. For the 

data the boundary conditions at N = 1:
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The numerical results and their analysis 

are given below.     

When calculating take the following initial 

data:  R0/h1 =20;    = 0,25,  Е = 2,1.10
5
 кг/см

2
. 

Some solutions of particular problems identified 

natural frequencies, which are listed in Table 1. 

The results of calculations are compared with the 

results presented in [4]. The discrepancy between 

the results of up to 20% Calculation of cylindrical 

shell on the effect of dynamic load.
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1 – Nφ – annular of force   τ = 0,05 and  0,1.2 – Mφ - moments              τ = 0,05  and 0,1 

 Fig.  4. Cross-chain and bending stresses in the shell 

 
Table 1. The eigenvalues.   

     

    
№ 

The paper [4]      our 
the results          

The difference 

1.0 0,97394 0,97103 0,29 

 1,47003   1,46996 0,007 

 1,83890 1,83792 0,0068 

2.0 2,89321 2,89436 0,00111 

 3,14526   3,14627 0,00101 

 3,76525 3,76423 0,00102 
 

Consider a cylindrical shell (Fig. 3) clamped 

around the edges made of reinforced concrete and 

having the following dimensions and physical 

constants: D =  4 m, the height h = 4 m; elastic 

modulus  Е = 2,1.10
5
  кг/см

2
 ,    =  0,25;  volumetric 

weight of the material of the dome  γ = 2,1.10
3
  

кг/см
3
. On the inner cylinder acts uniformly 

distributed load, time-varying linearly (Fig. 2). Figure 

4 shows the chain and bending stresses in the shell 

when exposed to pulsed loads as  

эt
etxP

 /
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 (σ0 - amplitude load).
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                                            Figure 5 Change the greatest moment in time 

 

From Figure 5 it is clear that the time reaches 

its maximum value at the initial time, and then 

gradually decreases. 

 Dynamic stress-strain state of an 

infinitely long cylindrical shell when exposed to 

explosive load. 

Moving wall infinitely long cylindrical shell 

with instant annexed thereto unit load found by 

solving for the ultimate shell passing to the limit l → 

∞. Form this case, the solution (14) takes the form  
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This expression coincides with the 

expression obtained A.I. Zeitlin [5] with the cosine - 

Fourier transformation.

 Table 2. Estimated efforts in the wall 

Х./H X W, мм X   
МХ, кн. 

м/м 
М, кн.м/м N, кн/м X   Qx, кн/м 

0 0 0 -11, 011 -1030,68 171,78 0 6,192 0 

0,1 1,773 0,063 -7,294 -682,76 113,79 318,8 6,15 575,67 

0,2 6,136 0,216 -3,661 -342,69 57,11 1093,1 5,885 550,87 

0,3 11,856 0,419 -0,296 -27,71 4,62 2120,4 5,267 493,02 
0,4 17,706 0,625 2,582 241,69 40,28 30162,9 4,24 396,89 

0,5 22,635 0,779 4,727 442,47 73,75 4043,5 2,835 265,37 

0,6 25,88 0,914 5,934 555,45 92,58 4625,5 1,138 106,52 

0,7 27,029 0,964 6,072 568,37 94,73 4827,9 -0,705 -65,99 

0,8 26,024 0,919 5,083 475,79 79,3 4650,8 -2,555 -239,16 

0,9 23,227 0,82 3,028 283,44 47,24 4149,8 -4,27 -399,69 

1 19,335 0,683 0 0 0 3456,5 -5,75 -538,23 
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If the applied load instantaneously after time 

T will be charged, the decision in this case, was 

found by a superposition, will have the following form 
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4
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) 

Figure 5 and 6 shows the stress in the 

cylindrical body by the action of impulse and 

step load. Subsequent waves effects are less 

and less energy, so for practical purposes is 

sufficient to apply no more than two - three 

waves. Calculated efforts shell wall are given in 

Table 5.

 

 

 

 

 

 

 

 

 

 

 

 

                  1-α = 0,01;  2 – α = 0.05;  3 – α = 0,2;  4 – α = 0,4;  5 – α= 0,6 

Fig.  6. Schedule to determine the values of the dynamic coefficients 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Fig. 7. Stresses in cylindrical body with a pulse speed and load 
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In view of the required accuracy of the results 

of calculations are presented in Figure 3.8, with  υ = 

0,25; E = 2,1.10
5
 кг/см

2
  1,0

R

h
; R = 1; 2; 3. N = 10

-

4
; 1, 2, 3, ..5, and step h = 0,1; 0,01; 0,001. At N = 5 

and N = 6 value w  differs from the previous fifth 

decimal place. change  w  depending on t shown in 

Figure 8 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          1 – λ1Ө1 = 2,5;         2 – λ1Ө = 10. 

Fig. 8 Change displacement versus time. 

 

It can be seen that with increasing time (t> 

0,03 sec) movement reaches its maximum value, 

and then approaches zero. The results are 

presented in Figure 8.  

                   Conclusions  

1. An algorithm and a program is to address 

the problem of the impact of shock waves on the 

cylindrical shell. Numerical results and to analyze 

their error. This technique is not very important in 

terms of structural strength. In the axially 

symmetric case, the effects of reflection are 

extended mainly. 

2. The results show that the effect of the 

reflected waves is significant at relatively small 

scales charge. The largest county deformation 

concentrated in the central zone of the cylinder, 

near the line of the meeting, and the highest - 

longitudinal related to edge effects - in the vicinity 

of the ends. Predominant among the are district 

deformation.
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