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Abstract—In this communication we developed 
a numerical method by constructing an eighth 
degree spline function using Bickley’s method 
and apply it to solve the linear seventh order 
differential equation with the specified boundary 
conditions. We consider three different problems 
with different boundary conditions to illustrate the 
efficiency and implementation of the method. The 
results reveal that the method is very effective, 
straightforward, and simple. 
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I. INTRODUCTION 

In many fields the boundary value problems of 
ordinary differential equations play an important role. 
These problems occur very frequently in various fields 
of science and engineering such as mechanics, 
electro hydro dynamics, quantum physics and theory 
of thermal expansions. Bickley [1] has considered the 
use of cubic spline for solving second order two point 
boundary value problems. The essential feature of his 
analysis is that it leads to the solution of a set of linear 
equations whose matrix coefficients are of upper 
Heisenberg form. Fifth-order boundary value problems 
generally arise in mathematical modeling of 
viscoelastic flows[3, 4].Caglar et al.[2] solved fifth 
order BVPs by collocation method with sixth degree 
B-splines. Kasi viswanadham and Murali Krishna[5] 
developed a finite element method involving Galarkin 
method with quintic B-splines as basis functions to 
solve fifth order BVPs. A conventional approach for 
the solution of fifth order boundary value problems 
using sixth degree spline functions has been given by 
Parcha Kalyani et al. [6].Siddiqi and Ghazala [9] 
presented the solution of fifth order boundary value 
problems using non polynomial spline technique. The 
dynamo action in some stars may be modeled by sixth 
order boundary problems, which arise in astrophysics. 
The theory of seventh order boundary value problems 
is seldom in the numerical analysis literature; 
generally arise in modeling induction motors with two 
rotor circuits. The solution to these type of problems is 
given by Siddiqi Ghazala and Muzammal [10]. Siddiqi 
Ghazala and Muzammal [8] presented a method 
based on the solution of seventh order boundary 
value problems using variational iteration technique. 
Siddiqi.S.S. and Muzammal [7] presented the 

solutions of seventh-order linear boundary value 
problems by variation of parameters methods. 

In this article we develop numerical method to 
solve seventh order boundary value problems using 
eighth degree spline functions. 

II. CUBIC SPLINE BICKELY’S METHOD 

Suppose the interval [𝑥0,𝑥𝑛] is divided in to n sub 
intervals with knots x0, x1, x2, . . .,xn, starting at x0 the 
function u(x) in the interval [x0, x1] is represented by a 
cubic spline in the form 

S(x)= a + b (𝑥 −  𝑥0) + c (𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3  
(1) 

For the next interval [x0, x1] the spline function S(x) 
is supposed in the form 

S(x) = S(x) on [𝑥0,𝑥1] + d1(𝑥 −  𝑥1)
3 

Proceeding in to the next interval [𝑥2, 𝑥3] we add 

term d2(𝑥 − 𝑥2)
3
 and so on until we reach  𝑥𝑛. Thus the 

function S(x) is represented in the form 

S(x)= a + b(𝑥 −  𝑥0)+ c(𝑥 − 𝑥0)
2
 +∑ 𝑑𝑖(𝑥 − 𝑥𝑖)

3𝑛−1
𝑖=0  (2) 

Differentiating (2) we get 

S'(x)= b + 2c(𝑥 −  𝑥0)+ 3 ∑ 𝑑𝑖(𝑥 − 𝑥𝑖)
2 𝑛−1

𝑖=0   (3) 

S''(x)= 2c + 6 ∑ 𝑑𝑖(𝑥 − 𝑥𝑖) 𝑛−1
𝑖=0   (4) 

a. The two point second order boundary value 
problems 

We consider the linear differential equation 

P(𝑥)u’’+q(𝑥)u’+r(𝑥)u=v(𝑥)  (5) 

With the boundary conditions 

α0u+β0u=ᵞ0 at 𝑥=𝑥0, at 𝑥=𝑥0, αnu + βnu= ᵞnat 𝑥=𝑥𝑛 (6) 

The number of coefficients in (2) is (n+3), the 
satisfaction of the differential equation by the spline 
function at (n+1) nodes gives (n+1) equations in the 
(n+3) unknowns. Also the boundary conditions (6) 
give two more equations in the unknowns. Thus we 
get (n+3) equations in (n+3) unknowns a, b, c, d0, d1, 
d2, . . ., dn-1. 

After determining these unknowns we substitute 
them in (2) and thus we get the cubic spline 
approximation of u(x). Putting x= x0, x1, x2, x3, . . ., xn 
in the spline function thus determined, we get the 
solution at the nodes. The system of equations to be 
satisfied by the constants a, b, c, d0, d1, d2, . . ., d n-1, 
is derived below. 
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Substituting (2), (3), (4) in (5) at x=𝑥𝑚we get 

arm+ b[𝑟𝑚(𝑥𝑚 −  𝑥0)+ qm] + c[𝑟𝑚(𝑥𝑚 −  𝑥0)
2
 + 

2qm(𝑥𝑚 −  𝑥0) + 2pm]+∑ 𝑑𝑖
𝑚−1
𝑖=0  [rm(𝑥𝑚 −  𝑥0)

3
+ 

3qm(𝑥𝑚 −  𝑥𝑖)
2
 + 6pm(𝑥𝑚 −  𝑥𝑖)] = Sm  (7) 

wherepm=p(xm), qm= q(xm), rm = r(xm) and Sm = 
S(xm) 

Applying boundary conditions (6), we get 

α0a + β0b= ᵞ0; αna + [αn(𝑥𝑛 – 𝑥0) - βn]b + [αn(𝑥𝑛 – 

𝑥0)
2
- 2 βn(𝑥𝑛 – 𝑥0)]c +∑ [αn(𝑥𝑛 – 𝑥0)3]

n-1
m=0 - 3βn[αn(𝑥𝑛 –

)
2
]dm = ᵞn  (8) 

If these equations are taken in order (8), (7) with 
m= n, n-1, .,0, the coefficient matrix of unknowns dn-1, 

dn-2, dn-3, . . . , d1 , d0, c, b, a is the Hessenberg form 
namely an upper triangle with a single lower sub 
diagonal. The forward elimination is then simple with 
only one multiplier at each step and the back 
substitution is correspondingly easy. 

III. Construction of Eighth degree spline 

Suppose the interval [𝑥0, 𝑥𝑛] is divided into n 
subintervals with grid points x0, x1, x2, x3, . . ., xn. 

Starting at x0, the function y(x) in the interval [𝑥0,𝑥1] is 
represented by eighth degree spline. 

S(x)= a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
+ 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
+j(𝑥 −  𝑥0)

7
 

+k0(𝑥 −  𝑥0)
8
 

proceeding to the next interval [𝑥1, 𝑥2], we add a 

term k1(𝑥 −  𝑥1)
8
, proceeding in to the next interval [x2, 

x3] we add another term k2(𝑥 −  𝑥2)
8
 and so on until we 

reach xn. Thus the function y(x) is represented in the 
form 

S(x)= a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
 + 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
 + j(𝑥 −  𝑥0)

7
 

+∑ 𝑘𝑖
𝑛−1
𝑖=0 (𝑥𝑛 – 𝑥0)

8  
(9) 

It can be shown that S(x) and its first seven 
derivatives are continuous across nodes. 

a. Method of obtaining the solution of seventh 
order boundary value problems using eighth degree 
spline function 

Consider the linear seventh order differential 
equation 

y
(7)

(𝑥)+𝑓(𝑥)𝑦(𝑥)=𝑟(𝑥)  (10) 

with the boundary conditions 

y(x0) = α , y(xn) = β, y’(x0) = α’, y’(xn) = β’, 

y’’(x0)=α”, y”(xn)=β”,y
(3)

(x0)=α”’  (11) 

From (11), and taking spline approximation in (10) 
at x=xi for i= 0, 1,2,3,4,.,n we get (n+8) equations in 
(n+8) unknowns a,b,c,d,e,g,h,j,k0, k1, k2, . . ., kn- After 
determining these unknowns we substitute them in (9) 
and thus we get the eighth degree spline 
approximation of y(x). Putting x= x1, x2, x3, . . ., xn in 
the spline function thus determined we get the 

solution at the grid points. The system of equations to 
be satisfied by the coefficientsa,b,c,d,e,g,h,j,k0, k1, k2, . 
. . ,kn-1, is derived below. 

From (9) we get 

S
(7)

(x) = 5040j + 40320∑ 𝑘𝑖(𝑥 −  𝑥𝑖) 𝑛−1
𝑖=0   (12) 

Substituting (9) and (12) in the differential equation 
(10) at x= xm we get 

Sm= a𝑓𝑚 + b𝑓𝑚(𝑥𝑚 −  𝑥0) + c𝑓𝑚(𝑥𝑚 −  𝑥0)
2
 + 

d𝑓𝑚(𝑥𝑚 −  𝑥0)
3
 + e𝑓𝑚(𝑥𝑚 −  𝑥0)

4
 + g𝑓𝑚(𝑥𝑚 −  𝑥0)

5
+ 

h𝑓𝑚(𝑥𝑚 −  𝑥0)
6
 + j[𝑓𝑚(𝑥𝑚 −  𝑥0)

7
 + 5040] +∑ 𝑘𝑖

𝑛−1
𝑖=0  

[fm(𝑥𝑚 −  𝑥0)
8
 + 40320(𝑥𝑚 −  𝑥𝑖)]𝑟𝑚 m=0,1,2,…,n  (13) 

where fm =f(𝑥𝑚), rm = r(𝑥𝑚) and Sm = S(𝑥𝑚). 

Since S(x) approximates y(x), from (9) and from 
the boundary conditions (11) we obtain 

a = α,  (14) 

a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
 + e(𝑥 −

 𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
+ j(𝑥 −  𝑥0)

7 

+∑ 𝑘𝑖
𝑛−1
𝑖=0 (𝑥 −  𝑥𝑖)

8
= β  (15) 

b= α’,  (16) 

b+ 2c(𝑥 −  𝑥0) + 3d(𝑥 −  𝑥0)
2
 + 4e(𝑥 −  𝑥0)

3
 + 

5g(𝑥 −  𝑥0)
4
 + 6h(𝑥 −  𝑥0)

5
 +7j(𝑥 −  𝑥0)+8∑ 𝑘𝑖

𝑛−1
𝑖=0 (𝑥 −

 𝑥𝑖)=β’ (17) 

2c=α’’  (18) 

2c+ 6d(𝑥 −  𝑥0)+12e(𝑥 −  𝑥0)
2
+20g(𝑥 −  𝑥0)

3
 + 

30h(𝑥 −  𝑥0)
4
+42j(𝑥 −  𝑥0)

5
+56 ∑ 𝑘𝑖

𝑛−1
𝑖=0 (𝑥 −  𝑥𝑖)

6
=β’’ (19) 

 6d=α’’’  (20) 

From (13)-(20) we have (n+8) equations, if these 
equations are taken in the order (15), (17), and (19) 
with m= n,n-1, .,0, (20), (18), (16) and (14) the 
coefficient matrix of the unknowns,kn,kn-1, . . ., k1, k0, j, 
h, g, e, d, c, b, a will be an upper triangular matrix with 
two lower sub diagonals. 

The forward elimination is then simple with only two 
multipliers at each step, and back substitution is 
correspondingly easy. 

IV. Numerical illustrations 

In this section we consider three linear boundary 
value problems. Their numerical solution and absolute 
errors are given at different step lengths. The 
approximate solution, exact solutions and absolute 
errors at the grid points are summarized in tabular 
form. Further the approximate solution and exact 
solution have been shown graphically. The 
comparison of maximum absolute errors at different 
step lengths has been presented in tabular form. 

Example 1: Consider the linear non homogeneous 
seventh order boundary value problem with constant 
coefficients. 

u
(7)

(x) = -u(x)- e
x
(35x + 12x + 2x

2
), 0≤ x≤ 1  (21) 

with the boundary conditions 
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u(0)= 0, u’(0) = 1, u
(2)

(0) = 0, u
(3)

(0)= -3 

u(1) = 0, u’(1) = -e, u
(2)

(1) = -4e  (22) 

The exact solution is u(x) = x (1 - x)e
x
. 

We find the solution of (21) - (22) by taking step 
lengths h = 0.2 and h = 0.1 at equal sub intervals. 

Solution with h= 0.2 

The eighth degree spline S(x) which approximates 
y(x) is given by 

S(x)= a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
 + 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
 + j(𝑥 −  𝑥0)

7
 

+∑ 𝑘𝑖
4
𝑖=0 (𝑥 −  𝑥𝑖)

8  
(23) 

where x0= 0, x1= 0.2, x2= 0.4, x3= 0.6, x4= 0.8, x5 
=1. We have 13 unknowns a, b, c, d, e, g, h, j, k0, k1, 
k2, k3, k4and 13 conditions to satisfied by these 
unknowns are 

S(𝑥0)= 0, S(𝑥5)= 0, S’(𝑥0) = 1, S’(𝑥5) = -e, S
(2)

(𝑥0) = 

0, S
(2)

(𝑥5) = -4e, S
(3)

(𝑥0)= -3, 

S
(7)

(xi)=-S(xi)-e
x
i(35xi+12xi+2xi

2
),0≤x≤1  (24) 

Since S(x0)= 0, S’(x0) = 1, S’’(x0) = 0, S
(3)

(x0)=-3, 

it follows that a= 0, b= 1, c= 0 and d=-0.5, 

hence the spline S(x) reduces to the form 

S(x)= (𝑥 −  𝑥0) - 0.5(𝑥 −  𝑥0)
3
 + e(𝑥 −  𝑥0)

4
 + 

g(𝑥 −  𝑥0)
5
 + h(𝑥 −  𝑥0

6
 + j(𝑥 −  𝑥0)

7
 + 

∑ 𝑘𝑖
4
𝑖=0 (𝑥 −  𝑥𝑖)

8  
(25) 

From (25) 

S’(x)= 1 - 1.5(𝑥 −  𝑥0)
2
 + 4e(𝑥 −  𝑥0)

3
 + 5g(𝑥 −  𝑥0)

4
 

+ 6h(𝑥 −  𝑥0)
5
 + 7j(𝑥 −  𝑥0)

6
 +8 ∑ 𝑘𝑖

4
𝑖=0 (𝑥 −  𝑥𝑖)

7  
(26) 

S’’(x)= - 3(𝑥 −  𝑥0) + 12e(𝑥 −  𝑥0)
2
 + 20g(𝑥 −  𝑥0)

3
 + 

30h(𝑥 −  𝑥0)
4
 + 42j(𝑥 −  𝑥0)

5
 +56 ∑ 𝑘𝑖

4
𝑖=0 (𝑥 −  𝑥𝑖)

6  
(27) 

S
(3)

(x)= - 3 + 24e(𝑥 −  𝑥0) + 60g(𝑥 −  𝑥0)
2
 + 

120h(𝑥 −  𝑥0)
3
 + 210j(𝑥 −  𝑥0)

4
 +336 ∑ 𝑘𝑖

4
𝑖=0 (𝑥 −  𝑥𝑖)

5 
(28) 

and the seventh derivative is 

S
(7)

(x)= 5040j +40320 ∑ 𝑘𝑖
4
𝑖=0 (𝑥 −  𝑥𝑖)  (29) 

Substituting equation (29) and (23) in (21) we get 
the following system of equations. 

From equation 

u
(7)

(x0) = -u(x0)- e
x
0(35x0 + 12x0 + 2x0

2
), 

we get j= -0.006944444444 

From the remaining conditions we get the following 
system of equations 

e(0.2)
4
 + g(0.2)

5
 + h(0.2)

6
 + 8064.00000256K0= -

10.8960055106560  (30) 

e(0.4)
4
 + g(0.4)

5
 + h(0.4)

6
 +16128.0006553600k0+ 

8064.00000256K1= -25.1719954918140  (31) 

e(0.6)
4
 + g(0.6)

5
 + h(0.6)

6
 + 24192.0167961600k0+ 

16128.0006553600k1+8064.00000256K2= 

-43.6971445129846  (32) 

e(0.8)
4
 + g(0.8)

5
 + h(0.8)

6
 + 32256.16777721600k0 

+ 24192.0167961600k1 + 16128.0006553600k2  + 
8064.00000256K3=-67.6506527150140  (33) 

e+g+h+40321k0+32256.16777721600k1+24192.01
67961600k2 + 16128.0006553600k3 + 
8064.00000256K4 = -98.6888651502728  (34) 

e + g + h + k0+ k1(0.8)
8
+ k2(0.6)

8
 

+k3(0.4)
8
+k4(0.2)

8
= -0.49305555555556  (35) 

4e+5g+6h+ 8k0 + 8k1(0.8)
7
 + 8k2(0.6)

7
+ 8k3(0.4)

7
+ 

k4(0.4)
7
= -2.16967071734825  (36) 

12e + 20g + 30h + 56k0+ 56k1(0.8)
6
+ 56k2(0.6)

6
 

+56k3(0.4)
6
 +56k4(0.2)

6
=-7.5814606477138  (37) 

Solving the above set of equations we get the 
following values 

e=-0.333273629599774 k1= -0.000418053692099 

g=-0.125168664521974 k2= -0.00522567927666 

h=-0.033182790473916 k3= -0.000662319571231 

k0=-0.001351119803040 K4=0.000856903012248. 

Substituting these values in equation (23) we get 
the spline approximation S(x) of u(x).The values of 
S(x), u(x) and the corresponding absolute errors at x1, 
x2, x3, x4 have been given in the Table I and the 
comparison has been shown in fig.I. 

Table I: Approximate solution S(x), exact solution 
u(x) and absolute error of example 1 with h=0.2 

 x  S(x)  u(x) Absolute error 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.000000000 
0.195424490 
0.358038320 
0.437309130 
0.356086800 
0.000000000 

0.00000000 
0.19542444 
0.35803792 
0.43730851 
0.35608654 
0.00000000 

0.0000000000 
-5.000000E-08 
-4.016999E-07 
-6.2200000-07 
-2.538000E-07 
0.0000000000 

 

Figure I: Comparison of approximate solution and 
exact solution for example 1 with h = 0.2 
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Solution with h= 0.1 

Since h= 0.1 we suppose the grid points 𝑥0𝑥1, 
𝑥2, 𝑥3, 𝑥4, 𝑥5𝑥6𝑥7, 𝑥8, 𝑥9, 𝑥10,where x0= 0, x1= 0.1, x2= 
0.2, x3= 0.3, x4= 0.4, x5 =0.5, x6= 0.6, x7= 0.7, x8= 0.8, 
x9= 0.9, x10=1. 

From equation (9) eighth degree spline S(x) which 
approximate s u(x) becomes 

S(x)= (𝑥 −  𝑥0) - 0.5(𝑥 −  𝑥0)
3
 + e(𝑥 −  𝑥0)

4
+ 

g(𝑥 −  𝑥0)
5
 + h(𝑥 −  𝑥0)

6
 + j(𝑥 −  𝑥0)

7
 +∑ 𝑘𝑖

9
𝑖=0 (x – xi)

8 
(38) 

Proceeding as in the above case, we get the 
following values 

e =-0.33439375 k3= -0.00022969 

g=-0.12241914 k4= -0.00026126 

h=-0.03497064 k5= -0.00029721 

j=-0.006944444 k6= -0.00033812 

k0=-0.00127201 k7=-0.00038463 

k1= -0.00017772 k8= -0.00043747 

k2= -0.00020199 k9 = -0.00037555 

Substituting these values in equation (38) we get 
the spline approximation s(x) of u(x).the values of s(x), 
u(x) and the corresponding absolute errors at x1, x2, 
x3, x4, x5, x6, x7, x8, x9, x10 have been given in the table 
II and the comparison has been shown in fig II. 

Table II: Approximate solution S(x), exact solution 
u(x) and absolute error of example 1 with h=0.1 

x S(x) u(x) Absolute error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.00000000 
0.09946530 
0.19542346 
0.28346683 
0.3580304 
0.41216902 
0.43729505 
0.42287363 
0.35606617 
0.22131651 
0.00000000 

0.00000000 
0.09946538 
0.19542444 
0.28347034 
0.35803792 
0.41218031 
0.43730851 
0.42288806 
0.35608654 
0.22136428 
0.00000000 

0.00000000 
7.9999E-08 
9.8000E-07 
2.3657E-05 
7.4400E-06 
1.1289E-05 
1.3459E-05 
1.4430E-05 
2.0369E-05 
4.7770E-05 
0.00000000 

 

Figure II: Comparison of approximate solution and 
exact solution for example 1 with h = 0.1 

Example 2: Consider non- homogeneous linear 
seventh order boundary value problem with variable 
coefficients 

u
(7)

(𝑥) = 𝑥u(𝑥) + 𝑒𝑥(𝑥2
-2𝑥-6), 0 ≤ 𝑥≤1  (39) 

Subject to the boundary conditions 

u(0)= 1, u'(0)=0, u''(0)= -1, u
(3)

(0) = -3, u(1)= 0, 

 u'(1) = -e, u''(1) = -2e  (40) 

The exact solution is u(𝑥) = (1-x)𝑒𝑥. 

We find the solution of boundary value problems 
(39-40) by taking the step lengths h= 0.2 and h= 0.1 at 
equal sub intervals. 

Solution when h= 0.2 

Since h=0.2 we suppose the grid points x0= 0, x1 = 
0.2, x2=0.4, x3= 0.6, x4= 0.8, x5= 1 

 From equation (9) eighth degree spline S(x) which 
approximates u(x). 

S(x)= a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
 + 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
 + j(𝑥 −  𝑥0)

7
 

+∑ 𝑘𝑖
4
𝑖=0 (x – xi)

8  
(41) 

From S(x) and boundary conditions we get the 
following values. 

a = 1, b= 0, c= -0.5, d = -0.333333 

with these values(41) reduces to the form 

S(x)= 1– 0.5(x- x0)
2
 – 0.333333(𝑥 −  𝑥0)

3
 + 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
 + j(𝑥 −  𝑥0)

7
 

+∑ 𝑘𝑖
4
𝑖=0 (x – xi)

8 
(42)

 

 Solving the system of equations obtained from the 
boundary conditions, we get the following values 

e= -0.12498874, k1= -0.00005591 

g= -0.03336552, k2= -0.00004894 

h= -0.00691664, k3= -0.00008057 

j= -0.001190476, k4 = -0.0001085 

k0=-0.00019502 

Substituting these values in equation (42) we get 
the spline approximation S(x) of u(x). The values of 
S(x), u(x) and the corresponding absolute errors at x1, 
x2, x3, x4have been given in the Table III and the 
comparison has been shown in Fig III. 

Table III: Approximate solution S(x), exact solution 
u(x) and absolute error of example 2 with h =0.1 

X  S(x)  u(x) Absolute error 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

1.000000000 
0.977122218 
0.895094904 
0.728847686 
0.445108390 
3.00030E-08 

1.000000000 
0.977122206 
0.895094818 
0.728847501 
0.445108185 
0.000000000 

0.00000000 
-1.2000E-08 
-8.6000E-08 
-1.8500E-06 
-2.0500E-06 
0.00000000 
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Figure III: Comparison of approximate solution and 
exact solution for example 2 with h = 0.2 

Solution when h= 0.2 

Since h=0.1 we suppose the grid points x0, x1, x2, 
x3, x4, x5, x6, x7, x8, x9, x10 where x0= 0, x1= 0.1 x2=0.2, 
x3= 0.3 x4=0.4, x5=0.5, x6=0.6, x7=0.7, x8=0.8, x9=0.9, 
x10 =1. 

From equation (9) eighth degree spline S(x) which 
approximates u(x) becomes 

S(x)= a + b(𝑥 −  𝑥0) + c(𝑥 −  𝑥0)
2
 + d(𝑥 −  𝑥0)

3
 + 

e(𝑥 −  𝑥0)
4
 + g(𝑥 −  𝑥0)

5
 + h(𝑥 −  𝑥0)

6
 +j(𝑥 −  𝑥0)

7
 

+∑ 𝑘𝑖
9
𝑖=0 (𝑥 −  𝑥0)

8  
(43) 

From S(x) and boundary conditions we get the 
following values. 

e = -0.1249252519 k3= -0.0000215572 

 g = -0.0335857836 k4 = -0.0000219390 

 h= -0.0067363055 k5= -0.0000223603 

 j= -0.00119047619 k6= -0.00002279981 

 k0= -0.0001839143 k7= -0.0000148585 

 k1= -0.000119182 k8= -0.0000409173 

k2= 0.0000282878 k9= -0.0000163853 

Table IV: Approximate solution S(x), exact solution 
u(x) and absolute error of example 2 with h=0.1 

x  S(x)  u(x) Absolute error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0000000000 
0.9946538340 
0.9771222853 
0.9449013980 
0.8950952040 
0.8243610150 
0.7288476240 
0.6041254247 
0.4451073729 
0.2459595550 
0.00000000000 

1.0000000000 
0.9946538260 
0.9771222065 
0.9449011650 
0.8950948185 
0.8243606350 
0.7288475201 
0.6041258122 
0.4451081856 
0.2459603111 
0.0000000000 

0.00000000 
-7.99990E-09 
-7.87990E-08 
-2.32699E-07 
-3.85500E-07 
-4.10000E-07 
-1.03900E-07 
3.87499E-07 
8.12699E-07 
7.56099E-07 
0.000000000 

 

Substituting these values in equation (43) we get 
the spline approximation S(x) of u(x).The values of 
S(x), u(x) and the corresponding absolute errors at x1, 
x2, x3, x4, x5, x6, x7, x8, x9, x10 have been given in the 
Table IV and the comparison has been shown in Fig 
IV. 

 

Figure IV: Comparison of approximate solution and 
exact solution for example 2 with h=0.1 

Example 3: Consider the linear non homogeneous 
seventh order boundary value problem with constant 
coefficients. 

𝑢(7)
(𝑥)=𝑢(𝑥)-7𝑒𝑥,0≤𝑥≤1  (44) 

𝑢 (0)= 1, 𝑢'(0)=0 𝑢''(0)= -2, 𝑢 (1)= 0, 𝑢'(1)= -e, 

 𝑢''(1)= -2e 

The exact solution of the problem is u(x) = (1-x)𝑒𝑥. 

We find the solution of equation (44) by taking the 
step lengths h= 0.2 and h= 0.1 at equal sub intervals. 

Solution when h= 0.2 

Since h=0.2 we suppose the grid points x0= 0, x1= 
0.2, x2=0.4, x3= 0.6, x4= 0.8 and x5= 1. 

From (43) and the boundary conditions, we get the 
following values. 

e = -0.125041789711 k1= -0.000049886445 

g= -0.033277012926 k2 = -0.000062416383 

h= -0.006956224931 k3= -0.0000780491328 

j= -0.001190476190 k4= -0.0000975445581 

 k0= -0.000195026928 

The values of S(x), u(x) and the corresponding 
absolute errors at x1, x2, x3, x4 has been given in the 
Table V and the comparison has been shown in Fig V. 
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Table V: Approximate solution S(x), exact solution 
u(x) and absolute error of example 3 with h=0.2 

x  S(x)  u(x) Absolute error 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

 

1.000000000000 
0.977122183500 
0.895094482456 
0.728846499626 
0.445106918662 
0.000000000000 

 

1.000000000000 
0.9771222065280 
0.895094818584 
0.728847520156 
0.445108185698 
0.000000000000 

 

0.000000000 
2.297153E -08 
3.361270E -07 
1.020529E -06 
1.267040E -06 
0.0000000000 

 

 

Figure V: Comparison of S(x) and u(x) for example 
3 with h=0.2 

Solution when h= 0.1 

Since h=0.1 we suppose the grid points 

x0= 0, x1 = 0.1, x2=0.2, x3= 0.3, x4= 0.4, x5= 0.5, 

x6= 0.6, x7= 0.7, x8= 0.8, x9= 0.9, x10= 1. 

Proceeding as in the above case, we get the 
following values 

a= 1 b= 0, 

c= -0.5 d= -0.333333 

 e =-0.125002950953 k4= -0.000031111763 

 g= -0.033331216571 k5= -0.000034793064 

 h= -0.006942412469 k6= -0.000038904570 

 k0= -0.00018391433 k7= -0.000043496054 

 k1= 0.000022225173 k8= -0.000048623000 

 k2= -0.00002486579 k9= -0.000054347255 

 k3= -0.00002781602. 

The values of S(x), u(x) and the corresponding 
absolute errors at x1, x2, x3, x4 , x5, x6, x7, x8, x9, x10 has 
been given in the Table VI and the comparison has 
been shown in Fig VI. 

 

 

Table VI: Approximate solution S(x), exact solution 
u(x) and absolute error of example 3 with h=0.1 

x  S(x)  u(x) Absolute error 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

1.0  

1.000000000 
0.994653829 
0.977122229 
0.944901238 
0.895094984 
0.824360958 
0.728848077 
0.604126722 
0.000000000 

1.0000000000 
0.9946538267 
0.9771222066 
0.9449011653 
0.8950948186 
0.8243606354 
0.7288475202 
0.6041258122 
0.0000000000 

0.0000000000 
3.048609E-09 
-2.27374E-08 
-7.02438E-08 
-1.65563E-07 
-3.19223E-07 
-5.57016E-07 
-9.09862E-07 
0.000000000 

 

Figure VI: Comparison of approximate solution and 
exact solution for example 3 with h=0.1 

IV. CONCLUSION 

We developed the numerical method to obtain the 
solution of seventh order boundary value problems 
using eighth degree spline approximation. It has been 
employed on three examples at different step lengths. 
At h=0.2 and h=0.1 the maximum absolute error for 
example1, 2 and 3 are 7.99x10

-8
and -5.0000x10

-8
 , -

1.2x10
-8

 and -7.9999x10
-9

and 1.267040E -06 and -
9.0986257E-07 respectively. It is observed that there 
is a good agreement with the exact solution. It is also 
noted that the approximate solution is more close to 
the exact solution when h is small. 
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