
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 5, May - 2015

www.jmest.org

JMESTN42350766 1163

Typed Language for Consuming Linked Data
Li Vladimir

Faculty of Information Technology
Kazakh-British Technical University

Almaty, Kazakhstan

Abstract—Shortly after the release of SPARQL
1.1, Andy Seaborne, the coeditor of the SPARQL
recommendation, said: the next step is to not
necessarily assume that the access language for
RDF is SPARQL, but may be a language that is
more navigational in style — there is scope and
need for both. In this paper we propose a domain
specific scripting language for consuming Linked
Data with a simple but appropriate type system,
that mixes static and dynamic type checking. The
language is designed to be used by Web
developers who would like to build applications
which consume Linked Data.

Keywords—linked data, triple store, abstract
syntax, type system, type checking, type inference

1. INTRODUCTION

In this paper we design a domain-specific typed
scripting language for consuming linked data.

2. APPROACH FOR CONSUMING LINKED DATA

There are numerous RDF datasets on the net and
any data owner may publish his data as Linked Data
by making URI’s dereferenceable[1]. Data consumers
may want to consume data from number of those
sources and combine it into one dataset using links. In
that case the application for data consumers will look
like Fig 1[3].

Fig. 1.

In that case there is a local triple store for storing
RDF data, which is populated and kept updated
through background process which crawls RDF
datasets on the net. It should particularly be able to
dereference those RDF URIs and update the triple
store respectively. The front end is any web application
which is built on queries to that triple store.

1. Dereferencing URIs

Back end should be able to dereference URIs to
obtain data from RDF sources.It includes 4 steps as
described in [1]

1) The client performs a HTTP GET request on a
URI identifying a real world object or abstract concept.
If the client is a Linked Data application and would
prefer an RDF/XML representation of the resource, it
sends an Accept:application/rdf+xml header along with

the request. HTML browsers would send an Accept:
text/html header instead.

2) The server recognizes that the URI identifies a
real-world object or abstract concept. As the server
cannot return a representation of this resource, it
answers using the HTTP 303 See Other response
code and sends the client the URI of a Web document
that describes the real-world object or abstract concept
in the requested format.

3) The client now performs an HTTP GET request
on this URI returned by the server.

GET /data/Kazakhstan.n3

HTTP/ 1.1

Host: dbpedia.org

Accept: text/n3

4) The server answers with a HTTP response code
200 OK and sends the client the requested document,
describing the original resource in the requested
format.

HTTP/ 1.1 200 OK

Date: Tue, 27 Jan 2015 12:35:36 GMT

Content−Type: text/n3

2. Higher Level Approach

At a higher level of abstraction we hide
dereferencing process and also bind variables to other
URIs using pattern matching. Consider following
example:[3]

from ”dbpedia:Kazakhstan”

select $x

where

(”dbpedia:Kazakhstan” ”dbproperty:capital” $x)

from $x

Here from keyword means getting data about
dbpedia:Kazakhstan. First the script checks if data is
present in local triple store and if not tries to
dereference the URI. If successful it loads it into the
triple store. select variable where triple binds the value
to variable matching the pattern of triples. If matched
successfully it tries to dereference new URI with
another from construction(if not present in local triple
store already). [3]

3. Simple Type Checking

Let’s now consider the following example:

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 5, May - 2015

www.jmest.org

JMESTN42350766 1164

from dbpedia:Kazakhstan

select $c:string

where

(”dbpedia:Kazakhstan” ”dbproperty:capital” $c)

($c > 0)

This would result in type error before running the
program because variable $c which is supposed to be
of type string is compared to integer 0.

Consider another example:

from dbpedia:Kazakhstan

select $a:string

where (”dbpedia:Kazakhstan”
”dbontology:areaTotal” $a)

This won’t result in error during the static type
check, but will fail later when we fetch information
about ”dbontology:areaTotal” and find out it has a type
”http://www.w3.org/2001/XMLSchema#double” which
matches to double in our grammar.

3. SYNTAX

1. The Syntax of Types

A type is either a simple datatype or it is a property
that allows a simple datatype as its range[3] variables
begin with a dollar sign:

datatype ::= u r i

| string

| double

| integer

| dateTime

type ::= datatype

| range (datatype)

var : : = $a

| $b

| $c

| …

Datatypes include uris, integers, doubles, strings,
dateTime. Typing also applies to filtering triples from
rdf. For example, if an URI with a property type is used
in the property position of a triple, then the object of
that triple can only take the value indicated by the
property type.

2. Syntax of Terms

Terms are used to construct RDF triples. Terms
can be URIs, variables or values of a simple datatype.

term ::= var | uri | string | integer | double |
dateTime

3. Syntax of Scripts

Scripts are either from select where or from where
constructions where multiple variables can be selected
based on multiple conditions(queries) or from
constructions which dereference and load data to local
triple (if not there already).[3]

script ::= from term

//Dereference URI

//(and load it into the local triple store if needed
)

| from term where c o n d i t i o n s

// Dereference URI

// and assign variables based on conditions

| from term select vartypes where conditions

//Same as previous

// but with variable−type constraints ($x : integer
)

vartype

| var ’:’ datatype

condition ::= (term term term) // pattern for
triple matching

| (boolean) // boolean constraints for variables

boolean ::= boolean | | boolean

| boolean && boolean

| ! boolean

| term = term

| term < term

…

Booleans here are analogues of filters in SPARQL.
They take a single argument. The expression can be
complex, as long as it returns a boolean value[2]. We
use them to compare expressions of the same type.

4. Examples

Selecting data about the capital of
Kazakhstan(Astana).[3]

from dbpedia : Kazakhstan

where

(dbpedia : Kazakhstan dbpropcapital $x)

from $x

Selecting data about people born in Astana

from ” dbpedia : Kazakhstan ”

select

$c : uri

where

(”dbpedia:Kazakhstan” ”dbprop:capital” $c)

from $c

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 5, May - 2015

www.jmest.org

JMESTN42350766 1165

select $p

where

($p ”dbprop:birthPlace” $c)

from $p

4. CONCLUSION

Concept of Linked Data enables to crawl the web
merging data between datasets. Existing programming
environments require many low level details in
development. Thus, here we introduce a domain
specific high level language for consuming Linked
Data where basic syntactic checks(static and dynamic)
can be performed.[3]

REFERENCES

[1] Tom Heath and Christian Bizer (2011) Linked
Data: Evolving the Web into a Global Data Space (1st
edition). Synthesis Lectures on the Semantic Web:
Theory and Technology, 1:1, 1-136. Morgan &
Claypool.

[2] Bob DuCharme (2011) Learning SPARQL
Querying and Updating with SPARQL 1.1 O’Reilly
Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

[3] Gabriel Ciobanu & Ross Horne & Vladimiro
Sassone (2011): Local Type Checking for Linked Data
Consumers

http://www.jmest.org/

