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Abstract— This paper investigates the post-

buckling behavior of elastic-plastic functionally 
graded (FG) beams subjected to an eccentric axial 
load by using the finite element method. The FG 
material is assumed to be formed from ceramic 
and metal with volume fractions varying in the 
thickness by a power-law function. Tamura-
Tomota-Ozawa (TTO) model is used to evaluate 
the elastic-plastic properties of the beam material. 
A nonlinear finite element formulation is derived 
and used to construct the nonlinear equilibrium 
equations. An incremental-iterative procedure in 
combination with the arc-length method is 
employed in computing the load-displacement 
curves. Numerical results show that the post-
buckling behavior of the beams plays an 
important role in the post-buckling behavior, and 
this deformation should be taken into 
consideration when studying the post-buckling 
behavior of the beams. A parametric study is 
carried out to highlight the effect of the volume 
fraction exponent and the eccentric ratio on the 
post-buckling behavior of the beams. 

Keywords—FG beam; elastic-plastic material; 
post-buckling behavior; eccentric axial load; finite 
element method 

I. INTRODUCTION 

Functionally graded (FG) materials have been 
drawn much attention from researchers since its first 
initiated by Japanese scientists in Sendai [1]. FG 
material is produced by gradually varying volume 
fraction of constituent materials, usually ceramic and 
metal, in a desired spatial direction. The effective 
properties of the resulted material exhibit continuous 
change, and thus eliminating interface problem and 
reducing stress concentration that often met in 
conventional composites. FG materials have promising 
application in aerospace, electronics, nuclear 
engineering and civil engineering [2, 3]. A large 
number of publications on the analysis of FG 
structures can be found in the literature, contributions 
that are most relevant to the topic of the present paper 
are briefly discussed below. 

Chakraborty et al. [4] developed a shear 
deformation beam element for analyzing the thermo-
elastic behavior of FG beams. Based on the third-order 
shear deformation beam element, Kadoli et al. [5] 

studied the static behavior of FG beams in ambient 
temperature. Kang and Li [6, 7] investigated the large 
displacements of FG beams subjected to a transverse 
end force or end moment. Nguyen [8, 9] derived the 
co-rotational beam elements for large displacement 
analysis of tapered axially and transversely FG beams. 
Also using the finite element method, Nguyen and Gan 
[10], Nguyen et al. [11] studied the geometrically 
nonlinear behavior of FG beam and frame structures. 

Analysis of elastic-plastic FG structures has been 
drawn some attention from researchers in recent 
years. Gunes et al. [12] employed the finite element 
code LS-DYNA to study the elastic-plastic response of 
FG circular plates under low-velocity impact loads. 
Jahromi et al. [13] adopted a bilinear tress-strain 
model in studying the elastic-plastic behavior of an FG 
rotating disk. The stress field of the disk is computed 
with the aid of the finite element package ABAQUS. 
Huang and Han [14], Huang et al. [15] used a multi-
linear hardening elastic-plastic material to study the 
elastic-plastic buckling of FG cylindrical shells under 
the axial and torsion loads, respectively. Also using the 
multi-linear hardening elastic-plastic material model, 
Zhang et al. [16] studied the buckling behavior of 
elastic-plastic FG cylindrical shells under a 
combination of the axial compressive load and external 
pressure. A detail examination on the effects of 
dimensional parameters and elastic-plastic material 
properties on the stability region and elastic-plastic 
interface of the shells has been given in [16] with the 
aid of Galerkin method. 

In this paper, the post-buckling behavior of elastic-
plastic FG beam subjected to an eccentric axial load is 
investigated by using the finite element method. The 
beam material is assumed to be formed from ceramic 
and metal with volume fraction varying in the thickness 
direction by a power-law function. The elastic-plastic 
properties of the beams are evaluated by Tamura-
Tomota-Ozawa (TTO) model. A nonlinear finite 
element formulation based on Bernoulli beam theory is 
formulated by assuming a bilinear hardening stress-
strain model for the elastic-plastic material. The 
formulation adopted the nonlinear von Kármán strain-
displacement relationship is derived by using the 
neutral surface as reference plane. An incremental-
iterative procedure in combination with the arc-length 
control method is employed in solving nonlinear 
equilibrium equations and computing the load-
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displacement curves. The effect of the material 
exponent, the plastic deformation on the post-buckling 
behavior of the beam is investigated in detail. The 
influence of the eccentric ratio of the behavior of the 
beam is also examined and highlighted. 

II. ELASTIC-PLASTIC FG BEAM 

Fig. 1 shows a cantilever FG beam subjected to an 
eccentric axial load P. Denoting L, h, b are the length 
height and width of the beam, respectively. The beam 
material assumed to be formed from ceramic and 
metal in which volume fractions of constituent 
materials follow a simple power-law function as 

𝑉𝑐 = (
𝑧

ℎ
+

1

2
)
𝑛

, 𝑉𝑐 + 𝑉𝑚 = 1 (1) 

where z is the transverse coordinate; Vc and Vm are 
respectively the volume fractions of ceramic and metal, 
and n is the volume fraction exponent. In Eq. (1) and 
hereafter, the subscripts ‘c’ and ‘m’ stand for ‘ceramic’ 
and ‘metal’, respectively. 

 

Fig. 1. A cantilever FG beam under an eccentric 
axial load. 

The linear elastic behavior of FG material is 
described by Hook's law, and its effective material 
properties can be evaluated by micromechanics 
models used in conventional composites. The elastic-
plastic behavior of ceramic/metal FG materials is 
widely described by using TTO model [17]. According 
to the TTO model, the uniaxial stress σ, and strain ε of 
a two-phase composite are related to the 
corresponding average uniaxial stresses and strains 
of the two constituent materials by [12, 13] 

𝜎 =  𝜎𝑐𝑉𝑐 + 𝜎𝑚𝑉𝑚 , ε = 𝜀𝑐𝑉𝑐 + 𝜀𝑚𝑉𝑚 (2) 

In the TTO model, an additional parameter q 
represented the ratio of stress to strain transfer is 
introduced as 

𝑞 =
𝜎𝑐−𝜎𝑚

𝜀𝑐−𝜀𝑚
 , 0 < 𝑞 < ∞ (3) 

The value of q depends on the properties of 
constituent materials and the micro-structural 
interaction in the composite. 

In the TTO model for a ceramic/metal FGM, 
ceramic phase is assumed to be linearly elastic during 
its deformation process. Plastic deformation of the 
composite arose from plastic flow of the metal phase 
when the stress exceeds its yield limit. Here, a bilinear 
stress-strain relation with an isotropic hardening is 
assumed for the elastic-plastic behavior of metal. This 
model, as illustrated in Fig. 2 represents a constant 

tangent modulus Etm when the stress in metal phase 
exceeds its yield limit σYm. The elastic-plastic behavior 
of the ceramic/metal FG material also follows a bilinear 
isotropic hardening model represents a tangent 
modulus Et in the plastic region (blue lines in Fig. 2). 

 

Fig. 2. Bilinear elastic-plastic model for FG 
material. 

The effective properties such as Young's modulus 
E, yield stress σY and tangent modulus Et of the FG 
material are evaluated from the corresponding 
parameters of constituent materials and the parameter 
q by using TTO model as [12, 13] 

𝐸 = [𝐸𝑚𝑉𝑚
𝑞+𝐸𝑐

𝑞+𝐸𝑚
+ 𝐸𝑐𝑉𝑐] / [𝑉𝑚

𝑞+𝐸𝑐

𝑞+𝐸𝑚
+ 𝑉𝑐] (4) 

𝜎𝑌 = 𝜎𝑌𝑚 [𝑉𝑚 +
𝑞+𝐸𝑚

𝑞+𝐸𝑐

𝐸𝑐

𝐸𝑚
𝑉𝑐] (5) 

𝐸𝑡 = [𝐸𝑡𝑚𝑉𝑚
𝑞+𝐸𝑐

𝑞+𝐸𝑡𝑚
+ 𝐸𝑐𝑉𝑐] / [𝑉𝑚

𝑞+𝐸𝑐

𝑞+𝐸𝑚
+ 𝑉𝑐] (6) 

The Young’s modulus defined by Eq. (4) is, 
however not symmetrical with respect to the mid-
plane, and thus the neutral surface is no longer 
coincident with the mid-plane. The shift of the neutral 
surface from the mid-plane, h0 (see Fig. 1), is 
determined as [18] 

ℎ0 = ∫ 𝐸(𝑧)𝑧𝑑𝑧 / 
h/2

−h/2
∫ 𝐸(𝑧)𝑑𝑧 
h/2

−h/2
 (7) 

It should be noted that with E(z) given by Eq. (4), 
the integrals in the above equations cannot be 
evaluated explicitly. The Simpson rule is employed 
herein to evaluate the integrals and to determine h0. 

III. FINITE ELEMENT FORMULATION 

This section derives the finite element formulation 
for the buckling analysis of the FG beam. Adopting the 
neutral surface as reference plane, the axial and 
transverse displacements at any point according to 
Euler-Bernoulli beam theory are as follows 

𝑢1 =  𝑢 − (𝑧 − ℎ0)𝑤,𝑥 , 𝑢3 = 𝑤(𝑥) (8) 

where u1 and u3 are the displacements at any point 
in directions of the x- and z-axes, and a subscript 
comma is used to indicate the derivative with respect 
the followed parameter. 

A degenerated form of Green strain can be adopted 
for the buckling analysis as [19] 

𝜀 =  𝑢,𝑥 + 0.5𝑤,𝑥 + (𝑧 − ℎ0)𝜒 = 𝜀0 + (𝑧 − ℎ0)𝜒 (9) 

where ε0=u,x+0.5w,x is the membrane strain, and 
χ=- w,xx is the beam curvature. 
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The incremental stress-strain relationship for the 
one-dimensional elastic-plastic analysis can be written 
in the form [20] 

𝑑𝜎 =  𝐸𝑒𝑝𝑑𝜀 (10) 

where Eep is the instantaneous modulus, and for 
the bilinear model adopted herein it has followed the 
simple form 

𝐸𝑒𝑝 =
𝑑𝜎

𝑑𝜀
= {

𝐸 if 𝜎 ≤ 𝜎𝑌
𝐸𝑡 if 𝜎 > 𝜎𝑌

 (11) 

with σY and Et are the yield stress and tangent 
modulus of the FG material, respectively. 

Assuming the beam is being divided into a number 
of two-node beam elements with a length of l. The 
vector of nodal displacements for a generic element 
has six degrees of freedom as 

𝒅 = {𝑢1 𝑤1 𝜃1  𝑢2 𝑤2 𝜃2}
𝑇 (12) 

where ui, wi and θ1 (i=1, 2) are axial and transverse 
displacements and rotation at node i. In Eq. (12) and 
hereafter, a superscript ‘T’ is used to designate the 
transpose of a vector or a matrix. 

The displacements between the two nodes of the 
element are interpolated from the nodal displacements 
according to 

𝑢 = 𝑵𝑢
𝑇𝒖 , 𝑤 = 𝑵𝑤

𝑇𝒘  (13) 

where Nu={Nu1 Nu2 }
T
 is the matrix of shape 

functions for u, and Nw={Nw1 Nw2 Nw3 Nw4}
T
 is the matrix 

of shape functions for w . The following linear and 
cubic Hermite polynomials are adopted for Nui (i=1, 2) 
and Nwj (j=1.4) 

𝑁𝑢1 =
𝑙−𝑥

𝑙
 , 𝑁𝑢2 =

𝑥

𝑙
  (14) 

and 

{
𝑁𝑤1 = 1 − 3

𝑥2

𝑙2
+  2

𝑥3

𝑙3
, 𝑁𝑤2 = 𝑥 − 2

𝑥2

𝑙
+

𝑥3

𝑙2

𝑁𝑤3 = −3
𝑥2

𝑙2
−  2

𝑥3

𝑙3
 , 𝑁𝑤4 = −2

𝑥2

𝑙
+

𝑥3

𝑙2
 
  (15) 

In Eq. (13), we used the following notations 

𝒖 = {𝑢1 𝑢2}
𝑇, 𝒘 = { 𝑤1 θ1 𝑤2 θ2}

𝑇  (16) 

The finite element formulation based on the normal 
strain (8) and the shape functions (13) and (14), 
however, encounters the membrane locking [19]. In 
order to overcome this problem, the membrane strain 
ε0 in Eq. (9) should be replaced by an average strain, 
εav, defined as [19] 

𝜀𝑎𝑣 =
1

l
∫ 𝜀0𝑑𝑥 =

1

l
∫ (𝑢,𝑥 + 0.5𝑤,𝑥

2)𝑑𝑥 
l

0

l

0
 (17) 

Substituting Eqs. (14) and (15) into Eq. (17) one 
gets 

𝜀𝑎𝑣 =
1

l
(𝑢2−𝑢1) +

1

30l2
[3l(𝑤1−𝑤2)(θ1 + θ2) 

+18(𝑤1 − 𝑤2)
2 + l2(2θ1

2 − θ1θ2 + 2θ2
2)] (18) 

The normal strain ε can be now written in the form 

𝜀 = 𝒃𝑢
𝑇𝒖 +

1

2l
𝒘𝑇 ∫ 𝒃𝑤𝒃𝑤

𝑇 𝑑𝑥 𝒘 + (𝑧 − ℎ0)𝒘𝑤
𝑇𝒘

l

0
 (19) 

and 

𝒃𝑢 =
𝑑𝑵𝑢

𝑑𝑥
 , 𝒃𝑤 =

𝑑𝑵𝑤

𝑑𝑥
 , 𝒄𝑤 =

d2𝑵𝑤

𝑑𝑥2
  (20) 

The virtual strain δU for the element is given by 

𝛿𝑈 = ∫ 𝜎𝛿𝜀
𝑉

𝑑𝑉  (21) 

where V is the element volume; σ is the normal 
stress, and δε is the virtual normal strain that can be 
computed from Eqs. (17) and (18) as 

𝛿𝜀 = 𝒃𝑢
𝑇𝛿𝒖 + [𝒆𝑤

𝑇 + (𝑧 − ℎ0)𝒄𝑤
𝑇 ]𝛿𝒘  (22) 

where ew is obtained from Eq. (18) as follows 

𝒆𝑤 =
𝑑𝜀𝑎𝑣

𝑑𝒘
=

{
 
 

 
 

1

10𝑙
[12(𝑤1 − 𝑤2) + 𝑙(𝜃1 + 𝜃2)]

1

30
[3(𝑤1 − 𝑤2) + 𝑙(4𝜃1 − 𝜃2)]

1

10𝑙
[12(𝑤2 − 𝑤1) + 𝑙(𝜃1 + 𝜃2)]

1

30
[3(𝑤2 − 𝑤1) + 𝑙(4𝜃2 − 𝜃1)]}

 
 

 
 

 (23) 

Substituting Eq. (22) into Eq. (21) one can obtain 
the element nodal forces in the forms 

𝒇𝑢 = {𝑁1 𝑁2}
𝑇  = ∫ 𝒃𝑢𝜎𝑑𝑉𝑽

  (24) 

and 

𝒇𝑤 = {𝑀1 𝑄1 𝑀2 𝑄2}
𝑇 = ∫ [𝒆𝑤 + (𝑧 − ℎ0)𝒆𝑤]𝜎𝑑𝑉𝑽

 (25) 

In Eqs. (24) and (25), fu and fw are the nodal force 
vectors corresponding to the axial and bending nodal 
displacements, respectively. 

Finally, the tangent stiffness matrix kt is obtained by 
differentiating the nodal forces with respect to the 
nodal displacements. For the sake of convenience, we 
split the tangent stiffness matrix into sub-matrices as 

𝒌𝑡 = [
𝒌𝑢𝑢 𝒌𝑢𝑤 
𝒌𝑤𝑢 𝒌𝑤𝑤 

]  (26) 

in which the kuu and kww are the stiffness matrices 
stemming from element stretching and bending, 
respectively; kuw= kwu

T
 is the stiffness resulted from the 

stretching-bending coupling. The expressions for these 
sub-matrices are as follows 

𝒌𝑢𝑢 =
𝑑𝒇𝑢

𝑑𝒖
= ∫ 𝒃𝑢𝐸𝑒𝑝𝒃𝑢

𝑇𝑑𝑉
𝑉

  (27) 

𝒌𝑢𝑤 =
𝑑𝒇𝑢

𝑑𝒘
= ∫ 𝒃𝑢[𝒆𝑤

𝑇 + (𝑧 − ℎ0)𝒄𝑤
𝑇 ]𝑑𝑉

𝑉
  (28) 

and 

𝒌𝑤𝑤 = ∫ {[𝒆𝑤𝒆𝑤
𝑇 + (𝑧 − ℎ0)

2𝒄𝑤𝒄𝑤
𝑇 ]𝐸𝑒𝑝+𝑨𝜎}𝑑𝑉 𝑉

  (29) 

where A is a symmetrical matrix with the following 
form 

𝑨 =
1

30𝑙
[

36 3𝑙 − 36 3𝑙
3𝑙 4𝑙2  − 3𝑙  −𝑙2

−36 − 3𝑙 36 − 3𝑙
 3𝑙 − 𝑙2  − 3𝑙 4𝑙2

]  (30) 
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For the FG beam considered in this paper, both the 
yield stress σY and tangent modulus Et are functions of 
the transverse coordinate z, and thus the integrals in 
Eqs. (24)-(29) are not able to compute explicitly. 
Gauss quadrature with 7 points along the element 
length and 11 point through the beam thickness is 
employed herein to compute the integrals. In addition, 
a simple elastic-plastic algorithm for the one-
dimensional problem described in Ref. [20] is used to 
update the normal stress and to compute the element 
formulation. The algorithm accounting for the 
hardening material requires storing the normal strain, 
yield stress, at the Gauss points. It should be noted 
that for homogeneous beams, the Young’s modulus, 
tangent modulus and yield stress are constant, and the 
present formulation deduces to the beam element 
previous derived by the first three authors in Ref. [21]. 

Based on the derived finite element formulation, the 
nonlinear equilibrium equation for the beam can be 
written in the form [19] 

𝒈(𝒑, 𝜆) = 𝒒𝑖𝑛(𝒑) − 𝜆𝒇𝑒𝑓 = 𝟎  (30) 

where the out-of-balance force vector g is a 
function of the current global nodal displacements p 
and external loading parameter λ; qin is the global 
vector of nodal forces, constructed by assembling the 
element nodal force vector; fef is the fixed external 
loading vector. Since the eccentric load P in Fig. 1 is 
statically equivalent to a centric load P acting on the 
neutral surface at the beam end plus a moment M=Pe, 
with e is the distance from the load to the neutral 
surface. The system of Eq. (30) can be solved by an 
incremental-iterative method, in which a new iterative 
displacement vector dp can be obtained from a 
truncated Taylor expansion of g(p,λ) around an 
equilibrium point (p0, λ0 fef) as 

𝒈(𝒑, 𝜆) = 𝒈0 +
𝑑𝒈

𝑑𝒑
∣0 𝛥𝒑 = 𝒈0 +𝑲𝑡 ∣0 𝛥𝒑 = 𝟎  (31) 

So that 

𝛥𝒑 = −𝑲𝑡
−1│0𝒈0  (32) 

In the above equations, Kt is the global tangent 
stiffness matrix, obtain by assembling the above-
derived element tangent stiffness kt by the standard 
way of the finite element method. The notation ‘∣ 0‘ 
means that the stiffness matrix is evaluated at the 
equilibrium point (p0,λ0 fef). In order to trace a complete 
load-displacement curves in the post-buckling region, 
the arc-length method was adopted where Eq. (30) is 
augmented by a constraint equation. Details of the arc-
length method and its implementation are described by 
Crisfield in Ref. [19]. 

IV. NUMERICAL RESULTS 

The derived finite element formulation and 
described numerical algorithm were implemented into 
a computer code for investigating the post-buckling 
behavior of the FG beams. The numerical result 
reported in this section has been performed for FG 
beam with length L=5m, height h=0.1m and width 

b=0.2m. The properties of the constituent materials are 
adopted from Ref. [13] as follow: Ec=80 GPa for 
ceramic, Em= 56 GPa, σYm= 106 MPa, Etm= 12 GPa for 
metal, and q=17.2 GPa. Figs. 3 and 4 show the 
variation of the Young’s modulus and the yield stress 
in the thickness direction of the FG beam, respectively. 

 

Fig. 3. Variation of Young’s modulus in thickness of 
FG beam 

 

Fig. 4. Variation of yield stress in thickness of FG 
beam 

Two kinds of boundary condition, namely clamped-
free (CF) and simply supported (SS) are considered 
herein. Ten elements have been used to discrete the 
beam. Since the present formulation deduces to the 
one in [31] for homogeneous beam and to a special 
case of FG beam in [9], the accuracy and convergence 
of the formulation thus are confirmed. 

Fig. 5 shows the load-displacement curves of the 
CF beam for various values of the volume fraction 
exponent n and an eccentric ratio ec/r

2
= 0.005. In the 

figure, the deflection w is computed at the free end, 
and the applied load was normalized by the Euler 
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buckling load of homogeneous metal cantilever beam, 

that is P0= 
2
EmI/4L

2
. The eccentric ratio, ec/r

2
 (with r is 

the radius of gyration ) is defined according to Ref. 
[22], but c is now measured from the top surface to the 
neutral surface, and thus c=h/2-h0. As seen from the 
figure, similar to the homogeneous beam [21], the 
post-buckling of the beam is greatly affected by the 
plastic deformation, and post-buckling of the beam 
become unstable when the effect of plastic 
deformation is taken into consideration. The volume 
fraction exponent n alters the limit load of the beam, 
but it hardly affects the post-buckling behavior of the 
beam. It should be noted that the elastic curve in the 
figure was obtained by setting the yield stress σY in the 
computer code to a large value so the yielding will not 
occur. 

 

Fig. 5. Load-displacement curves for CF beam with 
various values of exponent n (ec/r

2
=0.005). 

 

Fig. 6. Effect of eccentric ratio on the post-buckling 
behavior of CF beam (n=3). 

The effect of the eccentric ratio on the post-
buckling behavior of the CF beam is depicted in Fig. 6 
for a value of a volume fraction exponent n=3. As seen 

from the figure, the post-buckling behavior of the beam 
is very sensitive to the eccentric ratio, and the limit 
load gradually reduces when increasing the eccentric 
ratio. This phenomenon is similar to the post-buckling 
behavior of the homogeneous elastic-plastic beams 
subjected to an axial load [21]. 

 

Fig. 7. Load-displacement curves for SS beam with 
various values of exponent n (ec/r

2
=0.005).). 

 

Fig. 8. Effect of eccentric ratio on the post-buckling 
behavior of SS beam (n=3). 

In Fig. 7 the load-displacement curves of the SS 
beam are illustrated for various values of the volume 
fraction exponent n and an eccentric ratio ec/r

2
= 0.005. 

In the figure, P0 is the buckling load of simply 

supported metal beam, that is P0= 
2
EmI/L

2
. As in the 

case of the CF beam, the volume fraction exponent 
changes the limit load of the beam, and the limit load 
reduces when increase the volume fraction exponent 
n. In addition, the post-buckling strength of the beam in 
the post-buckling region, measured in term of the ratio 
of applied load to the critical load P0 of the metal beam 
reduces, regardless of the exponent n. This means 
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that the post-buckling of the beam is unstable. The 
effect of the eccentric ratio to the post-buckling 
behavior of the SS beam as depicted in Fig. 8 is 
similar to the CF beam, and the limit load considerably 
reduces when increase the eccentric ratio. 

V. CONCLUSIONS 

A finite element formulation for investigating the 
post-buckling behavior of elastic-plastic FG beams has 
been formulated. The formulation based on Euler-
Bernoulli beam theory was derived by using the neutral 
surface as reference plane. The TTO model was 
employed in evaluating the elastic-plastic properties of 
the beam material. Gauss quadrature was used in 
computing the nodal internal force vector and tangent 
stiffness matrix. The nonlinear equilibrium equations 
have been solved by an incremental-iterative 
procedure in combination with the arc-length control 
method. Numerical examples have been demonstrated 
for beams with clamped-free and simply supported end 
conditions. The numerical results show that the plastic 
deformation greatly affects the post-buckling behavior 
of the FG beams, in which the post-buckling of the 
beam is unstable when the effect of plastic 
deformation is taken into account. The study 
emphasizes that the plastic deformation must be taken 
into account when investigating the post-buckling 
behavior of the beam. The influence of the volume 
fraction distribution, eccentric ratio on the post-
buckling behavior of the beams has also been 
numerically studied and highlighted. 
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