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I.  INTRODUCTION

The n -the Weyl algebra A, is an associative
algebra (over a field K ) with 2n generators
Xiy--ey X5y Oy,..., 0, subject to relations

[%.%;1=16;,0;1=0.[0;,x;1= 6, ;,
where [a,b] = ab—ba is commutator and &, ; is the

Kronecker delta. In this note we consider some further
computations of the technique developed in [3] for
finding polynomial identities on the subspace

AGY =(x0;1,je{L,...,n}
of the Weyl algebra A, .
Let S, be a skew-symmetric polynomial over an

associative noncommutative algebra A

Sm(X1s Xp0 o X) = D 5GN0) X oy X oy Xy

JESm

where sgn(o) is the sign of a permutation. We say
that S,, is a (standard) polynomial identity on A if
Sy, =0 forall X,,...,X,, €A.

Amitsur-Levitzki theorem [1] states that S, is a
minimal polynomial identity on the matrix algebra, for
any NxNn matrices A,...,A,, the identity
Son(A,...,A,) =0 always holds. It is known that
this fact can be proved using Euler tours in digraphs
[4, 2].

Approach using decompositions of digraphs has
been addressed in [3] to study polynomial identities on
the subspace An(l'l) of the Weyl algebra. From [3] it is
known that S,, = 0 is an indentity for n=1,2,3 and it
is not an identity for N >4 . Here we summarize some
computations for N =4,5 as well as implementation
aspects.

Il. MAIN PROPERTIES

We use technique developed in [3], for more
details we refer to that paper.

Let G be a digraph with N vertices and (directed)

edges (e,,...,€,). Consider any decomposition of G
into edge-disjoint paths P ={PF, P,, ..,PR} with
sets of sources | and sinks J ; every path P, here is
viewed as a permutation (I, 1,,..., I.) which is the
sequence of edges €1 € B

For permutations o, , 0,, .., 0, , define the

shuffle set sh(o,,0,, .., o,) as the set of

permutations on UL, o; such that the order of each

o; is respected. Define
E(P):= >
aeSh(Pl, P2 ..... F’k)

Proposition 2.1. The following formula holds for
Es(1).

sgn(o)

Ec()= Y E(P)
P:1—J
where the sum is taken over all k-decompositions
with sources | and sinks J.
Connection to the Weyl algebra is established as
follows.

Theorem 2.1[[3]] Let W, W,,..., W, eAﬁl’l) be
monomials. Then
S (W, Wy, oo W) = D Ec (D] [ ] ]2
| iel jed
where the sum runs through all possible multisets
of decomposition sources | and digraph G with n

vertices has M edges represented by W, W,, ..., W

(i.e.if W, = Xi|8jI , then there is an edge (i,, J,)in G)

1. COMPUTING THE SHUFFLE SUM

Fast computation of the shuffle sum in Proposition
2.1 is established via the following formula.

Lemma 3.1. Let X; be (disjoint) permutations such
that U:zlxi ={1,2,..,n} and by [X,] denote the

number of elements in X; . Define
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Xy, Xy eeey X)) = z sgn(o) X, =a,X and so difference in inversion count from
eSO X ) (XX, ... X.) to (a,%. X5 ... X ) is exactly [%,] which is
Then( Xy, oo X)) = 0, if there arei and j 0dd, thersore
atx, 20 Bml T ), W(ay, Xi, Xy ey X ) = =W(8,, X, Xby ey X))
suchthat i = j with [x;] and [x;] both odd From (2), (X, Xy, sy X ) =0
- [Xi] I 2) There is only one permutation from
Q! .
_ 2 [X., X,, ..., X,,] having odd number of elements and
A(Xys Xp e Xy ) = WXy, Xy oy Xy ) e, o _ _
H([[X ]]I) suppose it is X, . If the first element is not taken from
the X then by induction hypothesis
otherwise; A(Xys X5y eeey X[y -ey X,) = 0. Therefore, from equation
where W(X,, X, ..., X, ) = Sgn(x, U X, U...UX ) (1) we have
I.e. for concatenation of permutations e X , ,
S A0 Xy oo %) = W(BL X, Ko s X ) (A K o X))
g does not change for any permutation of x;, X,, ..., X, m Ix ]
Q5!
Proof. First we prove that W(X,, X,, ..., X,,) does = WXy, Xgy ey X)) o [X]
not change for any permutation of X,..., X, if no two H([ I
X; have odd length. If we swap X, and X,, then the 3)
difference in a number of inversions is equal to ([M]_[w])
[x.1[X,], which is even. By these swap operations we 2 2
can obtain all permutations of X;, X,, ..., X, . 3) There are no permutations of [X;, X,, ..., X, ]
Let us prove next formulas by induction. We have having odd number of elements. As We showed
) g({a},{b})=0 before  W(X,, Xy, -.ep X;1) = W(X0y Xgyeomy Xy ey X)
i) g{a}) =1 since the difference in inversion count is even. Also
i) q({a, b}) =w({a, b X X X X
) dfa ) =w({a,bh) | )3 L T U 1 IR S NP
We compute the recurrence relation assuming that i=+ 9 2 2 2
X, =aX ,i.e. a is the first element of X; . Therefore some ] . So equation (1) can be showed in thin form:
Xy Xyy ey X W(@,, Xpy Xy, ey X7y ooy X
q(X1s X, m) = Z (i, X, X, m) ) ( | ( )(i ((Z[i]) !
, Xy Xgy ey X)) = WXy, Xy -ons
X Q8 Xys Xy eeey Xy ey X ) ulH([ ]u/[[x]])
1) There are some i and j, such that [X;] and ((Z[m])_l)!
[Xj] are odd. Let us say that i =1 and j=2. If the = W(Xy, Xy, ey X)) — 2[x] Q. [1x] )
L7ilyy i=1q/rt5s
first element is not from X; or X;, then by induction l;[([ 2 1 1 2 ]
their sign sum is 0, because they have at least two ((i[[xi]])—l)!
permutations with odd length. So from (1) we have = W(X, Xy, o X.) 2 (i[[xi]])
A(Xys Xy ey X)) =W, XLy Xy ey X, )(A(X], Xy ey X)) H([[X]]') 2
+W(@,, X, Xg, e X )(A(X, X5 s X)) [X]
) (Z[ =D
2
= W(Xyy Xy ooy X)) X ]
X 1
[%] is odd, then it is clear that [[ l]] [[ 1]] H
same as for X,. Then IV. IMPLEMENTATION AND RESULTS
A0 X100 X) = QX X oo Xi) We generate all the digraphs with given number of
We can say that vertices and edges. Only balanced digraphs are
w(ay, X;, Xy, ooy X)) = W(X;, X5, ..., X)), because considered, i.e. where indegree and outdegree of each
vertex are equal. Our implementation workes well up
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to N=5 and m=13, where N is number of
vertices and M is number of edges. In our
computations we obtain the following experimental
results:

*nN=4and n=8, s, is not 0 for the following
digraph
(1, 15, [1, 21, [1, 3], [2, 1], [2, 2], [3, 3], [3, 4], [4, 1]];
(here [i, j] is an edge i— j and hence S, is
considered on the operators X0 .)

*nN=4and N=9, s, is not 0 for the following

digraph
(1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], 3, 4],
[4, 2]];

n=4and n=10, s, is 0 for all digraphs;

+n=5and n=10, s, is not O for the following
digraph

[[1, 1], [1, 2], [1, 3], [, 4], [2, 1], [2, 2], [3, 1], [4, 4],
[4, 3], [5, 1]I;

*n=5and N=11, s, is not O for the following
digraph

[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [3, 1],
[3, 3], [4, 1], [5, 2]I;

*nN=5and N=12, s, is not O for the following
digraph

[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [3, 1],
(3, 2], [4, 4], [4, 5], [5, 1]];

*n=5and Nn=13, s, is not O for the following
digraph

[[1, 1], [1, 2], [1, 3], [1, 4], [1, 3], [2, 1], [2, 2], [2, 4],
(3,11, [3, 2], [4, 1], [4, 3], [5, 1]1;

In particular, S, is an identity for N =4 and there

is no identity S, for n=5 if m<13.
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