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Abstract—This research work is aimed at 

modeling an agent based scheduler that is 
optimized for handling job scheduling in a way 
that ensures efficient and profitable 
manufacturing automation. An alternative view on 
job shop scheduling problem (JSP) was adopted 
in this research work where each machine is 
equipped with adaptive agent that independent of 
other agents, makes job dispatching decision 
based on its local view of the plant. A combination 
of Markovian process and agent oriented analysis 
are used in the analysis of the proposed agent 
based model (ABM) for the industrial machine 
operations. The model optimization was carried 
out using simulated annealing technique. It 
provides a general framework of aggregation in 
agent based and related computational models by 
making use of Markov chain aggregation and 
lumpability theory in order to link the micro and 
the macro level of observation. 

Keywords—Markov chain, ABM, Optimization, 
Operation, Scheduling, Dispatching. 

1.0 INTRODUCTION. 

Manufacturing industries are facing a growing and 
rapid change. Major trends like globalization, 
customer orientation and increasing market dynamics 
lead to a shift in both managerial and manufacturing 
principles: enterprises have to become more flexible, 
open, fast, effective, self-organized, decentralized, to 
sum it up: agile. The call for agility challenges the 
shop floor with several problems. With an increasing 
occurrence of changes and dominating customer 
demand, management of manufacturing processes 
and the coordination of the multifarious resources, i.e., 
machines, materials, information, knowledge and 
humans, becomes a core task of shop floor 
scheduling and control algorithm [1]. 

The scheduling and planning of production order 
have an important role in the manufacturing system. 
The diversity of products, increased number of orders, 
the increased number and size of workshops and 
expansion of factories have made the issue of 
scheduling production orders, hence the traditional 
methods of optimization are unable to solve them 
[2][3]. 

With respect to related studies, [4] proposed a 
methodology for solving the job shop problem based 
on the decomposition of mathematical programming 
problems that used both Benders-type [5] and 
Dantzig/wolfe-type [6] decompositions. The 
methodology was part of closed loop, real-time, two-
level hierarchical shop floor control system. The top-
level scheduler (i.e., the supremal) specified the 
earliest start time and the latest finish time for each 
job. The lower level scheduling modules (i.e., the 
infimals) would refine these limit times for each job by 
detailed sequencing of all operations. A multi-criteria 
objective function was specified to include tardiness, 
throughput, and process utilization cost. The 
limitations of this methodology stem from the inherent 
stochastic nature of job shops and the presence of 
multiple, but often conflicting, objectives made it 
difficult to express the coupling constraints using 
exact mathematical relationships. This made the 
schedule not to converge. Furthermore the rigid 
centralization of the scheduler made it not able to 
adjust to disturbances at the shop floor. 

[7] evaluated the use of MRP or MRP-11 to create 
a medium-range scheduler. MRP system’s major 
disadvantages are rigidity and the lack of feedback 
from the shop floor, but also the tremendous amount 
of data that have to be entered in the bill of materials 
and the fact that the model of the manufacturing 
system and its capacity are excessively simple. 

As can be deduced from these techniques, most 
approaches to job-shop schedulingg assume 
complete task knowledge and search for a centralized 
solution. These techniques typically do not scale with 
problems size, suffering from an exponential increase 
in computation time. The centralized view of the 
machine coupled with the deterministic algorithms 
characteristic of these schedulers do not allow the 
manufacturing processes to adjust the schedule 
(using local knowledge) to accommodate disturbances 
such as machine breakdowns. Hence a production 
scheduling and control that performs reactive (not 
deterministic) scheduling and can make decision on 
which job to process next based solely on its partial 
(not central) view of the machine becomes necessary. 
This requirement puts the problem in the class of 
agent based model (ABM). Hence this work adopts an 
alternative view on job-shop scheduling problem 
where each resource is equipped with adaptive agent 
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that, independent of other agents makes job 
dispatching decision based on its local view of the 
machine. 

2.0 LITERATURE REVIEW 

Scheduling is an important tool for manufacturing 
and engineering, where it can have a major impact on 
the productivity of a process [8]. In manufacturing, the 
purpose of scheduling is to minimize the production 
time and cost, by telling a production facility when to 
make, with which staff, and on which machine. Survey 
of the literature indicates that the job shop scheduling 
problem (or job-shop problem) is at least 70 years old. 
In the publications [9][10][11], job shop scheduling is 
reported as an optimization problem in industrial 
engineering and operations research in which ideal 
jobs are assigned to resources at particular times. The 
most basic version is described [9] as follows: 

Given n jobs J1, J2, …… Jn of varying sizes, which 
need to be scheduled on m identical machines, the 
task is to work out the scheme for assigning job i to 
machine mi in order to minimize the makespan. 

Sven et al [12] analyzed the dynamics of agent 
based models from a Markovian perspective and 
derived explicit statements about the possibility of 
linking a microscopic agent model to the dynamical 
processes of macroscopic observables that are useful 
for a precise understanding of the model dynamics. 
These authors strongly argue that it is in this way the 
dynamics of collective variables may be studied, and 
a description of macro dynamics as emergent 
properties of micro dynamics, in particular during 
transient times, is possible. This work [12] is a 
contribution to interweaving two lines of research that 
have developed in almost separate ways: Markov 
Chains and agent-based models. The former 
represents the simplest form of a stochastic process 
while the later puts a strong emphasis on 
heterogeneity and social interactions. 

The usefulness of the Markov Chain formalism in 
the analysis of more sophisticated ABM has been 
discussed by Izquierds [13], who looked at ten well-
known social simulation models by representing them 
as a time-homogeneous Markov Chain. Among these 
models are the schelling segregation model [14], the 
Axelrod model of cultural dynamics [15] and the sugar 
scape model from Epstein and Axtell [16]. The main 
idea of Izquierdo et al [13] is to consider all possible 
configurations of system as the state space of the 
Markov Chain. Despite the fact that all the information 
of the dynamics on the ABM is encoded in a Markov 
Chain, it is difficult to learn directly from this fact, due 
to the huge dimension of the configuration space and 
its corresponding Markov transition matrix. The work 
[13] mainly relies on numerical computations to 
estimate the stochastic transition on metrices of the 
models. 

The centralized view of the plant coupled with the 
deterministic algorithms characteristic of these 
schedulers do not allow the manufacturing processes 

to adjust the schedule (using local knowledge) to 
accommodate disturbances such as machine 
breakdown and arrival of new job. Hence a production 
scheduling and control that performs reactive (not 
deterministic) scheduling and can make decision on 
which job to process next based solely on its partial 
(not central) view of the machine becomes necessary. 
This requirement puts the problem in the class of 
agent based model (ABM). Hence this work adopts an 
alternative view on job shop scheduling problem 
where each resource (machine) is equipped with 
adaptive agent that independent of other agents, 
makes job dispatching decision based on its local 
view of the machine. 

3.0 Designing Agent-Based Model 

Several formats have been proposed for describing 
agent-based designs. Chief among these standards is 
Grimm et al’s “Overview, Design concepts, and Detail 
(ODD) protocol [17]. ODD describes models using a 
three-part approach: overview, concepts, and details. 
The model overview includes a statement of the 
model’s intent, a description of the main variables, 
and a discussion of the agent activities and timing. 
The design concepts include a discussion of the 
foundations of the model, and the details include the 
initial setup configuration, input value definitions, and 
description of any embedded models [17]. 

3.1 Markov Chain Approach for Agent-Based 
Modeling (ABM) 

Consider an ABM defined by a set N of agents, 
each one characterized by individual attributes that 
are taken from a finite list of possibilities. The set of 
possible attributes is denoted by S and is called the 

configuration space  the set of all possible 

combinations of attributes of the agent, i.e.,  = S
N
. 

This also incorporates models where agents move on 
a lattice (e.g., in the sugarscape model) because we 
can treat the sites as “agents” and use an attribute to 
encode whether a site is occupied or not. The 
updating process of the attributes of the agents at 
each time step typically consists of two parts. First, a 
random choice of a subset of agents is made 
according to some probability distribution w. Then the 
attributes of the agents are updated according to a 
rule, which depends on the subset of agents selected 
at this time. With this specification, ABM can be 
represented by a so-called random map 
representation which may be taken as an equivalent 
definition of a Markov Chain [18]. Hence, ABM are 

Markov Chains on  with a transition matrix P for a 
class of ABM the transition probabilities P(x,y) can be 

computed for any pair 𝑥, 𝑦𝜖N of agent configurations. 

The process (,P) is referred to as micro chain. When 
performing simulations of an ABM the actual interest 
is not in all the dynamical details but rather in the 
behavior of variables at the macroscopic level (mean 
job completion time, mean waiting time, mean 
tardiness, etc.). The formulation of an ABM as a 

Markov Chain (,ṕ) enables the development of a 
mathematical framework for linking the Micro-
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description of an ABM to a Macro-description of 
interest. Namely from the Markov Chain perspective, 
the transition from the micro to the macro level is a 

projection of the Markov Chain with state space  
onto a new state space X by means of a (protection) 

map 𝜋 from  to X. The meaning of the projection 𝜋 is 

to lump sets of Micro configuration in  according to 
the macro property of interest in such a way that, for 

each xєX, all the configurations of  in 𝜋-1
 (x) share 

the same property. 

3.2 Mathematical Model for the Makespan 
Objective Function 

The scheduler agent’s desire (goals) is to minimize 
the manufacturing completion time, or makespan (MS) 
for processing all jobs. The problem of minimizing the 
manufacturing makespan is equivalent to the following 
formulation [19]. 

Min Ms = f (P
ijk

),   Min Tmax 

Subject to (i.e. the constraints): 

B
ij
+P

ijk
X

ijk
≤B

i,j+1
¡=1,2,  ,N; j=1,2,…j(i)-1… (3.1) 

      kєM
ij
 

Constraint set (4.1) ensures that an operation or 
activity j + 1 cannot start before the previous operation 
j of the same job ¡ has been completed. 

B
i,J(i)

 +  P
i,J(i)k

 – MS ≤ 0, ¡ = 1, 2,…,N (3.2) 

            kєM
i,J(i) 

constraint set (3.2) ensures that the starting time 
and processing time of the last operation J(i) for job ¡, 
¡ = 1, 2, ……., N is less than or equal to the makespan 
(MS). 

 X
ijk 

= 1, ¡ = 1, 2,…, N; j = 1, 2,…J(i) (3.3) 

kєM
ij
 

Equation (3.3) ensure that one operation j of job ¡ 
can only be performed on only one machine k at a 
time. In essence, this constraint guarantees that each 
job ¡ takes only one path through the system. 

X
ghk

 + X
ijk

 -1 ≤ Y
ijghk

 + Y
ghijk

,  (3.4) 

¡ = 1, 2,..., N; g = 1, 2, ….,N: ¡ ‡g; ¡ = 1,2, …, J(i); 

h = 1, 2, ….,J(g); k є M
ij 
Ո Mgh. 

During scheduling decision or search, the Agent 
use constraint set (3.4) to restrict two operations of 
two different jobs that are scheduled on the same 
machine from being performed at the same time. 
Thus, only one operation of one job is always 
performed before the other operation of the second 
job. 

Yi
jghk 

+ Y
ghijk

 ≤ 1, 

¡ = 1, 2,…., N ; g = 1, 2,…., ¡‡g;j = 1, 2, …J(i)  (3.5) 

h = 1, 2, ……., J(g); k є M
ij
 Ո Mgh. 

(B
ij
 + P

ijk
 X

ijk
) – (Bgh + Pghk X

ghk
) + Y (1-

Y
ghijk

)≥ P
ijk

 X
ijk

 

¡ = 1, 2, …….N, g = 1, 2, ……. N, ¡‡g; . (4.6) 

j = 1, 2, …., J(g), h = 1, 2,….J(g); k є M
ij
 Ո Mgh 

(Bgh + Pghk Xghk) – (Bij + Pijk Xijk) +Y(1-

Y
ijghk

)≥Pghk Xghk (3.7) 

¡ = 1, 2,…N; g = 1, 2, ….,N; ¡ ‡ g; j = 1, 2, ….J(i); 

h = 1, 2, …., J(g); k є M
ij
 Ո M

gh
 

The agents are of constraint set (3.5) in its belief 
guarantees that if operation j and h from jobs i and g, 
respectively, are to be performed on the same 
machine k, than the two operations cannot be 
performed simultaneously. Agent implements 
constraint set (3.6) to ensure that if operation j of job i 
is chosen to be processed before operation h of job g, 
the starting time and processing time of operation j of 
job i must be less than the starting time of operation h 
of job g. The same logic applies to constraint set (3.7) 
for the reverse case when operation h of job g is 
chosen to be processed before operation j of job i. 
Agent, these constraints reinforce that one job is 
always processed before a second job on a given 
machine to avoid contacts. 

B
i1

 ≥ R
i
, ¡ = 1, 2, …………N (3.8) 

Constraint set (4.8) ensures that the first operation 
of a job i cannot start before it is ready. 

B
ij
 ≥ 0 ¡ = 1, 2,… N; j = 2, …. J(i)  (3.9) 

MS≥0  (3.10) 

Using the non-negativity constraints (3.9) and 
(3.10) the agent ensures that all starting times for the 
remaining operations and the manufacturing 
makespan are positive. 

Xijk є {0, 1}, ¡ = 1, 2, …, N; j = 1, 2, ….J(i);  (3.11) 

k = 1, 2, …………,m 

y
ijghk

 є {0, 1}, ¡ = 1, 2,…….N, j = 1, 2……J(i);(3.12) 

g = 1, 2, ……….N; h = 1, 2, ……,J(g) 

k = 1, 2, …….,m 

Constraints (3.11) and (3.12) show the integer 
constraints for the 0-1 variables. 

Bi, j(i) + ∑ X𝑛
𝑘є𝑀𝑖,𝐽(𝑖)𝑘 i, J(i

)k 
=  Ci, ¡  =  1, 2, . … N(3.13) 

C¡ - 0¡ - Tmax ≤ 0 ¡ = 1, 2, ….,N  (3.14) 

Tmax ≥ 0  (3.15) 
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Constraint set (3.13) ensures that the starting time 
and processing time of the last operation and J(i) for 
job ¡, ¡ = 1, 2, …….N is equivalent to the 
manufacturing completion time, while constraint set 
(3.14) ensures that the tardiness of job ¡, ¡ = 1, 2, 
……………….N is less than or equivalent to the 
maximum tardiness. With constraint (3.15) the 
scheduler agent ensures the maximum tardiness 
value will be non-negative. 

Iik + ∑ Xijk + 1Pijk + Bij + 1,     k = 1j, k + 1 +n
𝑖=𝑖

∑ X𝑛
𝑖=1 ijk 

Pijk + 1 + Bj, k + 1  (3.16) 

Constraint (3.16) established the relationships 
required to keep the consistency between machine’s 
idle time and machine blocking times. 

The scheduler agent makes scheduling decisions. 
This decision involves searches for time values (i.e 
start time of operations i on machine Mk) that satisfy 

all constraints as presented. For example the 
scheduler agent searching for time intervals over 
which two activities or operations (Oij Oi’j’) requiring the 
same resource (machine Mk) cannot overlap. 

Considering the disjunctive constraints states that 
either Oij precedes Oi’j’ or Oi’j precedes Oij. Constraint 
propagation consists in determining cases where only 
one of the two orderings is feasible. When making 
scheduling decision, the scheduler agent continuously 
carry out constraint propagation in order to determine 
conditions (resulting in temporary constraints) that a 
schedule must satisfy (as it relates to operation 
ordering) to meet all the considered constraints. 

This results in the scheduler activating the 
intentions that updates the time-bounds of each 
operations. 

3.3 Model for the Scheduler Optimization. 

To enable the incorporation into the shop floor 
agents inference (i.e intention) the stochastic effect of 
events at the shop floor, there has to be a way to 
make stochastic projections from which the scheduler 
agents intention (Run scheduling Algorithm) can 
optimize the schedule computation (which is more of a 
combinations). For the scheduler and shop floor 
agents deliberations (intentions) to factor in 
stochasticity, Markov Chain is integrated into the 
solution of the job scheduling problem in the proposed 
model. 

Let jobs within the production system be at any six 
states. 

(1) Finished state; (2) unscheduled state; (3) 
scheduled state 

(4) Waiting state; (5) Processing state; (6) 
Preempted state. 

This means some jobs have been completed. 
Some jobs may have been ordered through the order 
agent but not scheduled. Some jobs have been 

scheduled i.e. have been assigned start time on a 
machine Mk. Some jobs have been scheduled, but 
could not start as scheduled because they are 
experiencing wait for some resource (maybe Mk or NC 
program file load or tool bit) some jobs might be 
currently being processed. Processing for some jobs 
was interrupted (i.e the job was preempted) for 
whatever reason. 

The probabilities of these states give the initial 
distribution for the Markov Chain. However, the initial 
distribution change over time, as the entire state of the 
system changes, new jobs arriving, machine 
breakdown or becoming unavailable, more or less job 
experiencing waits, jobs being preempted etc. 

Let state 1 be denoted by FNstate 

Let state 2 be denoted by Սstate 

Let state 3 be denoted by SCstate 

Let state 4 be denoted by WTstate 

Let state 5 be denoted by PROstate 

Let state 6 be denoted by PRMstate 

Let set FNstate be the set of jobs in state 1 

Let set Ustate be the set of jobs in state 2 

Let set SCstate be the set of jobs in state 3 

Let set WTstate be the set of jobs in state 4 

Let set PROstate be the set of jobs in state 5 

Let set PRMstate be the set of jobs in state 6 

Let P(FN)(t) be the probability of a job being in state 
1 at time t 

Let P(US)(t) be the probability of a job being in state 
2 at time t 

Let P(SC)(t) be the probability of a job being in state 
3 at time t 

Let P(WT)(t) be the probability of a job being in state 
4 at time t 

Let P(PRO)(t) be the probability of a job being in state 
5 at time t 

Let P(PRM)(t) be the probability of a job being in state 
6 at time t 

FNstate is an absorbing state. In Markov Chain 
modeling an absorbing state is an end state. When a 
process enters an absorbing state it does not leave. 
FNstate is an absorbing state since when a job(ij) enters 
state 1 it does not leave. That is it does not transition 
to any of the other state. 

Let the set ∪T r n be defined such that at any time t 

∪T r n = 
{
{set 𝑈state}, {set SCstate}, {set WTstate}, {set 

PROstate},{set PRMstate}}
 

That is; 
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∪T r n ={set 𝑈state} ∪ {set SCstate} ∪ {set WTstate} ∪ 
{set PROstate} 

or 

∪T r n = {∪: set 𝑈state ⊃ ∪T r n, set SCstate ⊃ ∪T r n, set 
WTstate ⊃ ∪T r n, set PROstate ⊃ ∪T r n} 

Set FNstate is not part of the universal set since 
state FNstate is an absorbing state at time t. 

4.0 Numerical Results of the Markov Chain 
Algorithm. 

The discussions so far seem to be a little more 
abstract. Hence in order to motivate and exemplify the 
point of view expressed so far, consider this scenario: 
a time t the entire system has a stochastic pattern. At 
time t the shop-floor Agent evaluates its belief, the 
state space of job configuration (i.e. the state of all 
jobs at time t with their probabilities at time t), this 
includes updates from the machine agent and order 
agent arrival of new order from order agent. It 
evaluates the probability distribution of the job states 
at time t. It constitutes the probability distribution 
vector. It uses transition matrix relation in Chain for 
each state to constitute the Markov transition matrix x. 
It uses the Markov matrix to project the state space 
(i.e. the probability distribution vector) at time t, to 
arrive at a forecast (i.e. stochastic trend) at time t. 
From there it picks the state set that would have the 
most influence (i.e. highest, impact) on the schedule. 
It updates the scheduler agent belief with this from 
the state set picked the scheduler agent evaluates the 
earliest completion time of each job, the one having 
the smallest earliest possible completion time 
provided it satisfies all constraints is scheduled on the 
contemporary machine. The agent checks if its 
solution satisfies all constraints within its belief. 

Assuming at time t, based on updates from the 
machine agent, and order agent, the shop floor 
agent evaluates the various states transition 
probabilities as: 

P(US)(t)
 = 0.3800; P(PRO) = 0.3500 . P(Sc)=0.1500 

 P(WT) = 0.0800; P(PRM) = 0.0400 

The finished state is taken here as the Markov 
Chain absorbing state, hence it transition probability is 
1. Hence initial dynamic probability vector (i.e. initial 
distribution) at time t is: 

Xo = [𝔦1 𝔦2 𝔦3 ……………………. 𝔦δ] 

 = [1 0.3800 0.1500 0.0800 0.3500 0.04] 
constituting the transition matrix X 

 The matrix in this case should be a δ x δ square 
matrix i.e. 6x6 to match the state configuration first 
row. 

[1 0 0 0 0 0] 

row before last row 

[0 0 P
(N-2)

 q
(N-2)

 P
(N-2)

 0] 

N = number of jobs in the transient state at time t 
i.e. ӏ∪Trnӏ. 

Assuming at time t, scheduler agent evaluates 

ӏ∪Trnӏ as 60. 

P
(k) = 𝑘(𝑁−𝑘)

N2
. 

P
(N-2) = 

P
(58) 56(60−58)

602  =  0.0322 using equation (4k) 

q
(N-2)

 = q
(58)

 = 1 – 2x0.03 = 1 – 0.06 

= 0.9356 

hence 

[0 0 0 .0322 0.9356 0.0322] 

last row 

[0 0 0 P
(N-1)

 q
(N-1)

 P
(N-1) 

] 

P
(N-1)

 = 0.0250 

q
(N-1)

 = 0.9500 

hence 

[0 0 0 0.0250 0.9500 0.0250] 

Second row 

[P
(1)

 q
(1) 

P
(1)

 0 0 0] 

P
(1)

 = 0.0163 

q
(1)

 = 0.0326 

hence 

[0.0163 0.0326 0.0163 0 0 0] 

Third row 

[0 P
(2)

 q
(2)

 P
(2)

 0 0] 

P
(2)

 = 0.322 

q
(2)

 = 0.9356 

hence 

[0 0.0322 0.9356 0.3222 0 0] 

Forth row 

[0 0 P
(k)

 q
(k) 

P
(k)

 0] 

Here k is the number of job at a particular state at 
time t. Hence the different elements of this row are 
needed for each of the transient states. The transition 
probabilities at each state and [∪Trn] at time t would be 
used to estimate a value for k at each state. The value 

of [∪Trn], hence k depends on the update (i.e. agent 
gossip) the shop floor agent receives from the order 
agent in terms of number of jobs being processed, 
being preempted etc, the machine agent in terms of 
number of jobs finished being preempted etc. The 

number k is estimated by multiplying ӏ∪Trnӏ and the 
transition probability of the particular job state at time 
t. In order to minimize rounding errors, the product of 
the multiplication is passed to the floor function. In the 
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floor function, i.e. floor (x) means the longest 
integer not greater than x. [20] 

(1) For the unscheduled state (Ustate) 

K = 0.3800 x 60 = 22.8 

Floor (22.8) = 22 

Hence for USstate 

P
(k)

 = 0.2322 

 q
(k)

 = 0.5356 

Hence row four for Սstate is [0 0 0.2322 0.5356 
0.2322 0] 

(II) For the PROstate Floor (k) = floor(0.3500x60) = 
21 

P
(k)

 = 0.2275 

q
(k)

 = 0.5450 

Hence row for state PROstate is [0 0 0.2275 0.5450 
0.2275 0] 

(III) For the SCstate 

Floor(k) = floor (0.1500x60) = 9 

P
(k)

 = 0.1275 

q
(k)

 = 0.7450 

Hence row four of the transition matrix for SCstate : 

[0 0 0.1275 07450 0.1275 0] 

(IV) For the WTstate 

Floor(k)= floor (0.0800x60) = 4 

P
(k)

 = 0.0622 

q
(k)

 = 0.8756 

Row four for WTstate: 

(0 0 0622 0.8756 0.622 0) 

(V)For PRMstate 

Floor(k) = floor (0.0400x60) = 24 

P
(k)

 = 0.2400 

q
(k)

 = 0.5200 

Row for PRMstate 

[0 0 0.2400 0.5200 0.2400 0] 

Transition matrix for each transient state, the 
following notation is used 

Let transition matrix for Ustate = TU 

 ,, ,, ,, ,, CSstate = TCS 

,, ,, ,, ,, WTstate = TWT 

,, ,, ,, ,, PROstate = TPRO 

,, ,, ,, ,, PRMstate = TPRM 

Note the FNstate is the absorbing state, its influence 
in the arriving at the overall system is not factored in. 
Putting rows 1,2,3,4,5 and 6 together as computed. 

The transition matrix associated with state is 
multiplied to give the system transition matrix with 
which the initial state probability distribution is 
projected. 

5.0. CONCLUSION 

Based on the statement of the problem of this 
work, as it relates to the job shop scheduling problem 
(JSSP), the main point of consideration in the model 
design carried out as relates to schedule computation 
(scheduling algorithm) and the schedule optimization 
(the markov chain) is to model an agent based 
scheduler that is optimized for handling the job shop 
scheduling in a way that ensures efficient and 
profitable manufacturing automation. This puts the 
focus mainly in the scheduling agent and the shop 
floor control agent. The remaining agents provides 
support services to these two agents in the solution of 
the JSSP. The formulation of the proposed Agent 
based model for job shop scheduling problem as a 
Markov Chain enables the development of a 
mathematical framework for linking the micro-
description of an Agent based model to a Macro-
description of manufacturing plant. 
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