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Abstract

We develop a new approach which is applied
to simplify the Navier-Stocks equation(s). Our
approach is based on the derivation of the gov-
erning equations for the divergence and rotor
(or curl) of the liquid/gas velocity v. These
values D = divv and ~ω are considered to be
the leading field variables (or fields) in our ap-
proach. Two arising equations for D and ~ω
are linear and they are equivalent to the in-
cident Navier-Stocks equation, but they are
significantly simpler and allow one to determine
analytical/numerical solutions of this equation
and investigate the properties of these solutions.
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1 Introduction

In this communication we discuss the general Navier-
Stocks equation(s) which describes all possible motions
in the regular liquid and/or gas. Everywhere below the
liquid/gas are assumed to be truly non-relativistic with
the known equation(s) of state. The explicit form of the
Navier-Stocks equation for such a liquid/gas is (see, e.g.,
[2])

ρ
[∂v
∂t

+ (v · ∇)v
]

= −∇p+ η∆v+(
ζ +

1

3
η
)
∇(∇ · v)

(1)

where the vector v = (vx, vy, vz) is the velocity of the
liquid/gas, ρ is the local density and p is the local pres-
sure. All these values are the functions of the spa-
tial point r = (x, y, z) and time t. The coefficients η
and ζ are the usual and second viscosities of the liq-

uid/gas, respectively. The operator ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
is the gradient operator, or ∇−operator. In old text-
books this operator was also called the Hamilton oper-
ator. Note that the ∇ operator is, in fact, a vector-
operator which transforms under rotations as a covari-
ant vector. Therefore, if ∇ is applied to a vector b(r),
then, in the general case, one finds three possible com-
binations of ∇ and b: scalar, vector and tensor (see,

e.g., [3], [4]). The arising scalar is called the divergence

of the vector b, i.e. divb = ∂bx
∂x +

∂by
∂y + ∂bz

∂z . The vec-
tor which arise during application of ∇ to the vector
b(r) is called the rotor rot (or curl) of the vector b, i.e.

∇×b = rotb =
(
∂bz
∂y −

∂by
∂z ,

∂bx
∂z −

∂bz
∂x ,

∂by
∂x −

∂bx
∂y

)
. The

third combination of the ∇ operator and vector b is the
traceless 3×3 symmetric tensor t̂ = ∇⊗b which has the
following matrix elements

(∇⊗ b)ik = (t̂)ik =
1

2

( ∂bi
∂xk

+
∂bk
∂xi

)
−

1

3

(∂bx
∂x

+
∂by
∂y

+
∂bz
∂z

)
δik

(2)

where i = x, y, z and k = x, y, z. The choice b = r+u(r)
leads to the strain vector known in the theory of elastic-
ity, or infinitesimal strain theory [1]. Another possible
choice for the vector b is b = v. It is used in hydro-
dynamics of the viscous liquids/gases (see, e.g., [2]). In
our analysis below the traceless tensor (∇ ⊗ v) is not
used.

As follows from the explicit form of Eq.(1) the
Navier-Stocks equation is a linear equations upon spa-
tial and time derivatives of the velocity v. Some terms of
this equation contain quadratic powers of the velocity v
and its spatial derivatives. Note that the Navier-Stocks
equation, Eq.(1), can be reduced to another equivalent
form

∂v

∂t
+

1

2
∇v2 − v × (∇× v) = −

1

ρ
∇p+ ν∆v +

(
µ+

1

3
ν
)
∇(∇ · v)

(3)

where ν = η
ρ is the first kinematic viscosity, while µ = ζ

ρ

is the second kinematic viscosity of the liquid (or gas).
Let us introduce another vector ~ω = ∇× v which plays
an important role in hydrodynamics. This vector is
called the vorticity. By using this vorticity vector one
reduces the Navier-Stocks equation, Eq.(3), to a differ-
ent form which is often used in applications

∂v

∂t
+

1

2
∇v2 − v × ~ω = −

1

ρ
∇p+

(
µ+

4

3
ν
)

∆v +
(
µ+

1

3
ν
)
∇× ~ω

(4)
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To transform Eq.(3) to the form of Eq.(4) we have used
the following formulas

(v · ∇)v =
1

2
∇v2 − v × ~ω and

∇(∇ · v) = ∆v +∇× (∇× v) = ∆v +∇× ~ω
(5)

The explicit derivation of analytical and/or numer-
ical solution of the Navier-Stocks equation is a very
difficult problem, which has been solved only in a few
cases with the use of a number of fundamental simplifi-
cations in the incident problem. General solutions of the
Navier-Stocks equation has never been found in closed
analytical forms. Such a solution essentially means the
explicit expression for the liquid/gas velocity v(t, r) in
each point of the time-spatial continuum which is oc-
cupied by the moving liquid/gas. Formally, the Navier-
Stocks equation, Eq.(5), is a quadratic equation upon v
which also contains various spatial derivatives of v. This
substantially complicates search of solutions of Eq.(5)
written in closed, analytical forms.

In this study we formulate another approach to the
Navier-Stocks equation. This original approach is based
on an obvious fact that the Navier-Stocks equation is
a linear equation upon spatial (and time) derivatives of
the velocity v. This leads to an idea to use these deriva-
tives as the top priority values and re-write the original
equation(s) as linear equations for the derivatives of the
velocity vector v. If we know the explicit expressions
for the divergence and rotor/curl of the vector v we can
always uniformly reconstruct the velocity vector v itself.
This follows from the fundamental theorem of vector cal-
culus (see, e.g., [3]). Discussion of this theorem with a
lot of interesting details can be found in $ 19 of [3]. For
finite volumes we also need to know the numerical values
of the normal components of such a vector at each point
of the boundary surface [3]. By applying this theorem
to the moving liquid/gas we replace the original Navier-
Stocks equation by the two equations: one equation for
the divergence D = divv, which is a true scalar, and
another vector-equation for the rotor rotv = ~ω, where
~ω is the vorticity vector. These two equations for D
and ~ω are simpler than the incident Navier-Stocks equa-
tion. An obvious success of this approach follows from
the explicit form of the Navier-Stocks equation which
is a linear equation upon spatial and time derivatives
of the liquid’s velocity v. In reality, we can try to de-
termine solutions of these (new) equations and investi-
gate their properties, rather than to operate with the
Navier-Stocks equation. It appears that this approach
has quite a number of advantages in applications to ac-
tual problems from hydro- and aerodynamics. The goal
of this study is to develop this approach and apply it
to the Navier-Stocks equation. Basic equations of this
approach are derived in the following Section.

2 Basic equations

In this Section by using Eq.(4) derived above we obtain
the basic equations of our approach. To derive these

equations we need to apply the first-order differential op-
erators rot (or curl) and div to the both sides of Eq.(4).
The unknown vector v is replaced by the combination
of a transverse axial vector ~ω and one scalar D. For
simplicity, we shall assume that the kinematic viscosi-
ties ν and µ in Eq.(4) are the constants, i.e. they do not
depend upon any of the spatial coordinates. This as-
sumption allows one to avoid operations with extremely
complex expressions with contains many additional spa-
tial derivatives of the ν and µ values. By calculating rot
from both sides of Eq.(4) one finds the following vector-
equation for the vorticity ~ω

∂~ω

∂t
= ∇× (v × ~ω) + ν∆~ω =

(~ω · ∇)v − (∇ · v)~ω − (v · ∇)~ω+

1

ρ2
(∇ρ×∇p) + ν∆~ω ,

(6)

which describes time-evolution of the vorticity vector
~ω. To derive an analogous equation for the divergence
of the velocity vector, i.e. for D = ∇ · v, we introduce
the scalar function s(r) which is the density-distribution
function of the internal sources of the liquid/gas located
inside of the moving liquid and/or gas. It is shown be-
low that at each point of the moving liquid we have
∇ · v = s, and, therefore, D = s. Now, by using the ex-
plicit notation for this function we obtain the following
scalar equation for the divergence D

∂D

∂t
= −1

2
∆v2 − v · (∇× ~ω) + ω2−

1

ρ
∆p+

1

ρ2
(∇ρ · ∇p) +

(
µ+

4

3
ν
)

∆D ,
(7)

The solution of Eqs.(6) - (7) allows one to determine the
rotor (or curl) and divergence of the velocity vector v in
each local point with the Cartesian coordinates r. The
next step is to reconstruct the velocity vector v by using
the known values of D and ~ω. Since we know its rotor
~ω and divergence divv = D, then as it follows from the
vector calculus, we can always determine the velocity
vector v itself. Let us assume that the velocity vector
is represented as a sum of three different velocities, i.e.
v = v1 + v2 + v3, where the velocity v1 has non-zero
divergence and zero rotor, while the velocity v2 has zero
divergence and non-zero rotor. Formally, it is sufficient
to represent the vector v in the form v = v1 + v2, but
for actual fluids/gases one always finds additional prob-
lems related with the boundary conditions, or velocity
components at the surfaces of the moving liquid.

It can be shown that to solve this problem com-
pletely we need to know three components of the liq-
uid/gas velocity at each point of such a boundary, e.g.,
one normal and two tangential components of the vector
v. As follows from $ 19 of [3] there are two additional
conditions for the vorticity vector ~ω, source function s,
or divergence D of the moving liquid/gas, and numerical
value of the integral which includes the normal deriva-
tive of the liquid/gas velocity. The first of these condi-
tions ∇·~ω = 0 is always obeyed in the moving liquid/gas
(it follows from the definition of vorticity). The second
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condition is formulated in the form∫
divvdV =

∮
(v · n)dS , or∫

DdV =

∮
vndS

(8)

where vn is the normal component of the velocity at the
border of a finite volume occupied by the liquid/gas and
n is the vector of outer normal to the surface S of the
volume V .

Thus, we have replaced one unknown vector v by
the new transverse vector ~ω (since div~ω = 0) and one
scalar D. In respect to this one three-dimensional equa-
tion for v is replaced by a system of equations for one
scalar D and one two-dimensional transverse vorticity
vector ~ω (since div~ω = 0). The equations arising for D
and ~ω are simpler and they are directly related to the
physics of moving liquid/gas. The advantage of this ap-
proach is obvious, since the two known motions of the
moving liquid (potential motion and rotational motion)
are already separated into different equations. This ap-
proach is a complete analogy with the Maxwell equa-
tions where each of the vector of electromagnetic field
E and H is replaced by its divergence and rotor/curl.
This analogy can be traced even further, since E is a
true vector (or polar vector), while H is a pseudo vector
(or axial vector). In the case of Navier-Stocks equation
the scalar D = divv is a true scalar, while the vortic-
ity ~ω = rotv is an axial vector. This fact explains the
explicit form of right-hand sides of both equation (see
Eq.(6) and Eq.(7)). This approach is correct and gen-
eral, but some people still consider it as a formal pro-
cedure which has no close connections with the physics
of moving liquid/gas. To avoid discussions of these pure
formal questions we have developed another approach
which is based on the same ideas, but it is physically
transparent. In this approach the velocity of the mov-
ing liquid in each local point is represented as a sum of
three terms, but in some cases such sum contains only
two terms and even one term, e.g., in the case of poten-
tial flow. This approach is discussed in the next Section.

3 Three-term velocity represen-
tation

In the previous Section we have shown that the Navier-
Stocks equation can be re-written into a different form
by introducing the transversal vorticity axial-vector ~ω
and true scalar D which is, in fact, the divergence of the
velocity v of the moving fluid/gas. Formally, the same
result can be derived by representing the velocity of the
liquid/gas as a sum of a few (two or three) terms. Each
of these terms describe one of the well known liquid mo-
tions, e.g., potential flow, or rotational flow, or transit
flow. Combinations of such flows allows one to describe
any possible motion of the actual liquids and/or gases.
The goal of this Section is to prove that statement.

First, let us discuss a question about multi-term rep-
resentation of the velocity in the moving moving liq-

uid/gas. Suppose we have a vector function f(r) defined
in each local point r. The question is to represent this
vector-field f as a combination of actual vectors which
are defined in each point of the moving fluid. In reality,
such a vector is the velocity v of the moving liquid/gas.
To expand an arbitrary vector f we need to use three
different non-complanar vectors defined in each spatial
point of the moving liquid/gas. Formally, we can write
the following expansion for the vector-field f in the mov-
ing liquid

f = a · v + b · ∇ × v + c · (v × (∇× v)) =

a · v + b · ~ω + c · (v × ~ω)
(9)

where the vectors v and v × ~ω = (v × (∇× v)) are the
two polar vectors, while the vorticity vector ~ω = ∇× v
is an axial vector, or pseudo-vector. However, the rep-
resentation of f in the form of Eq.(9) cannot be used
in actual applications, since there is no basic property
in an arbitrary moving fluid which is represented by a
non-zero pseudo-scalar b defined in each local point of
the moving fluid. An alternative form of such a repre-
sentation is

f = a · v + b · ∇ × ~ω + c · v × ~ω (10)

where now only three true (or polar) vectors are used
in the right-hand side. Note that the expression in the
right-hand side contains spatial derivatives of the second
order, while analogous expression in the right-hand side
of Eq.(9) includes only spatial derivatives of the first or-
der. Formally, the presence of additional equations, e.g.,
the Navier-Stocks equation, allows one to reduce the or-
der of spatial derivatives in analytical formulas such as
Eq.(10).

Now, we want to discuss a general situation which
can be found in any moving liquid/gas which occupy a
finite volume V . In this case we can use the following
formula from [3] which represents an arbitrary vector a
in the ‘two-gradient’ form

a = ∇φ+ χ · ∇ψ = ∇φ+ a2 = a1 + a2 (11)

where φ, ψ and χ are the three scalar functions, while ∇
is the gradient operator defined above. If we apply this
formula to the velocity of the moving fluid and/or gas,
then we can write

v = ∇φ+ χ · ∇ψ = ∇φ+ vr = vp + vr (12)

where the notation vp stands for the velocity which
equals to the gradient of some potential φ(r. In practical
applications it is often called the ‘potential’ velocity, or
velocity of the potential flow (see below). It follows from
Eq.(11) that ∇×vp = 0 and ∇·vp = ∆φ = s(r), where
s(r) is the density-distribution function of the internal
sources of the liquid/gas located inside of the moving liq-
uid and/or gas. Here and below the notation ∆ means

the Laplace operator, i.e. ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Briefly,
we can say that the gradient velocity vp describes the
potential flow in the moving liquid/gas. The notation
vr in Eq.(12) designates the rotational component of the
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liquid velocity v, which has non-zero rotor/curl. It fol-
lows from the definition of the vr vector, Eq.(12), that

curlvr = ∇× vr = ∇χ×∇ψ and

divvr = ∇ · vr = ∇χ · ∇ψ + χ∆ψ
(13)

Note also that as follows from Eqs.(12) and (13) we al-
ways have ∇×v = ∇×vr = ∇χ×∇ψ = ~ω. This means
that the potential component vp of the liquid velocity
v does not contribute to the vorticity ~ω of the moving
liquid/gas. In the general case, it would be nice to have
an additional equality ∇ · vr = 0, but such an equality
is obeyed, if (and only if) the two following conditions
are true: (1) ∆ψ = 0, i.e. if ψ is a harmonic function,
and (2) ∇χ · ∇ψ = 0, or ∇χ ⊥ ∇ψ. Such two scalar
fields form a pair of conjugate fields.

Let us assume for now that it is possible to choose
the two scalar functions ψ and χ in such a way that the
equality ∇·vr = 0 is obeyed in each spatial point. This
means that all possible motions which exist in hydrody-
namics of liquids and/or gases can be described in terms
of the two-velocity approach, i.e. in any spatial point
we need to know the vector vp, which is associated with
the potential flow of the liquid, and vector vr, which
describes rotational flows in the moving liquid and/or
gas. It is clear that such a two-velocity picture gov-
erns a large number of phenomena in the moving liquid
and/or gas. Formally, the two velocity representation
means that in an arbitrary spatial point of the moving
liquid we always have v = vp + vr, where ∇ × vp = 0
and ∇ · vr = 0. It follows from here that the first com-
ponent of the velocity vg is represented as a gradient of
some scalar function Φ(r), while the second component
vr is the rotor (or curl) of some axial vector F(r), i.e.
vr = ∇× F.

It was mentioned above that for the potential com-
ponent of the velocity vp the following equality is always
obeyed: ∇ · vp = s(r). This leads to the Poisson equa-
tion for the scalar potential function Φ(r) mentioned
above, i.e. ∆Φ = s, which has a well known solution

Φ(r) = − 1

4π

∫ ∫ ∫
s(r′)dV ′

| r− r′ |
, (14)

where dV ′ = dx′dy′dz′. It is straightforward to calcu-
late the gradient of the potential Φ(r) function defined
by Eq.(14). Now, consider the analogous equation which
determines the pseudo-vector F uniformly related with
the vorticity ~ω. From the definition of ~ω and relation
between F and v given above (v = ∇× F) one finds

∇×∇× F = ∇(∇ · F)−∆F = ~ω (15)

where ~ω is the axial vector of vorticity. Let us assume
that the pseudo-vector ~ω is known. In this case Eq.(15)
is written as the three Poisson equations ∆F = −~ω,
or ∆Fx = −ωx,∆Fy = −ωy,∆Fz = −ωz ,i.e. we have
one equation per each component of the vorticity vector.
The solution of these three Poisson vector-equations can
also be written in the following vector-form

F(r) =
1

4π

∫ ∫ ∫
~ω(r′)dV ′

| r− r′ |
, (16)

where all notations under the integral are exactly the
same as in Eq.(14). The formulas, Eqs.(14) - (16), allow
one to solve the Navier-Stocks equations in the infinite
space by using the given s and ~ω functions. The scalar
function s and pseudo-vector function ~ω are assumed to
be continuous functions defined in the whole space. The
first-order derivatives of the Φ(r) and F(r), Eqs.(14) -
(16) are also continuous functions of the spatial coordi-
nates.

In 99 % of all applications to hydrodynamics the vol-
ume occupied by the moving liquid/gas is always finite
and very often some amount of liquid/gas constantly
moves through the boundaries of such a volume. There-
fore, we need to develop an approach to describe motions
of the liquid/gas through the boundaries in and out of
the finite volume V occupied by the same liquid/gas.
Below we shall assume that the boundary surface S of
the finite volume is ‘sufficiently smooth’. The motion of
liquid through boundaries of the finite volume V can be
described by an additional component of the liquid ve-
locity. In other words, we introduce the following three-
component representation of the liquid velocity v:

v = vp + vr + vb (17)

where the first two vectors vp and vr are exactly the
same as defined above, while the third vector has zero
divergence and zero rotor (or curl), i.e. ∇ · vb = 0 and
∇× vb = 0. In reality, it is easy to find that the three-
term representation of the velocity vector v, Eq.(17), is
not very practical, since it does not contain any ‘free’
parameter which can be used to sew together three dif-
ferent velocities in ‘intermediate areas’ of the moving
liquid/gas. In general, it is better to introduce a slightly
different expression for the velocity v which is based on
Eq.(17)

v = Cpvp + Crvr + Cbvb (18)

where Cp, Cr and Cb are unknown linear coefficients
which are some slow-varying functions of all three ve-
locities vp,vr,vb and local coordinates r. Substitution
of Eq.(18) into the Navier-Stocks equation produces a
set of coupled differential equations for these functions
(Cp, Cr and Cb). By solving these equations we can de-
termine the exact solutions of the Navier-Stocks equa-
tions. In the lowest-order approximation these coeffi-
cients can be considered as numerical constants. This
allows one to represent the unknown flow of the mov-
ing liquid/gas by using the known expressions for the
vp,vr,vb velocities.

The velocity vb has been introduced in Eq.(17) to de-
scribe all possible flows of the liquid and/or gas which
arise from the outer sources of this liquid, or, in other
words, from sources located outside of the finite volume
occupied by the liquid/gas. It follows from here that
vb = ∇Ψ, i.e. vb is the gradient of some scalar field
Ψ(r) which is called the second velocity potential, or
surface potential. Substitution of this equation into the
condition ∇ · vb = 0 leads to the Laplace equation for
the second velocity potential Ψ(r), i.e. ∆Ψ(r) = 0. In

JMESTN42350646 www.jmest.org 798



Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040

Vol. 2 Issue 4, April - 2015

other words, the function Ψ(r) is a harmonic function
in the finite volume V occupied by the liquid/gas. The
gradient of this function at the outer surface S of the
finite volume V must be equal to the flow of liquid/gas
which moves into and/or out of this finite volume. This
can be written in the form

∂Ψ

∂n
= (n · ∇)Ψ = H(M) (19)

where n is the unit normal vector (or normal, for short)
to the surface S at the point M . The derivative ∂Ψ

∂n is
the gradient of the Ψ function along this normal. The
scalar function H(M) in Eq.(19) is a function which de-
scribes the flow of a liquid/gas at the point M of the
boundary surface S.

Numerous advantages of the three-velocity represen-
tations of the total velocity v can be illustrated by a sub-
stitution of Eq.(19) into Eq.(3). After such a substitu-
tion it is easy to find that many terms in these equations
equal zero identically. Finally, we can say that the three-
component representation of the local velocity Eq.(17)
allows one to solve the general Navier-Stocks equation
in those case when we know the ‘source function’ s(r)
and vorticity pseudo-vector ~ω(r) in each spatial point of
the volume occupied by the liquid/gas. In addition to
these values, we also need to know the function H(M)
which describes the flow of liquid/gas at each point of
the boundary surface S. The knowledge of these values
allows one to solve the general Navier-Stocks equations
everywhere in the volume V surrounded by the surface
S. It can be shown that such solutions are unique and
uniform functions of the spatial coordinates. In this
form the problem of solving general Navier-Stocks equa-
tions essentially coincides with the Neumann problem
known from the Mathematical Physics (see, e.g., [5]).

4 Applications to incompressible
fluids

Let us consider a few simplified cases when our basic
equations, i.e. Eq.(6) are Eq.(7), can be written in a
relatively simple and short form. For incompressible
fluids, where ∇ · v = 0, we have the following system of
coupled differential equations

∂~ω

∂t
= (~ω · ∇)v − (v · ∇)~ω + ν∆~ω , (20)

∂D

∂t
= −1

2
∆v2 − v · (∇× ~ω) + ω2−

1

ρ
∆p+

(
µ+

4

3
ν
)

∆D ,
(21)

In the case of statitonary processes one finds:

ν∆~ω = (v · ∇)~ω − (~ω · ∇)v , (22)

(
µ+

4

3
ν
)

∆D =
1

2
∆v2 + v · (∇× ~ω)+

1

ρ
∆p− ω2 ,

(23)

These systems of the coupled differential equations
are completely equivalent to the general Navier-Stocks
equation, Eq.(4) and such an equation in the stationary
case.

The explicit form of the equations Eq.(20) and
Eq.(21) allows one to investigate some general properties
of the moving, incompressible fluids. As follows from
Eq.(20) and Eq.(21) and from analogous equations men-
tioned in Sectiond II and III above all possible motions
in an actual fluid can be represented as a combination
of the potential flow, rotational flow (or flow with non-
zero vorticity) and outer flow through the finite volume
occupied by the same liquid. In general, the potential
flow corresponds to the laminar flow, while the flow with
non-zero vorticity can be considered as a turbulent flow.
In actual liquid/gas we always have a mixture of laminar
and turbulent flow. Furthermore, the velocity represen-
tation in the form of Eq.(18) is not unique, i.e. if we
have an identity

v = Cpvp + Crvr + Cbvb = C ′
pvp + C ′

rvr + C ′
bvb (24)

then, in the general case, it is impossible to show that
Cp = C ′

p, Cr = C ′
r and/or Cb = C ′

b. This substantially
complicates analysis of the general flow of a liquid/gas.
In many cases it is also leads to various instabilities in
actual liquids/gases.

5 Conclusion

The new ‘rotor-divergence’ approach to the Navier-
Stocks equation is developed. This approach is based
on the fact that the Navier-Stocks equation is linear
upon the vorticity of the moving liquid/gas (~ω = rotv)
and scalar D (D = divv). It is used to transform the
Navier-Stocks equation to a differnet form which is sim-
pler than the incident equation. Our approach is based
on the derivation of the governing equations for the di-
vergence and rotor (or curl) of the liquid/gas velocity
v. The knowledge of the divergence and rotor (or curl)
of the velocity v of the moving liquid/gas allows one to
determine the velocity v of the liquid/gas, i.e. to find
the solutions of the Navier-Stocks equation. The arising
equations for the divergence D = ∇ · v and rotor/curl
~ω = ∇ × v are significantly simpler than the incident
Navier-Stocks equation. Formally, by using Eq.(6) and
Eq.(7) we can determine the velocity vector v. In gen-
eral, this approach is an alternative method developed
to determine analytical and numerical solutions of the
Navier-Stocks equation. In reality, it is better to apply
the following approach based on the process of consec-
utive iteractions. First, we chose the velocity vector
v0(r, t) and calculate its rotor (or curl) ~ω0 and diver-
gence D0. By substituting these values of ~ω0 and D0

into Eq.(6) and Eq.(7) we obtain equations. Solution of
these equations gives us the new velocity v1. By using
this velocity v1 we determine its rotor ~ω1 and diver-
gence D1, respectively. Again, by using these values in
Eq.(6) and Eq.(7) we derive the new equation. Solution
of these equations gives us the new velocity v2. Then,
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we determine the rotor ~ω2 and divergence D2 of this ve-
locity. At the third stage of this process we solve Eq.(6)
and Eq.(7) and obtain the velocity v3 and its rotor ~ω3

and divergence D3. It can be shown that after a num-
ber of steps in this procedure we obtain a velocity vector
vn which is very close to the actual velocity v in each
spatial point of the moving fluid. Furthermore, its rotor
~ω and divergence D coincide with the actual vorticity
and density distribution of the liquid sources. In other
words, the process converges to the actual solution of
the Navier-Stocks equation.
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