
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350605 691 

Relational Database vs NoSQL 
Tejal Patel 

Department of Computer Science 
University of Bridgeport 

Bridgeport, USA 
E-mail Id: tejalpatel521@yahoo.in 

Tarik Eltaieb 
Department of Computer Science 

University of Bridgeport 
Bridgeport, USA 

E-mail Id: teltaeib@bridgeport.edu 
 

Abstract—"Big Data" problem has challenged 
most traditional relational database management 
system (RDBMS), major Web 2.0 companies have 
developed or adopted different NoSQL databases 
for their growing data and infrastructural needs 
Google (BigTable), LinkedIn (Voldemort), 
Facebook (Cassandra), Amazon(Dynamo) etc. 
Application developers have been frustrated with 
the impedance mismatch between the relational 
data structures and the in-memory data structures 
of the application. Using NoSQL databases allows 
developers to develop without having to convert 
in-memory structures to relational structures. 
From their inception, NoSQL databases have been 
designed for solving the Big Data issue by 
utilizing distributed, collaborating hosts to 
achieve satisfactory performance in data storage 
and retrieval 

Other important database requirements, such 
as data security and consistency, have not been 
fully addressed. However, the potential data 
inconsistency among replications may impede a 
wide acceptance of NoSQL by much less tolerable 
financial applications. NoSQL database is still 
evolving and is not very secure. NoSQL databases 
are becoming the targets of attackers who seek 
valuable information. They become even more 
susceptible to exploits as the attackers overcome 
the learning curve and are able to identify the 
hidden security and software weakness or loop 
holes. 

Keywords—Relational database management 
system, NoSQL, Big Data, ACID properties, BASE 
transaction, Object relational mapper (ORM), 
aggregates, e_ventual consistency, location 
independence 

I. INTRODUCTION 

There are three essential prerequisites for 
databases management systems, confidentiality, 
integrity and availability. The stored data must be 
available when it is needed (availability), but only to 
authorized entities (confidentiality), and only modified 
by authorized entities (integrity). Traditional relational 
database management systems (RDBMS), like 
Oracle, SQL and MySQL, have been well developed to 
meet these requirements. In addition to this enterprise 
RDBMS have ACID properties, (Atomic, Consistency,, 
Isolation and Durability) that guarantee that database 
transactions are processed reliably. With such 
desirable properties, RDBMS have been widely 
used as the dominant data storage choice. , 

RDBMS are facing major performance problems in 
processing exponential growth of unstructured data, 
such as documents, e-­‐ mails, multi-­‐ media or social 
media. Thus a new breed of non-relational cloud-­‐
based, distributed databases, called NoSQL, has 
emerged to satisfy the unprecedented needs for 
scalability, performance and storage. NoSQL 
databases are sometimes referred to as cloud 
databases, non-relational databases, Big Data 
databases and a myriad of other terms and were 
developed in response to the sheer volume of data 
being generated, stored and analyzed by modern 
users (user-generated data) and their 
applications(machine generated data). They are 
designed to achieve the desired scalability and 
performance by sharing a BASE transaction concept 
(Basically Available, Soft state and eventually 
consistent). Under this concept, committed 
transactions are not written to database immediately to 
achieve data consistency as in RDBMS. Instead, the 
database just needs to reach a consistent 
state eventually among the clustering hosts. 

II. What is NoSQL? 

The word "NoSQL" originated from a hashtag 
(#NoSQL) about a meeting where people can talk 
about ideas and the new types of emerging 
databases. NoSQL means "Not Only SQL". NoSQL 
was never meant to knockout SQL or supplant it. 

Defining NoSQL 

NoSQL means Not Only SQL, implying that when 
designing a software solution or product, there is more 
than one storage mechanism that could be used 
based on the needs. 

NoSQL systems store and retrieve data in different 
formats. There are four categories of NoSQL 
databases. They are: 

1. Key value store: A Key-value stores are the 
simplest NoSQL data stores to use from an API 
perspective. The client can get the value for the key, 
put a value for a key, or delete a key from the data 
store. The value is a blob that the data store just 
stores, without caring or knowing what's inside, it's the 
responsibility of the application to understand what is 
stored. Since key-value stores use primary-key 
access, they generally have great performance and 
can be easily scaled. 

http://www.jmest.org/
http://www.thoughtworks.com/insights/blog/nosql-databases-overview


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350605 692 

 

Figure1. Key-value Store 

2. Column-family: A sparse matrix system that 
uses row and a column as keys. 

 

Figure2. Data stored in Column-family 

3. Graph databases: Data is stored in graph 
structures with nodes (entities), properties 
(information about the entities) and lines (connections 
between the entities). 

Graph based database is any database that 
provides index free adjacency. Every element 
contains a direct pointer to its adjacent elements and 
no index lookups are necessary. Graph databases 
employ nodes, properties, and edges. Nodes 
represent entities, properties are pertinent information 
that relate to nodes and edges represent the 
relationship between the two. 

 

 
Figure3. Graph database 

4. Document stores: Storing hierarchical data 
structures directly in the database. Documents may 
be addressed in the database via a unique key that 
represents that document. This key is often a simple 
string, a URI, or a path. 

 
Figure4. Document database 

http://www.jmest.org/
http://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://en.wikipedia.org/wiki/Lookup
http://en.wikipedia.org/wiki/URI


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350605 693 

III. HOW IS DATA STORED? 

NoSQL stores data as aggregates. An aggregate is 
a collection of data that we interact with as a unit. 
Aggregates make it easier for the database to 
manage data storage over clusters, since the unit of 
data now could reside on any machine and when 
retrieved from the database gets all the related data 
along with it. Aggregate-oriented databases work best 
when most data interaction is done with the same 
aggregate, for example when there is need to get an 
order and all its details, it better to store order as an 
aggregate object but dealing with these aggregates to 
get item details on all the orders is not elegant. 

Aggregate-oriented databases make inter-
aggregate relationships more difficult to handle than 
intra-aggregate relationships. RDBMS database is 
better when interactions use data organized in many 
different formations. 

Distribution Models: 

Aggregate oriented databases make distribution of 
data easier, since the distribution mechanism has to 
move the aggregate and not have to worry about 
related data, as all the related data is contained in the 
aggregate. There are two styles of distributing data: 

1. Sharding: Sharding distributes different data 
across multiple servers, so each server acts as the 
single source for a subset of data. 

2. Replication: Replication copies data across 
multiple servers, so each bit of data can be found in 
multiple places. 

Replication comes in two forms: 

a) Master-slave replication makes one node the 
authoritative copy that handles writes while slaves 
synchronize with the master and may handle reads. 

b) Peer-to-peer replication allows writes to any 
node; the nodes coordinate to synchronize their 
copies of the data. 

Master-slave replication reduces the chance 
of update conflicts but peer-to-peer replication avoids 
loading all writes onto a single server creating a single 
point of failure. A system may use either or both 
techniques. 

Relational data is tabular in nature. Data is stored 
in tables in rows and columns. Tables can be related 
to each other. Each table has a unique primary key 
which can be used to establish relations between 
tables and is useful in retrieving data from other 
tables. 

Each table is a represents an entity or object. 
Columns are the attributes of an entity. The rows 
contain the values or data instances; these are also 
called records or tuples. 

Relationships exist between the columns within a 
table and also among tables. These relationships take 

three logical forms: one-to-one, one-to-many, or 
many-to-many. 

 

Figure5. Relational database 

IV. DATABASE SCHEMA 

 Relational data is often referred to as structured 
data, because the tables have a pre-defined schema 
(column definitions) .While a pre-defined schema 
offers reliability and stability, a change to a schema on 
a table with pre-existing data is very difficult. Non-
relational data, on the other hand, thrives on dynamic 
schemas and is often referred to as unstructured data. 
Non-relational data can easily accommodate changes 
in data type/structure due to its dynamic schema 
support. 

V. DATA STORAGE 

In relational database data is highly normalized, 
breaking the data into smallest possible logical table 
to prevent duplication of records and improve space 
utilization. Though normalization leads to cleaner data 
management, it often adds up little complexity on data 
management as retrieval of single information may 
require spanning across multiple tables. 

And today’s world cost of data storage is trivial 
issue. Non-relational data, on the other hand, is stored 
as flat collections, where data might often be 
duplicated. A single chunk of data is seldom 
partitioned off, rather stored as an entity, thus allowing 
easier reads/writes to that single entity. 

VI. SCALABILITY 

In today’s world how a database scales to meeting 
the ever growing demands is one of the key factors in 
selection of the database. To support more concurrent 
usage, SQL databases scale vertically – this means 
adding more horsepower to the computer for faster 
operations on the same set of data. Since the data is 
stored in relational tables, the performance bottleneck 
of operations that span a lot of tables is overcome by 
adding more computational power to the machine. 

http://www.jmest.org/
http://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://en.wikipedia.org/wiki/Entity
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Record_(computer_science)
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Many-to-many_(data_model)
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://pixgood.com/relational-database-model.html&ei=J_UkVYqQNNGUsQScsIDoAQ&psig=AFQjCNENHNxkfX9W7qWpVuWpDhaF6-bzZA&ust=1428571673465672


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350605 694 

While SQL databases can scale insanely high, 
eventually there will be an upper limit to vertically 
scalability. NoSQL databases, on the other hand, 
scale horizontally. Non-relational data storage being 
inherently distributed in nature, scalability for NoSQL 
databases is achieved horizontally by adding more 
commodity database servers in the resource pool to 
share the load. 

VII. HOW DATA IS RETRIVED? 

Relational databases manipulate data using a 
Structured Query Language (SQL). SQL is incredibly 
powerful for supporting database CRUD (CREATE, 
READ, UPDATE, DELETE) operations and is an 
industry-standard. Non-relational databases 
manipulate data in chunks (like documents) and use 
Unstructured Query Language (UNQL), which is not 
standard and may vary between database providers. 
SQL databases employ pre-defined optimizations like 
column index definitions to help speed up query 
operations, while NoSQL databases enjoy simpler but 
narrow data access patterns. 

VIII. HOW IS DATA MAPPED? 

Developers using object oriented programming 
languages are often dealing with one or more data 
entities (complex structures with nested data, lists or 
arrays) to fuel the application user interface. In case of 
relational storage, the data entities often need to be 
broken down for normalization and lean storage 
across multiple related tables. Most programming 
platforms have come up with an easy solution: 
an ORM (Object Relational Mapper) layer. This acts 
as the mapping layer between the tabular relational 
data source and the object oriented data entities 
developers deal with. In non-relational data storage 
however, there is no need to normalize the data; 
complex data entities can be stowed away as is in a 
single unit. Objects used in applications are often 
serialized into JSON and stored as 
JSON documents in NoSQL databases. 

IX. PERFORMANCE AND STABILITY 

If your data operations demand high transactional 
rates or complex data queries needing control over 
execution plans, then old SQL database can be your 
best friend in terms of performance and stability. SQL 
databases allow fine-grained control over 
transactional atomicity, and easy rollbacks. Most 
NoSQL databases do not provide transaction support 
by default, which means the developers have to think 
how to implement transactions, does every write have 
to have the safety of transactions or can the write be 
segregated into “critical that they succeed” and “it’s 
okay if I lose this write” categories. We can deploy 
external transaction managers like zookeeper. 

X. DATA INTERGRITY 

SQL database are renowned for providing data 
integrity by implementing ACID properties. ACID 
stands for Atomic, Consistent, Isolated, and Durability. 
Most of the database vendors honour ACID 

properties. ACID is pessimistic as it requires 
consistency at the end of each operation whereas, 
BASE is optimistic as it accepts the database 
consistency to stay in state of flux. BASE stands for 
Basically Available, Soft State and Eventually 
Consistent. The e_ventual consistency is an 
acknowledgement of an unbounded delay in 
propagating a change made on one machine to all the 
other copies which might lead to stale data. 

For instance, a distributed database system 
maintains copies of shared data on multiple machines 
in a cluster to ensure high availability. When data gets 
updated in a cluster there might be some interval of 
time during which some of the copies will be updated, 
while others won’t be. Eventually the changes will be 
propagated to all machines. That’s the reason why it’s 
called Eventually Consistent. BASE trades 
consistency for availability and doesn’t give any 
ordering guarantees at all. Eventual consistency has 
nothing to do with a single node system since there’s 
no need for propagation. If the database system 
supports eventual consistency, then the application 
will need to handle the possibility of reading stale or 
inconsistent data. 

CAP Theorem 

According to CAP theorem in a distributed system 
you can choose only two of Availability, Consistency 
or Partition tolerance. NoSQL databases provide a lot 
of options where the developers can choose to tune 
their databases as per their needs and requirements. 
Availability of choice has its own consequences. It is 
good thing as now we can design our system as per 
our specific requirements. But, it can have some 
drawbacks, as now we need to make wise choices or 
else the database product might be not be properly 
utilized. 

XI. LOCATION INDEPENDENCE 

The term “Local Independence” means the ability 
to read and write data in database irrespective to the 
location where the operation was performed 
physically. And also to have the ability to propagate 
that write operation to all the other locations where the 
distributed data is stored so that the user’s or 
machines in other locations can have access to that 
data. To implement such functionality in relational 
database architecture is very difficult. Some 
techniques such as Master/Slave architecture and 
data Sharding can be employed to meet the need for 
location independence for read operations but to 
achieve it for writing data uniformly is a tedious task, 
especially for high volume data. There are many 
scenarios where location independence is of great 
importance. Location independence can be of utmost 
importance when it comes to providing service to 
customers from varied geographies, as the data on 
these sites needs to be kept locally for faster access. 
As the business world is evolving, the competition is 
increasing day by day, delay for a friction of second 
may can also cause you loss in business. It’s rightfully 
said that “If your data doesn’t grow nor will your 

http://www.jmest.org/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://en.wikipedia.org/wiki/JSON
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://zookeeper.apache.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350605 695 

business grow”. So along with maintaining accurate 
distributed data uniformly, the availability of data is 
also of utmost importance for companies. 

XII. TO THE CLOUD 

The ubiquitousness of cloud computing, in reality, 
has benefited both SQL and NoSQL databases. 
Relational storage in the cloud often comes as a 
service that is replicated, highly available and 
distributed for greater fault tolerance through 
horizontal sharding techniques. A NoSQL database 
hosted as a cloud service benefits from inherent auto-
sharding, flexible elasticity for seasonal demand, 
integrated caching and tremendous computing power 
to capture, store and analyze big data. 

XIII. HOW TO CHOOSE THE DATABASE? 

In order to determine which database to choose for 
a particular application we need to understand the 
needs and requirements of that application, consider 
all the challenges that the application may face when 
it’s on horizon. Different business applications have 
different needs, for some availability and scalability is 
of utmost importance while for other’s accuracy and 
consistency is important. Depending on the needs and 
priority of the business application we can choose 
relational database if accuracy, integrity and 
consistency of data is required but, if availability, 
performance and scalability is essential as in case of 
big data problem then NoSQL can emerge as a 
solution. 

Both have their own pros and cons. SQL is the 
most popular choice as it is the most reliable option 
available in market and has been there for a long 
time. We are use to it so when we opt for NoSQL 
database where we have to decide which architecture 
to choose and how to manage, store and retrieve 
data. Making the right decision is very important 
because if we take wrong decisions then our 
application can turn around to be useless in other 
words it won’t be able to perform the way it is 
supposed to be and incur heavy losses for the 
company. NoSQL database can be easily attacked 
and precious data can be at risk. NoSQL databases 
are not very secure as it is still evolving whereas, SQL 
is quite secure. Since it has been around for a long 
time, years of research and study has made it a solid 
solution that guarantees secure and reliable 
transactions. So for critical data such as bank 
transactions very security and consistency of data is 
of utmost importance SQL database is a suitable 
option. 

We can have experienced technical team for SQL 
databases as it is a well-developed technology but, for 
NoSQL database to find efficient technical resource is 
difficult. People are used to querying relational 
database where they don’t have to worry about the 
algorithm running in background that is applied by the 
system to retrieve the data. In NoSQL database we 
need to make wise decisions as which database 

architecture to use according our needs, how to store, 
manage and retrieve data. 

When we are choosing NoSQL database for our 
application we need to make sure that there is a solid 
and capable community around the technology. It will 
serve as an invaluable resource for individuals as well 
as for the team that is going to manage the 
application. The vendor not only requires the 
involvement of technical resource but, also needs to 
reach out the user base as good local user groups 
may provide opportunities for communicating with 
other individuals or technical teams that might provide 
great insight as to how to make best use of a 
particular database. 

XIV. CONCLUSION 

Relational database has ruled the data world for 
about 40 years. But for the past couple of years due to 
Big data problem NoSQL databases have been 
gaining much attention. They have emerged as a 
solution for the ever growing data needs of scalability 
and performance for high volume data applications. 
NoSQL databases provide flexible architecture for 
different kinds of data storage needs. They trade 
consistency for availability. They are highly scalable 
and flexible. Many companies are co-deploying 
NoSQL and RDBMS to process different data flows in 
the ways they are best designed to do. All the choice 
provided by the rise of NoSQL databases does not 
mean the demise of RDBMS databases. We are 
entering an era of polyglot persistence, a technique 
that uses different data storage technologies to handle 
varying data storage needs. Polyglot persistence can 
applied across an enterprise or within a 
single application. 

REFERENCES 
[1] http://hebrayeem.blogspot.com/201 

4/01/making-sense-of-NoSQL.html 
[2] http://www.thoughtworks.com/insights/blog/No

SQL-databases-overview 
[3] http://www.thegeekstuff.com/2014/01/SQL-vs-

NoSQL-db/ 
[4] http://dataconomy.com/SQL-vs-NoSQL-need-

know/ 
[5] http://en.wikipedia.org/wiki/NoSQL 
[6] http://news.dice.com/2012/07/16/SQL-vs-

NoSQL-which-is-better/ 
[7] http://www.dummies.com/how-

to/content/nonrelational-databases-in-a-big-data-
environment.html 
[8] http://planetcassandra.org/what-is-nosql/ 
[9] https://www.digitalocean.com/community/tutor

ials/a-comparison-of-nosql-database-management-
systems-and-models 
[10] www.julianbrownie.com 
[11] SQLVsNoSQL-BattleoftheBackends 
[12] www.sitepoint.com/sql-or-nosql-google-app-
engine-part-2/ 
[13] http://en.wikipedia.org/wiki/Graph_database 

http://www.jmest.org/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://developer.telerik.com/featured/decide-neo-blue-pill-red-pill/
http://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://hebrayeem.blogspot.com/201
http://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/
http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/
http://dataconomy.com/sql-vs-nosql-need-know/
http://dataconomy.com/sql-vs-nosql-need-know/
http://planetcassandra.org/what-is-nosql/
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
http://www.julianbrownie.com/

