
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350559 586 

Mixin-based programming in C++ 
Lakshmi Navyatha Kasaraneni 

Department of Computer Science 
University Of Bridgeport 

Bridgeport,CT,USA 
Email – lakshminavyatha28@gmil.com 

 

Abstract: This research paper has an attention 
on the web search tool, how it will work, what are 
the important steps a search engine will perform 
like Crawling, Indexing, Retrieving the data from 
data base and how the Google search engine will 
work. 

I. INTRODUCTION 

Analysts ought to have an enthusiasm for 
guaranteeing that their articles are listed via web 
crawlers, for example, Google , Yahoo, Bing and so 
forth which extraordinarily enhances their capacity to 
make their articles accessible to the individuals. Like 
some other sort of positioned query items, pursuits 
showed in top positions are more inclined to be 
perused. There are a few distinctions in the ways 
diverse web files work, in any case they all perform 
three crucial errands: 

They look for the Internet - or select bits of the 
Internet - in perspective of basic words. 

They keep a rundown of the words they find, and 
where they find them. 

The importance of usage of mixin classes in 
designing the components and obtaining effective 
implementation is discussed in this article. We are also 
going to converse about advance features of C++. 
These added features improve performance but in 
some situations they turn to be complicating 

As we know, most of the successful and prodigious 
software components or the (Software artifacts) are 
much intricate to understand. For reducing the 
complexity, the software component is segregated 
into units thus making it manageable. Many 
techniques emerged to for this process reducing 
complexity. Of those, C++ templates is effective in its 
work. Mixin-Based programming is nothing but the 
implementing of the alliance based design using a 
class pattern which is templatized. This technique is 
more advantageous than the use of application 
frameworks which is widely used. When used, these 
software artifacts turn to be reusable and redundancy 
is greatly reduced. Dynamic binding is also eliminated 
which is also a timely factor. But when using this 
process the question of scalability arises. 

Mixin Layers is the other procedure which is used 
to overcome the deficiencies in this Mixin-Based 
programming. Mixin Layer means nesting of mixin 
classes in a pattern in a way that the parameter of 
outer mixin evaluates the super classes of inner 
mixins. In this way, it addresses the problems of 

scalability thus resulting in developing the inventive 
collaboration based designs. 

This paper studies mainly about the problems 
faced by a new programmer but not for the expertise. 
Additionally the problems discussed here are never 
encountered by a compiler. Mainly the concern is all 
about the design issues and how they can be solved 
using the mixin implementations. The design issues 
which we discuss are mainly raised while interacting 
with the system. 

Let us now discuss about the origination of Mixin 
Programming. This Mixin Programming is first used in 
LISP language with its object systems like flavors, 
COLS. Multiple inheritance is the feature where Mixin 
programming turns to be quite useful. Here in this 
context, the Mixing Programming helps in extending 
the state or behavior without defining it formerly. This 
will be very effective as such a single class is 
sufficient for extending the state or behavior of many 
classes. Using parameterized technique these Mixins 
are implemented. The behavior can be extended 
dynamically at the time of instantiation. Here is the 
structure: 

template <class Super> 
class Mixin : public Super { 
. /* mixin body */ 
}; 

For explaining in detail we consider an example of 
“Operation Counting” in a graph which counts and 
store the details of visited edges and nodes in a graph 
during the process of execution. Here in this example, 
we take operation counting as mixin. This mixin can 
be implemented all over the classes in the artifact that 
have same implementation. Here we can consider two 
different types of mixins for undirected and directed 
graphs. As previously said, a generalized design can 
be obtained with these mixins. The functionality will 
not be changed and will be very much helpful in 
obtaining a collaboration design. This is an 
incremental approach. 

Mixin layers is a process of encapsulation of 
multiple classes and refining them incrementally. The 
basic structure of a mixin layer is as follows: 

template <class NextLayer> 
class ThisLayer : public NextLayer { 
public: 
class Mixin1 : public NextLayer::Mixin1 { . }; 
class Mixin2 : public NextLayer::Mixin2 { . }; 
}; 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350559 587 

The composition of extensions is the main object 
or goal of the mixin programming. Mixin layer is the 
mixture of the functionality of an object or the parts of 
the object. This also may contain the functionality of 
different objects and also specify clarification to each 
of them. All such clarifications developed 
incrementally can be enclosed in a single mixin layer. 
This mixin layer technique in particular will be very 
much helpful in designing the collaboration design 
patterns. By applying this mixin layer, inheritance can 
be applied at two different level. A new application of 
inheritance concept is achieved with this mixin layer 
process. At first, the layer inherits all the classes from 
its super class and in the second step it inherits all the 
remaining methods, attributes, variables from the 
matching inner classes of that layer. Thus 
implementing a new way of inheritance. 

Let us now consider an implementation of a graph 
traversal application to explain the collaboration based 
design using mixin layer. In this application, three 
different algorithms are implemented on a undirected 
graph using a depth first traversal. The following are 
the different components in this graph. For making 
sure that the graph is cyclic, “Cycle checking” is used. 
For numbering the nodes, “vertex numbering” is used. 
The connected graph regions are classified by 
“Connected Regions”. Describing of graph properties 
is done in “Graph class”. The “Vertex class” takes 
care of each node and every node is an instance of 
this class. Every graph operation is taken place “Work 
Space”. 

We decompose this total application in to five 
different parts. They are described as follows: 

1.Operation of undirected graph 

2.Put into code depth first traversals and rest of the 
three contains the precise of algorithms that are used 
here in the application. 

Each object here does a different functionality and 
can perform several tasks. For example let us 
consider the collaboration of “Vertex Numbering”. The 
generalized way is shown here: 

template <class Next> 
class NUMBER : public Next { 
public: 
class Workspace : public Next::Workspace { 
. // Workspace role members}; 
class Vertex : public Next::Vertex { 
. // Vertex role members};}; 

We can observe that this mixin layer component is 
satisfying the property of reusability which is very 
much helpful in reducing the costs of developing the 
software product. Flexibility is the other property which 
can be observed. 

Let us now discuss about some pragmatic 
considerations that are considered in this article. 
Below are the list of pragmatic considerations: 

1.Lack of template type checking 

2.Synonyms for compositions 

3.Designating virtual methods 

4.Single mixin for multiple uses 

5.Hygienic templates in C++ standard 

6.Compiler Support 

Templates are typically not the part of C++ 
programming language. For this reason, type 
checking is not done till the instantiation time. 
Methods that are present in this template classes are 
mark themselves as function templates. But in C++ 
language, these function templates are instantiated 
automatically. But all the methods that are present are 
not type checked as some of them might not be 
referenced by the objects and so errors may remain in 
these methods 

In C++ programming language, there is a draw 
back in implementing the concept of inheritance. We 
cannot inherit the constructor methods that are 
present in the program. The reason given for this is, 
for initializing the member functions and variables of a 
subclass, the constructor method of a super class 
may not be sufficient. But for, mixin classes there is 
no necessity for modify the data members. So, there 
should be a feasibility to inherit but we cannot perform 
this action in C++ language. 

Synonyms for mixin classes can be given using 
typedef statements. This property will be very much 
beneficial when developing complex mixin layers and 
classes. The following is the syntax with which we can 
give synonyms: 

typedef A < B < C > > Synonym; 

In addition to this approach, we can introduce an 
empty subclass. This is helpful to preserve the 
properties of the language. Below is the syntax for 
creating subclass: 

class Synonym : public A < B < C > > { }; 

Additionally, while using mixin classes in C++, 
there is a problem while creating virtual methods. 
Conflicts arise between the super class and sub class 
while creating these virtual classes. C++ allows super 
class to declare methods as virtual but it does not 
allow subclass to approve it and for this reason 
conflicts may arise between these two. Below is the 
syntax for creating the virtual methods. 

template <class Super> 
struct MixinA : public Super { 
void virtual_or_not(FOO foo) { . }}; 
struct Base1 { 
virtual void virtual_or_not(FOO foo) { . } 
. // methods using “virtual_or_not”}; 
struct Base2 { 
void virtual_or_not(FOO foo) { . }}; 

C++ programming language doesn’t provide a 
proper type checking action. At times this might be 
beneficial when both the interfaces are very much 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 4, April - 2015 

www.jmest.org 

JMESTN42350559 588 

similar. For this type of cases, a single mixin may be 
sufficient as it can take care of both the interfaces as 
their implementations are closer to each other. 

C++ Programming Language has imposed several 
restrictions for avoiding naming conflicts that may 
appear in the templates. However, the usage of these 
rules by the compiler may vary accordingly. But there 
must be stabilized way of implementing it. This is 
because the template doesn’t have any information 
about the restrictions. Sometimes, the author may get 
confused because of the conflicting opinions about 
these restrictions. 

Finally, the compiler role is discussed here in the 
mixin programming. Nested classes and 
parameterized inheritance is considered by many of 
the compilers that use C++. There are some 
limitations when there are error checking and 
debugging cases. But this mixin programming is not 
much complex than the regular template. 

Finally, we can say that this mixin programming 
may bring a lot of changes in implementing the C++ 
programming language. As said, mixin programming 

implementation makes the component reusable, less 
complex thus saving a lot of time and cost. Even this 
may not require most of the expertise knowledge. 
Even though there are some sensible aspects with the 
mixin programming, but the implementation promises 
feasible and effective implementations. 

REFERENCES 

{1} J. des Rivieres, and D. G. Bobrow, The Art of 
the Metaobject 

Protocol. MIT Press, 1991. 

{2} U. Eisenecker, “Synthesizing Objects”, ECOOP 
1999, 18-42. 

{3}U. Eisenecker, Languages Conference 
(JMLC’97), LNCS 1204, Springer, 1997, 351-365. 

{4} B. Stroustrup, the Annotated C++, 1990 

{5} V. Singhal, A Programming Language for 
Writing Domain-Specific Software System Generators, 
Ph.D. Dissertation, Dep. of Computer Sciences, 
University of Texas at Austin, August 1996. 

 

http://www.jmest.org/

