
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350548 476 

Ebola Epidemic Disease: Modelling, Stability 
Analysis, Spread Control Technique, Simulation 

Study and Data Fitting 
Purnachandra Rao Koya

1*
, Dejen Ketema Mamo

2 

School of Mathematical and Statistical Sciences, Hawassa University, P. O. Box -5, Hawassa, ETHIOPIA 
Email: drkpraocecc@yahoo.co.in

1
 and kdejenshewaye@gmail.com

2 

*
author for correspondence 

 
Abstract—In this paper, we proposed (S-E-I-Ih-

R) mathematical model and conducted stability 
analysis. Disease Free Equilibrium (DFE) point of 
the model has been identified. Stability analysis at 
the disease free equilibrium point is studied. 
Formula for the basic reproductive number is 
obtained. It is shown that DFE point is locally and 
globally asymptotically stable for  𝑹𝟎 < 𝟏, whereas 
it is unstable for  𝑹𝟎 > 𝟏 . Disease spread 
controlling technique called ‘Isolation’ is also 
proposed. Isolation of exposed and infected 
individuals is a powerful technique and can be 
used to control the spreading of the epidemic. 
Simulation study of the model is conducted. Data 
fitting of Ebola epidemic is done. For this purpose 
the data of infected and death cases found in 
West African countries is taken into 
consideration. The best fit of cumulative infected 
case is computed to follow simulated curve with 
𝑹𝟎 =1.5. Further, the present study supports that 
the cumulative death cases due to Ebola epidemic 
is 65% of the infected individuals.  

Keywords—Ebola disease, SEIIhR model, Basic 
reproductive number, Stability Analysis, 
Simulation study 

1. Introduction 

The infectious diseases will be transmitted directly 
or indirectly from person to person and / or from 
animals and birds to human beings. These infectious 
diseases would be a cause of deaths in worldwide [1]. 
Ebola is one of infection dieses caused by Ebola 
viruses. Ebola virus causes a hemorrhagic fever 
syndrome in humans. It is found in previous outbreaks 
that fatality rate is about 90% among the infected 
individuals. The current outbreak in the West African 
countries has spread over a large geographical region 
and is causing a high number of infection and death 
cases [4]. Even though the death rate is well below 
90% in the West African Ebola outbreak the disaster 
is not out of danger. Among the West African 
countries viz., Guinea, Liberia and Sierra Leone the 
Ebola virus outbreak is being overspread [1-6]. In 
addition to the loss of life, the outbreak has significant 
impact on all the socio-economical activities [2]. Even 
though the present outbreak is restricted to a 
particular region but its impact spreads limitlessly 
around the globe. 

Mathematical modeling is a significant and 
powerful tool that can be employed in analyzing the 
spread and control of infectious diseases such as 
Ebola [4-7]. Model simulation and data fitting of 
epidemics are assumed to provide understanding of 
methods and suggest prevention, control strategies 
and helps to recognize removing policy development. 
The basic concept in mathematical modeling is 
stability analysis of the equilibrium point of the 
epidemic models. Many epidemic models have a 
disease free equilibrium point at which the population 
remains in the absence of disease. These models 
typically have a threshold parameter, called the basic 

reproduction number and denoted by  𝑅0 . The basic 
reproduction number 𝑅0  is defined as the expected 
number of secondary cases produced by a single 
(typical) infection in a completely susceptible 

population [10-11]. If  𝑅0 < 1  then the DFE point is 
locally asymptotically stable, whereas if 𝑅0 > 1, then 
the DFE is unstable [11-17]. By using appropriate 
Lyapunov functions and LaSalle’s invariance principle, 
we prove the disease free equilibrium point is globally 
asymptotically stable when the basic reproduction 
number 𝑅0 < 1 [17]. 

Contact tracing or Isolation mechanism is an 
essential technique of the overall strategy for 
controlling the outbreak of Ebola virus disease (EVD). 
Contact tracing is defined as the identification and 
follow up of persons who comes in direct contact with 
a sick Ebola patient or an infected person. As a result 
that there has not been any well know vaccination or 
medicine, contact tracing proves to be an important 
measurement of epidemic investigation and active 
inspection [8]. In this study also the model simulation 
supports the use of contact tracing process in 
controlling of Ebola virus disease outbreak. The 
isolation is made from exposed and infected 
compartments with different rates. 

In section 2, we constructed Mathematical 
modeling of SEIIhR epidemics. Assumptions and 
description of the model are provided. Bounds of the 
model variables are identified. Formula for the basic 
reproductive number is obtained and dimensionless 
variables of the system are introduced. In section 3, 
equilibrium points are identified and the stability 
analysis is made. In section 4, simulation study of the 
model is taken up. In section 5, data of Ebola virus 
epidemic infected and death cases found in West 
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Africa is fitted into the model and observations are 
made. The paper ends in Section 6 with concluding 
remarks. 

2. Mathematical modeling of SEIIhR 
epidemics 

The mathematical model that describes the SEIIhR 
epidemics can be expressed as the following systems 
of non-linear ordinary differential equations: 

dS

dt
=  Λ −

β(t)SI

N
− µS  (1a) 

dE

dt
= 

β(t)SI

N
−  σE − ηE − µE  (1b) 

dI

dt
= σE −  γI − αI − µI  (1c) 

dIh

dt
= 𝜂E + αI −  ωIh − µIh  (1d) 

dR

dt
=  γI + ωIh − µR  (1e) 

2.1 Assumptions of the model 

The SEIIhR model that described Ebola epidemic 
outbreak is constructed based on the following 
assumptions which are made since the duration of the 
Ebola epidemic outbreak is considerably small and 
during the short periods these assumptions hold good 
[1]. (i) The population is homogeneously distributed in 
the sense that each individual has the same 
probability of entering into a compartment. (ii) The 
total population at any point of time is considered to 
be a constant and is represented by the parameter N 
= S (t) + E (t) + I (t) +Ih (t) + R (t). (iii) The numbers of 
both births and deaths are equal. (iv) Migration and 
immigration of individuals are not considered as their 
influence on the result is small. 

2.2 Description of SEIIhR model 

The model assumes that the total population N is 
divided in to five groups which we call here as 
compartments. The population size of each of the five 
compartments is represented by one letter from the 

name of the model sequence SEIIhR  at the time t  . 
Thus, the names of the compartments denote S for 
Susceptible, E for Exposed, I for Infected, Ih for 
Isolated, and R for Removed respectively. 

The time dependent parameter notations: (i) S(t) 
denotes the number of people in the susceptible 
compartment where the people are capable of 

infected, (ii) E(t) denotes the number of people in the 
exposed compartment where the people are 
incubating the infection, (iii) I(t) denotes the number 
of people in the infected compartment where the 
people are infected with the virus [4], (iv)  Ih(t) 
denotes the number of people in the isolated 
compartment brought from the infected and exposed 

compartments and (v) R(t) is the number of people in 
the removed compartment where the people are 
considered to be recovered from the epidemic or died. 
The transmission of Ebola Virus (EBOV) is considered 
to follow the multistoried sequence flow [1]. 

The time independent parameter (i) 𝜇  represents 
the death rate or equivalently the birth rate of the 
population during the short span of the epidemic 

outbreak, (ii) 𝛽 represents the transmission rate of the 
disease that is the rate of transferring people from the 
compartment 𝑆(𝑡) to 𝐸(𝑡), (iii) 1/𝜎  and 1/𝛾  represent 
the average durations of stay in the compartments of 
E(t) and 𝐼(𝑡) , (iv) 1/ 𝜔  represent the average time 
that takes for a patient to get transferred from isolation 
𝐼ℎ(𝑡)  to death 𝑅(𝑡) and (v) 𝜂  and 𝛼  are the 
probabilities of individual isolated from exposed and 
infected compartments respectively. 

2.3 Bounds of the model variables 

To understand the behavior of the SE I Ih R model 
properly it is needed to perform a complete stability 
analysis of the model. This task includes (i) computing 
the limits of the system variables (ii) identifying 
equilibrium points and applying on them the 
appropriate theorems to determine whether these 
points are stable locally or globally or not and (iii) 
verifying whether the equilibrium points are stable or 
asymptotically stable. 

On differentiating the population conservative 

equation N (t)  =  S (t)  +  E (t)  +  I (t)  + Ih(t)  +
 R (t) with respect to time we get 𝑁 ′(𝑡)  =  𝑆 ′(𝑡)  +
 𝐸′ (𝑡)  +  𝐼 ′(𝑡)  + I′h(t) )  +  𝑅 ′(𝑡)and summing up the 
differentials of (1) leads to N′(t) = Λ − µ  or 
equivalently N′(t) + µN = Λ . Its general solution can 

be obtained as N(t) = [(Λ µ⁄ ) + (𝑐 𝑒𝜇𝑡⁄ )] . The 
result  lim 

𝑡→∞
𝑁(𝑡 ) =   lim 

𝑡→∞
[(Λ µ⁄ ) +

(𝑐 𝑒𝜇𝑡⁄ )]  = (Λ µ⁄ ) indicates that the upper bound of 
the total population is (Λ µ⁄ ) . 

The total population 𝑁 (𝑡 )  is must always be 
positive because a negative population does not make 
any sense. Therefore, 𝑁 (𝑡) > 0, and that 

implies  S(t ) >  0, E(t) > 0, I (t ) >  0, Ih(t) >
0, and R(t )  >  0.  Hence, the lower bound 

for S, E, I, Ih, and R is 0. However, the total population of 
the system at any point of time t is given by 𝑁 =
[(Λ µ⁄ ) + (𝑐 𝑒𝜇𝑡⁄ )] and the corresponding population 

sizes in the compartments  S, E, I , Ih, and R  are 
separately less than or equal to N. Therefore, each of 

S, E, I , Ih, and R is less than or equal to [(Λ µ⁄ ) +
(𝑐 𝑒𝜇𝑡⁄ )]. That is, each of S, E, I , Ih, and R is a positive 
quantity with upper bound as[(Λ µ⁄ ) + (𝑐 𝑒𝜇𝑡⁄ )] . 

We observe from the system (1) that the last two 
compartments are not involved in the expressions for 
the first three compartments which indicates that the 
study of first three equations alone can reveal the inter 
relationship among all the compartments. Hence, it is 

appropriate to study (1) in the bounded set Γ =
{(S, E, I) ∈ R+

3 : 0 ≤ S +  E +  I ≤ N ≤  (Λ µ⁄ )}  where 

R+
3  denotes the non-negative three dimensional 

space. It can be verified that Γ is positively invariant 
with respect to system (1), [11-12]. 

2.4 Basic reproductive number 

The basic reproduction number denoted by 𝑅0 and 
is defined as the expected number of people getting 
secondary infection among the whole susceptible 
population [9-10]. This number determines the 
potential for the spread of disease within a population. 

http://www.jmest.org/
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If 𝑅0 < 1 then the spread of the disease decelerate 

and ultimately dies down. On the other hand if 𝑅0 > 1 
then the spread of the disease accelerates and 
spreads rapidly [11]. We now find the Disease Free 
Equilibrium (DFE) point as it is required to 

compute 𝑅0 . For the purpose we set the right hand 
sides of the system (1) to zero and use the fact that 

the infected compartment is empty, i.e., I = 0 and 
upon simple algebraic manipulation gives us the 
disease free equilibrium point of system (1) as 

𝐸0  =  (𝑆, 𝐸, 𝐼)  =  (Λ 𝜇⁄ , 0,0). 

The basic reproductive number 𝑅0  can be 
determined using the next generation matrix. From the 
system (1) the first three equations are considered 

and decomposed into two groups; 𝐹  contains newly 
infected cases and 𝑉  contains the remaining terms. 

Let 𝑋 =  [𝐸 𝐼 𝑆]𝑇  be a column vector and the 
differential equations of the first three compartments 

are rewritten as  𝐹(𝑋) − 𝑉(𝑋) . That is  𝐹(𝑋) =
[𝐹1 𝐹2 𝐹3]

𝑇 . Here (i) 𝐹1 = (𝛽𝑆𝐼 𝑁⁄ ) denote newly 
infected cases which arrive into the exposed 

comportment, (ii) 𝐹2 = 0 denotes newly infected cases 
arrived into the infected compartment, and (ii) 𝐹3 = 0 
denotes newly infected case from susceptible 

compartment [3]. Further  𝑉(𝑋) = [𝑉1 𝑉2 𝑉3]
𝑇 . 

Here  𝑉1 = 𝑎𝐸 , 𝑉2 = −𝜎𝐸 + 𝑏𝐼 and 𝑉3 = −Λ +
(𝛽𝑆𝐼 𝑁⁄ ) + µS . The parameters 𝑎 and 𝑏 denote  𝑎 =
(𝜎 + 𝜂 + 𝜇) and 𝑏 = (𝛾 + 𝛼 + 𝜇) respectively. 

The Jacobian matrices for 𝐹 (𝑋) and 𝑉 (𝑋) at any 
point can be constructed as 

 𝐽𝐹 (𝑋) =

[
 
 
 
 
 
𝜕𝐹1

𝜕𝐸

𝜕𝐹1

𝜕𝐼

𝜕𝐹1

𝜕𝑆
𝜕𝐹2

𝜕𝐸

𝜕𝐹2

𝜕𝐼

𝜕𝐹2

𝜕𝑆
𝜕𝐹3

𝜕𝐸

𝜕𝐹3

𝜕𝐼

𝜕𝐹3

𝜕𝑆 ]
 
 
 
 
 

= [
0

𝛽𝑆

𝑁

𝛽𝐼

𝑁
0 0 0
0 0 0

] 

and 

𝐽𝑉 (𝑋) =

[
 
 
 
 
 
𝜕𝑉1

𝜕𝐸

𝜕𝑉1

𝜕𝐼

𝜕𝑉1

𝜕𝑆
𝜕𝑉2

𝜕𝐸

𝜕𝑉2

𝜕𝐼

𝜕𝑉2

𝜕𝑆
𝜕𝑉3

𝜕𝐸

𝜕𝑉3

𝜕𝐼

𝜕𝑉3

𝜕𝑆 ]
 
 
 
 
 

= [

𝑎 0 0
−𝜎 𝑏 0

0
𝛽𝑆

𝑁

𝛽𝐼

𝑁
+ 𝜇

] 

The Jacobian of 𝐹  and 𝑉  at the disease free 
equilibrium point 𝐸0  take the form respectively 

 𝐽𝐹 (𝐸0) = [
0 𝛽 0
0 0 0
0 0 0

] and 𝐽𝑉 (𝐸0) = [
𝑎 0 0

−𝜎 𝑏 0
0 𝛽 𝜇

]. It can 

be verified that the matrix  𝐽𝑉 (𝐸0) is nonsingular as its 

determinant  det( 𝐽𝑉 (𝐸0)) = 𝑎𝑏𝜇 is non zero and after 

some algebraic computations the inverse is 

constructed as [ 𝐽𝑉 (𝐸0)]
−1 =

[
 
 
 
 

1

𝑎
0 0

𝜎

𝑎𝑏

1

𝑏
0

−𝛽𝜎

𝑎𝜇𝑏

−𝛽

𝑏𝜇

1

𝜇]
 
 
 
 

. The 

product of the matrices [ 𝐽𝐹 (𝐸0)] and [ 𝐽𝑉 (𝐸0)]
−1 is 

[ 𝐽𝐹 (𝐸0)] [ 𝐽𝑉 (𝐸0)]
−1 = [

𝛽𝜎

𝑎𝑏

𝛽

𝑏
0

0 0 0
0 0 0

]  and the latter 

product’s spectral radius 𝜌([ 𝐽𝐹 (𝐸0)] [ 𝐽𝑉 (𝐸0)]
−1) =

(𝛽𝜎 𝑎𝑏⁄ ). Hence, we call the said spectral radius as 
the threshold value or the basic reproductive 

number R0 = (𝛽𝜎 𝑎𝑏⁄ ). 

2.5 Non-dimensionalization of the system 

Non-dimensionalization is the method to reduce 
the number of parameters in the system of equations. 
In addition to this we can eliminate the units since the 
units are not important for the dynamical analysis of 
the system. The dimensionless form of the model can 

be express including the parameter  𝑅0 , and this is 
interesting and useful for model simulation. For the 
said purpose we introduce the dimensionless 

quantities u, v, w, z,m, and τ defined in terms of the 
model parameters as S = uN, E = vN, I = wN, Ih =
zN, R = mN, and τ = (ab σ⁄ )t. 

Thus the dimensionless form of system (1) can be 
express as 

du

dτ
= (1 − u)Kµ − R0uw  (3a) 

dv

dτ
= R0uw − K2v  (3b) 

dw

dτ
= K1K2v − K1w  (3c) 

dz

dτ
= K(ηv + αw − cz)  (3d) 

m = 1 − u − v − w − z  (3e) 

where K1 = (σ a⁄ ) , K2 = (σ b⁄ ) K = (K1 b⁄ )  and 
c = (ω + µ). 

3. Stability analysis of the model at DFE 
point 

In this section, stability analysis of the system (1) is 
considered and discussed. We mainly focus on DFE 
point alone. The endemic equilibrium points (non 
DFE) are not acceptable on the reality grounds since 
Ebola virus is an epidemic disease and is a short time 
outbreak. We now analyze the local and global 
stability of DFE point of the system (1) by analyzing 
the characteristic equation. 

3.1 Locally but asymptotically stability 

In the absence of the infectious disease, the model 
has a unique disease free steady state 𝐸0. To find the 

local stability of 𝐸0, we use the Jacobian of the model 
evaluated at 𝐸0. Stability of this steady state is then 
determined based on the eigenvalues of the 
corresponding Jacobian which are functions of the 
model parameters [9]. The Jacobian matrix for the 
system (1) is given by 

J(S, E, I) =  [

−𝛽𝐼

𝑁
− 𝜇 0

−𝛽𝑆

𝑁
𝛽𝐼

𝑁
−𝑎

𝛽𝑆

𝑁

0 𝜎 −𝑏

] and this implies 
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𝐽(𝐸0) =  [
−𝜇 0 −𝛽
0 −𝑎 𝛽
0 𝜎 −𝑏

] . 

The DFE point  𝐸0 is not locally stability because 

𝑅0  ≠ 1 but it is locally asymptotically stable since 𝑅0 <
1 . The validity of  𝑅0 < 1 is verified in Theorem 1. 

Theorem 1 If 𝑅0  < 1, then the disease free 
equilibrium point 𝐸0  of system (1) is locally 
asymptotically stable. 

Proof The characteristics equation of the Jacobian 

matrix (𝐽(𝐸0) at DFE point  𝐸0 is given by det(𝐽(𝐸0) −
𝜆𝐼) = 0 and the corresponding characteristic 

equations are  [𝜆 + 𝜇] [𝜆2 + (𝑎 + 𝑏)𝜆 + 𝑎𝑏(1 − 𝑅0)] =
0. From this it is straight forward to get a root as 𝜆1 =
−𝜇 . Since the parameter 𝜇  is real but positive, the 

eigenvalue 𝜆1 is real but negative. To analyze the 
nature of the remaining two eigenvalues, we now 

divide the characteristic equation by (𝜆 + 𝜇) to get the 

remainder as  𝜆2 + (𝑎 + 𝑏)𝜆 + 𝑎𝑏(1 − 𝑅0) = 0 . Since 

the coefficients of 𝜆2  and 𝜆  are positive, in order to 
have both roots real but negative, we must have the 

constant term 𝑎𝑏(1 − 𝑅0)  to be positive. That is, 
[𝑎𝑏(1 − 𝑅0)] > 0  or  (1 − 𝑅0) > 0  or  𝑅0 < 1 . This 
justifies that the system (1) is locally asymptotically 

stable at 𝐸0. 

3.2 Global stability of DFE 

The phase diagram curves representing dynamics 
of system are attracted towards the equilibrium point 
while it is stable. But, the curves appear to move away 
from the equilibrium point while it is unstable [12]. The 
DFE  𝐸0 in the present case is globally asymptotically 
stable and the same is proved in Theorem 2 below. 

Theorem 2: If R0 < 1 then the disease free 

equilibrium point E0  is globally asymptotically stable 
and at that point the disease dies out. 

Proof Let us consider the analogous of Lyapunov 
function [17] in the present model as 𝐿 = (σE +
aI) and which on differentiating both sides with respect 
to time we obtain L′ = σE′ + aI′. On substituting for E' 

and I' from (1) it takes the form  L′ = σ[(βSI N⁄ ) − aE] +

a(σE – bI)  or equivalently L′ = (σβSI N⁄ ) − abI . 

But  L′ = [(σ βS N⁄ ) − ab]I  at DFE 𝑆 = 𝑁  and this 
implies to have 𝐿′ = 𝑎𝑏[(σβ 𝑎𝑏⁄ ) − 1]I  or 

equivalently 𝐿′ = 𝑎𝑏(𝑅0 − 1)I . It is simple to conclude 
that L′ < 0 whenever (𝑅0 − 1) ≤ 0 or equivalently 𝑅0 ≤
1 . Also, the maximal compact invariant set in {(S, E, 

I)  ∈ Γ,
dL

dt
= 0 } is the singleton { 𝐸0 }. Therefore, by 

Lasalle’s invariance principle [16] the statement is 
proved. However, it is to be noted that if R0 > 1 then 

 E0 is unstable. 

4. Model simulation 

Here we consider simulation study of S EI Ih R 
model with different values for 𝑅0. The main focus of 
the simulation study is to investigate the response of 
model parameters Ebola epidemic outbreak. In 
mathematical epidemiology the value of the basic 

reproductive number parameter denoted by 𝑅0  plays 

an important role. We consider 𝑅0 taking different 
values less than or greater than a unity and conduct 
simulation study. For the Ebola epidemic there has 
not been a well known vaccination or medicine. 
Hence, the only alternative mechanism to control 
spreading of the disease is contact tracing (isolation of 
the infected individuals). We will see the effect of 
isolation on the spread of the disease using 
simulation. 

 

Figure 1: Simulation of SEIIhR model with the 

basic reproductive number R0 = 0.5. 

In the stability analysis of the model it is shown that 

the disease dies out whenever 𝑅0 < 1 and the same is 
evident by the simulation given in Figure 1. It is 
observed that susceptible compartment represented 
by the blue curve remains at the same level with 
respect to the progress of time indicating that the 
susceptible compartment is stable. Further, 
biologically if there is no new infected case then size 
of the susceptible population remains the same 
without any distraction and sizes of the other 
compartments remain to be at zero level and this fact 
is very much evident as displayed in the Figure 1. 
That is, in real life situation as long as a new infected 
case do not occur the size of susceptible 
compartment remains the same as the total 

population 𝑁. 

 

Figure 2: Model simulation for basic reproductive 

number R0 = 5. 

In Figure 2 the simulation study shows that the 
system is unstable. It is also in support of Theorem 2. 
The population size of the susceptible compartment 
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(blue curve) decreases due to spread of the epidemic 
up to certain point of time and then takes up due to 
controlling of the spread of disease with the 
mechanism of isolation. The size of the removed 
compartment (green curve) grows and asymptotically 
converges. The sizes of the exposed (red curve), 
isolated (black curve) and infected (rose curve) 
compartments follow normal distribution curves with 
varied mean and standard deviations. 

 

Figure 3 Model simulation of susceptible 
compartment with 𝐑𝟎=0.5, 2, and 5 

The fact that the system is stable if  R0 < 1 and 
unstable if  R0 > 1 is evident in Figure 3. The 

suceptible compartment with R0 = 0.5 is stable (blue) 
but the same with R0 = 2 (red) and with R0 = 5 (black) 
are unstable. The unstability converges to zero faster 

in proportional to increasing of R0 . 

 

Figure 4 Model simulation of removed 

compartment R0 = 0.5, 2, & 5 

The fact that the system is stable if  R0 < 1 and 
unstable if  R0 > 1 is evident in Figure 4. The removed 

compartment with R0 = 0.5 is stable (blue) but the 
same with R0 = 2 (red) and with R0 = 5 (black) are 
unstable. The unstability converges to upper bound 

faster in proportional to increasing of R0 . Note that 
stability stands for horizontalness of a curve while 
unstability is reflected in the fall or rise or both of a 
curve. 

 

Figure 5 Model simulations of number of infected 

cases with R0 = 0.5, 2, & 3 

In Figure 5, we have considered the simulation 
study of total number of infected cases, i.e. the sum of 
the population sizes of isolated and infected 
compartments. The fact that the system is stable if 

 R0 < 1 and unstable if  R0 > 1 is evident here. 
Further, it shows that the sum of infected cases with 

R0 = 0.5 is stable (blue) but the same with R0 =
2 (red) and with R0 = 3 (black) is unstable. The 
unstability converges to upper bound faster in 

proportional to increasing of R0 . 

 

Figure 6 Model simulation of isolation with 
α = 0.0, 0.3 & 0.5 

The parameter α represents the probability of 
isolating an infected person i.e. the probability of 
transferring a person from infected compartment to 
isolated compartment. As expected, Figure 6 shows 

that as α grows on its range [0 , 1]  the cumulative 
number of infected cases approach the upper 
asymptote with delay in time; blue early, black later 
and red still lately. 
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Figure 7 Model simulation of isolation with 

η = 0.0, 0.3 & 0.5 

The parameter η represents the probability of 
isolating an exposed person i.e. the probability of 
transferring a person from exposed compartment to 
isolated compartment. As expected, Figure 7 shows 

that as η grows on its range [0 , 1]  the cumulative 
number of infected cases approach the upper 
asymptote with delay in time; blue early, black later 
and red still lately. 

 
Figure 8 Model simulation of isolation with varied 

combinations of α & η 

The influence of the parameter α is more than that 

of the parameter  η on converging of cumulative 
number of infected cases to an upper asymptote with 
delay in time. This fact is evident in figure 8 as the 
curves converge asymptotically; blue early, black later 
and red still lately. 

 

Figure 9 Model simulation of isolation 
compartment 

The cumulative number of isolated individual cases 

with the increasing values of the parameters α and η 
grows faster during the initial times but fall down lately 
to zero. This fact is evident in Figure 9. The simulated 

curve (red) with  α =  η = 0.5 grows faster and falls 
later in comparison with the simulated curve (blue) 

with  α =  η = 0.3 . The simulated curve (black) 
with  α =  η = 0 neither rises nor falls but remains at 
zero level as there has not been any kind of isolation. 

5. Data fitting 

For the fitting data in the present model we have 
considered the data of Ebola epidemic disease. The 
data includes the infected and death cases recorded 
in the countries Guinea, Liberia and Sierra Leon up to 
March 8, 2015 [2-3]. In this subsection, we focus on 
data fitting in the model and predict the cases using 
the best fit. In the data fitting the cumulative infected 
and death cases are considered. The study is 

applicable for a total population size of N =  542580. 

 
Figure 10 Data fitting of cumulative infected cases 

with R0 =  0.5, 1.5, & 2, N =  542580 

In figure 10, we have fitted cumulative infected 

cases 24282 found in West Africa up to March 8, 
2015. The parametric values are set as  R0 =
 0.5, 1.5, & 2 and  𝜂 = 0.2, 𝛼 = 0.3, 𝜎 = 0.1783, 𝛾 =
0.1887, 𝜇 = 0.001. It can be observed that for the best 
fit  R0 =  1.5 . But the theory predicts that as long 

as R0 > 1 the epidemic grows without any interruption 
and spreads to the whole population. Thus, the data 
fitting up to March 8, 2015 is suggests that the 
epidemic spreads to the whole population with the 
progressive time unless control measurements are 
taken. 

 
Figure 11 Data fitting of total cumulative death 

cases 
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In figure 11, we have fitted cumulative death cases 
9976 found in West Africa up to March 8, 2015. The 
parametric values are set as  R0 = 1.5, 𝜂 = 0.2, 𝛼 =
0.4, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can be 
observed that for the best fit for R0 =  1.5 is 65%. That 
is, it can be interpreted that from the population of the 
Removed compartment, 65% are died and the 
remaining 35% are recovered from the epidemic. The 
data fitting suggests that this ratio of death and 
recovered cases 65:35 will continue unless any 
remedial control measurements are pressed in. 

 

Figure 12 Data fitting of cumulative infected cases 
of Liberia with R0 =  0.5, 1.5 & 2, N =  220180. 

In figure 12, we have fitted cumulative infected 
cases 9343 found in Liberia up to March 8, 2015. The 

parametric values are set as R0 =  0.5, 1.5 & 2and 𝜂 =
0.2, 𝛼 = 0.3, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can 

be observed that for the best fit  R0 =  1.5 . But the 
theory predicts that as long as  R0 > 1 the epidemic 
grows without any interruption and spreads to the 
whole population. Thus, the data fitting suggests that 
the epidemic spreads to the whole population of 
Liberia with the progressive time unless control 
measurements are taken. 

 

Figure 13 Data fitting of cumulative death cases of 
Liberia 

In figure 13, we have fitted cumulative death cases 
4162 found in Liberia up to March 8, 2015. The 
parametric values are set as  R0 = 1.5, 𝜂 = 0.3, 𝛼 =
0.3, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can be 
observed that for the best fit for R0 =  1.5 is 60%. That 

is, it can be interpreted that from the population of the 
Removed compartment corresponding to Liberia, 60% 
are died and the remaining 40% are recovered from 
the epidemic. The data fitting suggests that this ratio 
of death and recovered cases 60:40 will continue 
unless any remedial control measurements are 
pressed in. 

 

Figure 14 Data fitting of cumulative infected cases 

of Guinea with R0 =  0.5, 2 & 3, N =  49400. 

In figure 14, we have fitted cumulative infected 
cases 3285 found in Guinea up to March 8, 2015. The 

parametric values are set as  R0 =  0.5, 2 & 3 and 𝜂 =
0.2, 𝛼 = 0.3, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can 

be observed that for the best fit R0 =  2. But the theory 
predicts that as long as  R0 > 1 the epidemic grows 
without any interruption and spreads to the whole 
population. Thus, the data considering up to March 8, 
2015 and fitting suggests that the epidemic spreads to 
the whole population of Guinea with the progressive 
time unless control measurements are taken. 

 

Figure 15 Data fitting of cumulative death cases of 
Guinea 

In figure 15, we have fitted cumulative death cases 
2170 found in Guinea up to March 8, 2015. The 

parametric values are set as  R0 = 2.2, 𝜂 = 0.2, 𝛼 =
0.3, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can be 

observed that for the best fit for R0 =  2.2 is 70%. That 
is, it can be interpreted that from the population of the 
Removed compartment corresponding to Guinea, 
70% are died and the remaining 30% are recovered 
from the epidemic. The data fitting suggests that this 
ratio of death and recovered cases 70:30 will continue 
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unless any remedial control measurements are 
pressed in. 

 

Figure 16 Fitting of cumulative infected cases of 
Sierra Leon with R0 =  0.5, 1.5 & 2, N =  273180. 

In figure 16, we have fitted cumulative infected 
cases 11619 found in Sierra Leon up to March 8, 

2015. The parametric values are set as R0 =
 0.5, 1.5 & 2 and  𝜂 = 0.2, 𝛼 = 0.3, 𝜎 = 0.1783, 𝛾 =
0.1887, 𝜇 = 0.001 . It can be observed that for the best 
fit  R0 =  1.5 . But the theory predicts that as long 

as R0 > 1 the epidemic grows without any interruption 
and spreads to the whole population. Thus, the data 
considering up to March 8, 2015 and fitting suggests 
that the epidemic spreads to the whole population of 
Sierra Leon with the progressive time unless control 
measurements are taken. 

 

Figure 17 Data fitting of cumulative death cases of 
Sierra Leon 

In figure 17, we have fitted cumulative death cases 
3629 found in Sierra Leon up to March 8, 2015. The 
parametric values are set as  R0 = 1.5, 𝜂 = 0.3, 𝛼 =
0.5, 𝜎 = 0.1783, 𝛾 = 0.1887, 𝜇 = 0.001 . It can be 
observed that for the best fit for R0 =  1.5 is 57%. That 
is, it can be interpreted that from the population of the 
Removed compartment corresponding to Sierra Leon, 
57% are died and the remaining 43% are recovered 
from the epidemic. The data fitting suggests that this 
ratio of death and recovered cases 57:43 will continue 
unless any remedial control measurements are 
pressed in. 

6. Comparison between 𝑺𝑬𝑰𝑹 and 𝑺𝑬𝑰𝑰𝒉𝑹 
models 

The same authors in [1] in their 𝑆𝐸𝐼𝑅 model have 
not considered the inclusion of ‘isolation’ compartment 
and hence missed accounting the powerful controlling 
technique of disease propagation. We here in this 

𝑆𝐸𝐼𝐼ℎ𝑅 model included the ‘isolation’ compartment 
and shown a way to reduce the rate of propagation of 
the disease. The main observations and comparisons 
of both the models are presented in the form of a table 
below: 

SEIR Model SEIIhR Model 

It is a four compartment 
model containing: 

Susceptible, Exposed, 
Infected and Removed 

compartments 

It is a five compartment 
model containing: 

Susceptible, Exposed, 
Infected, Isolated and 

Removed compartments 

As isolation of the 
exposed or infected 

individual is not included, 
the disease outbreak 

spreads faster. 

As isolation of the exposed 
or infected individual is 
included, the disease 

outbreak spread is slowed 
down. 

The population size of the 
susceptible compartment 
falls down and gradually 

tends to zero over a 
period of time (see Fig 3 

[1]). 

The population size of the 
susceptible compartment 
falls down to certain level 
and from then instead of 
going to zero it takes off 
and grows with normal 

rates. That is, the isolation 
technique is contributing for 

the control of disease 
spread (see Fig2). 

In this model the data of 
total infected cases fits 

well for 𝑅0 = 3. That is, 
every infected individual 

propagates the disease to 
three susceptible 

individuals. 

In this model the data of 
total infected cases fits well 
for 𝑅0 = 1.5. That is, every 

infected individual 
propagates the disease to 

1.5 susceptible individuals. 
That is, the propagation due 
to the inclusion of isolation 
compartment is decreased 

by half. 

In this model the data of 
total death cases fits well 

for 𝑅0 = 2.6 with 70% 
deaths. That is, disease is 

spreading with a rate of 
2.6 and the fatal rate is 

0.7. 

In this model the data of 
total death cases fits well 

for 𝑅0 = 1.5 with 65% 
deaths. That is, disease is 
spreading with a rate of 1.5 
and the fatal rate is 0.65. 

 

Table 1 Comparison of non-inclusion and inclusion 
of ‘Isolation’ compartment 
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7. Conclusions 

Mathematical models are useful to describe the 
spreading and control mechanism of epidemics 
including Ebola virus disease. In the present study 
SEIIhR model is formulated with an intention of 
describing Ebola virus epidemic outbreak. We have 
studied the local and global stabilities of the model at 
the disease free equilibrium point E0. At DFE, the 
value of 𝑅0  is calculated as  𝑅0 = (𝛿𝛽 𝑎𝑏⁄ ) using 

second generation matrix. It is shown that for 𝑅0 < 1 
at DFE point, the SEIIhR model is locally 
asymptotically stable. 

Disease spread controlling technique called 
‘Isolation’ is proposed and included in this study. 
Isolation of exposed and infected individuals is a 
powerful technique and can be used to control the 
spreading of the epidemic. 

Further, using Lyapunov function it is shown that 
the model is globally asymptotically stable for  𝑅0 <
1 whereas it is unstable for 𝑅0 > 1 . It is interpreted 
that the Ebola virus disease outbreak vanishes over 

evolution of time for 𝑅0 < 1 but remains alive among 
the population for 𝑅0 > 1 . 

The data fit for the cumulative infected cases in the 
model suggests that the basic reproductive number 

takes the value 𝑅0 =1.5. The data fit of the cumulative 
death cases in the model suggests that 65% of the 
persons enter into the removed compartment will die 
unless remedial measurements are adopted. Similar 
conclusions for the three countries viz., Liberia Guinea 
and Sierra Leon are drawn. 
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