
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350543 454 

Comparison between any Two Design 
Patterns 

Tarek Eltaieb 
Professor, Department of CS, University of 

Bridgeport 
Bridgeport, Connecticut. 

taltaeib@my.bridgeport.edu 
 

Mamatha Rithwika Gaddam
 

Student, Department of CS, University of 
Bridgeport 

Bridgeport, Connecticut 
mgaddam@my.bridgeport.edu 

 
Abstract—Design patterns are the solutions to 

any software design problems which we find in 
real world application development. These design 
patterns show typical relationships and 
interactions between classes and objects. 

 

Introduction 

A pattern is a way to define a solution or approach 
to a common design problem while coding or 
implementing the code into an application. In object 
oriented design pattern, relation between classes and 
objects. A pattern has important aspects; they are 
name of pattern, Problems in the pattern, Solutions to 
the problem and Consequences for the problem. For 
any design pattern these are very important. We are 
focus on comparing two or three design patterns 
available for research, namely 

 Creational patterns 

 Behavioral patterns 

 Structural patterns 

Uses of Design Patterns 

Design patterns can build up the process of 
development by giving the design tested and 
improved programs. For the software design to 
become effective we need to consider some issues, 
this issues may affect the design at the time of 
implementation but not before implementation. So the 
design issues are important, they can cause major 
problems. Design patterns are very helpful to prevent 
the issues and this also enhances code readability. 

Few designers know how to apply specific software 
design techniques to specific issues. But these 
designs are difficult to apply to a wide range of design 
issues. Design patterns give the solutions, in a 
documented format which does not require specific 
issues to a particular problem. 

Creational Pattern: 

Possible Issue: 

The application should be changed into platform 
dependent like database, windows, operating 
systems, so that the application can be transported to 
other system from one system. This object oriented 
programming is not well designed and build. 

Creational 

patterns 

Behavioral 

patterns 

Class instantiation is the 

main aspect of creational 

patterns. There are two 

types class and object 

creational patterns. 

Communication between 

objects is the main aspect 

of behavioral patterns. 

Factory method: An 

instance is created for 

different hierarchy of 

classes. 

Interpreter: A way to 

define elements of 

language. 

Abstract Factory method: 

Same as factory method. 

Chain of responsibility: 

Request should be 

passed between set of 

objects by calling 

methods. 

Builder: The object 

formed from its 

representation is 

separated. 

Command: Develop a 

command request in any 

form of object. 

Object pool: Expensive 

investment and 

production should be 

considered and removed 

by recycling the objects. 

Iterator: Elements of 

library should be 

accessed one by one. 

Prototype: When an 

instance is designed and 

defined then it should be 

performed. 

Mediator: There is a 

communication between 

class and object. 

Singleton: Single 

instance can subsist in a 

method of library class. 

Memento: An objects 

internal state can be 

captured and built again. 

Discussion: 

To abstract creating the order of related or 
dependent objects without knowing the classes, it 
provides the level of indirection. To provide the 
services for the platform, the "factory" object is 
responsible. But these clients won’t create the 
platform for factory objects; they just replace the 
objects from other platforms. 

Because of these replacing of products is easy, as 
the factory object of particular class arrive once in the 
entire application. Class instantiation can be done in 

http://www.jmest.org/
mailto:taltaeib@my.bridgeport.edu


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350543 455 

this case by replacing it with different instance of the 
abstract factory. 

It is implemented as Singleton method because the 
services which are provided by factory object are so 
prevalent. 

Structure of design: 

The factory methods are designed for every 
product in the abstract factory design pattern. The 
new product classes which are platform specific are 
summarized by the methods. Then the factory derived 
class defines its own platform. 

Implementation of method: 

Providing an interface for creating tree like 
structure for all related class object without mentioning 
concrete class, this is the main purpose of Abstract 
factory. The best example for this pattern is Sheet 
metal stamping device which is used for making 
automobiles. The stamping device which creates body 
parts acts as an abstract factory. To stamp the parts 
of automobiles like Right side doors, Left side doors, 
Right and left vendors, etc. use the same Factory 
method. By using the rollers to change the stamp, 
concrete classes which are produced by the 
machinery should be used. 

 

Check list: 

1. The source for the pattern should be platform 
independent and their services should be 
defined and decided. 

2. Platforms and products should be matched in 
any design pattern and they should be 
represented in matrix form. 

3. Methods should be created by interfaces per 
code. 

Behavioral Pattern: 

Aim: 

This pattern is used to represent grammar using an 
interpreter, which interprets a sentence of the 
grammar in any given language. A map should be 

plotted from language to grammar to the design. So 
that it is easy to interpret the grammar in the 
language. 

Possible issue: 

In any language, the errors are common in the 
grammar, so the languages should be designed 
correctly so that no problems occur in the know 
language. Many problems can be resolved with the 
interpretation engine. 

Discussion: 

The interpreter design includes three steps: 

1. Designing and defining a domain language 
(i.e. characterization of problem) as easy and 
understandable language. 

2. Defining the rules for a language for formation 
of sentence. 

3. After forming sentences, interpreting these 
sentences to solve different design issues for 
particular language. 

The grammar rules can be represented by patterns 
which are using classes from the order. As these 
grammars are usually hierarchical structure, classes 
map correctly because of inheritance. 

Abstract base class uses the interpret method and 
the subclasses use the before class interpret method 
along with the current state of class in language and 
adding them in solving the problem issue. Interpret () 
method is used in this design pattern of any language. 

Structure of design: 

In the interpreter design pattern, any grammar is 
designed using few particular rules for particular 
language. Every rule in the grammar is of two types, 
one is compound and other is terminal which is leaf 
node. For any sentence to form first the context is 
needed which explains the grammar of language 
through recursive traversal. 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350543 456 

Implementation: 

The Interpreter pattern is defined as grammatical 
representation for any language and an interpreter to 
change the rules to form sentences. Example of 
interpreter pattern is Musicians. To create any music 
first the notes and symbols are very important. The 
musicians first have to know about the music notes. 
Then they start playing the music using these notes 
on the score, so the music played from it will 
reproduce the pitch and also the duration of each note 
of the sound. Then the final graph is represented and 
duration is noted. 

 

Check list: 

1. First we have to check whether the language 
will offer agreed return on investment. 

2. Grammar is most important for any language, 
it should be defined. 

3. Each production should be mapped to a class 
in the grammar. 

4. After mapping all classes, these all should be 
arranged into the structure of the pattern. 

5. In the hierarchy tree structure context should 
be defined also called as interpret () method. 

6. In a language, the base node is defined and 
output is obtained, then this output is 
combined with the current state input and 
finally added to the context object for 
processing. 

Conclusion: 

The common problems can be solved using 
Design patterns. The design principles should be 
understood correctly, so that we can know where to 
use particular designs. For a good design, identifying 
design objectives is very important. They can be 
changed by time and make them more robust design 
pattern methods. 

References 

Books: 

1) Design Patterns Explained simply. 

2) Modern c++ design 

3) Applying UML and Patterns. 

Web: 

1) Random Article on Japanese automobile design. 

2) www.oodesign.com 

3) www.pluralsight.com 

 

http://www.jmest.org/

